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Packet Delay Analysis in the DQDB Network
with a Saturated Station

Seung J. Noh*

Abstract

This paper presents an analytical model for estimating packet waiting times at stations in the DQDB
network, where the most upstream station is saturated. This model is useful in comparing the extreme
unfairness which downstream stations experience due to their geographical locations in accessing the
medium. Each station is modeled as an M/G/1, where the service time is defined to be the time a packet
spends in the transmission buffer. The service time is decomposed into five components, and in tum, the
first and second moment of each component are derived in three different modes of operation. Simulation

experiments are presented for model validation and results are discussed.

1. Introduction

The DQDB network has been adopted by the IEEE Standard Committee as the subnetwork for
the IEEE 8026 MAN, Performance of the network is crucial in the network design phase since it
allows us to predict the performance of various design alternatives. Only a limited amount of work
has been reported on the performance evaluation of the network. The main difficulty for the analysis
of the DQDB network resides in the high degree of complexity and interdependence of the various
processes that describe the operation of the network.

In this paper, we consider a system where the most upstream station is saturated and all other
stations are stable. This system is probably unrealistic. However, the modeling of this system enables
us to gain some insights into the complex behavior of the DQDB protocol, such as the effect of

interactions of the stations and the unfairness feature among the stations. Each station is modeled as
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an M/G/1 queueing system. Since the most upstream station is saturated, the service time for a
packet has a special structure, which enables us to decompose it into serveral independent
components. The mean and variance of each component in the service time are computed in three
different modes of operations.

There is a number of work on the DQDB protocol [2.3.4.10.13]. and a comprehensive review of the
work is provided in Mukheriee and Bisdikian [8]. Most of the work, however, has been conducted
using simulation. There is relatively little work on analytical modeling of performance. Moreover,
analytical work on the unfairness feature of the network has not been reported. This motivated our
study.

The organization of the paper is as follows. Section 2 briefly introduces the DQDB Protocol.
Sections 3 and 4 present the model and experimental results, respectively. Section 5 concludes the

paper with a summary.

2. Overview of the DQDB Protocol

The DQDB is a medium access control protocol for forming a global First-Come
-First-Served (FCFS) transmission queue among stations. It controls access to the shared medium for
the stations that wish to transmit packets. It is based on a dual bus architecture as shown in Figure 1,

In the DQDB network, the upstream heads of the two buses (HOBs) continuously generate slots of
fixed duration(the same in both buses) that travel along their respective buses. The duration of a
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slot is equal to the size of a data packet. Each slot contains in its header, a busy bit and three
request bits. The busy bit indicates whether or not the slot is occupied by a packet, while each
request bit is used for sending a request for future packet transmission for each priority level.

Every station maintains two buffers for each bus: the Transmission Buffer(TB) for the
“distributed-queue” and a local buffer. For ease of presentation, we will only discuss transmissions on
bus A. The local buffer stores the arriving packets according to the FCFS discipline. Only the packet
at the head of the local buffer joins the TB. Packets in the individual TBs compete for the
transmission on the bus. The Distributed Queue is thus a protocol for forming a global distributed
queue among ready stations.

Every station has a request counter(req-counter), a countdown counter (cd-counter), and a local
request queue counter (q-counter) for packet transmission on a bus. These counters actually govern
the DQDB protocol. The req-counter maintains the number of requests from downstream stations, It
is increased by one whenever a request bit set passes on bus B and decreased by one whenever an
empty slot passes on bus A until it becomes 0. The cd-counter maintains the number of empty slots
that a station should pass on before it transmits its packet. As soon as a packet in a station enters
the TB, the station copies the value of req-counter into cd-counter and sets the value of req-counter
to zero. The station will then continuously decrease the cd-counter by one for every empty slot
passing by bus A until it becomes zero, It will then set the busy bit in the next empty slot and
transmit its packet. The q-counter keeps the number of local packets which arrived at a station and
not yet sent a request on bus B. It is increased by one whenever a packet enters the TB and

decreased by one whenever the station sets a request bit on bus B until it becomes 0.

3. The model

In this section, we consider the system in which station 1 is assumed to be saturated, ie., it
always has a packet ready for transmission at any instant in time.

We focus on the transmission of packets on bus A, since the protocol operates independently and
in an indentical manner for packets transmitted on bus B. To transmit a packet, a station reserves a
slot on bus A by marking the request bit on a slot on bus B, When we refer to a “marked slot,” or
the act of “marking a slot,” we are referring to a slot on bus B. Similarly, When we refer to a
“reserved slot,” we are referring to a slot on bus A released in response to a request.

We normalize the time scale with respect to one slot transmission time. In other words, we set the

time unit to be one slot time. We assume that packets arrive at station m according to a Poissson
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process at a rate A4, m =2, -, M—1, where M is the number of stations in the network. Note
that Ay =0, since station M never transmits its packets on bus A. Also note that A 1 Is undefined
since station 1 is assumed to be saturated. If all the other stations operate in a stable mode, we
must have X f;zlzik( 1. We can then estimate the probability, B,, that the slot passing by station

m is marked, as

. [ #marked slots passing by station m on bus Bintimet

Bn= 1&2 # slots passing by station m on bus Bintimet
= fim A1 Fdney bt ayopt S A m=1,M—1. (3.1)
t—c0 t k=m+1

Note, thereby, that we assume A, is the long run probabability that station m marks a slot. We

adopt the convention that an empty sum=0, and empty product=1.

Since station 1 is assumed to be saturated, it consumes all the available slots on bus A that are
not reserved by downstream stations. Thus, as far as the downstream stations are concerned, station
1 acts as a controller which releases slots in response to requests received by it.

Consider an arbitrary packet arriving at the Transmission Buffer(TB) of station m. We will refer
to this packet as the “tagged packet” [5]. The tagged packet enters the TB in one of two ways:
either a) station m has no other waiting packets at the packet arrival instant, in which case the
packet immediately joins the TB, or b) the tagged packet waits in the queue till the packet

immediately ahead of it is transmitted.

Definition The term “Slot__1" is used to refer to the first slot that passes by station m on bus B.

following the arrival of the tagged packet at the TB. u

Following its arrival at the TB, the tagged packet attempts to mark Slot__1. Even if Slot_1 is
already marked by a downstream station, j, the tagged packet behaves as if it marks this slot, in
the sense that it is transmitted ahead of the packet at station j that marked Slot_ 1. Therefore, the
tagged packet has an unfair advantage, as far as the packet at station j is concerned. Of course, it
is quite likely that a station upstream of station m attempts to mark Slot_ 1. in this case the
upstream station has an unfair advantage as far as station m is concerned.,

This unfairness feature, inherent in the DQDB protocol, complicates the analysis of the protocol for
the mean waiting times. This is due to the fact that although the tagged packet marks a slot on

bus B. it is not necessarily transmitted on the slot reserved by this request. We will denote, by
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Slot__m, the(marked) slot on bus B which ultimately obtains a slot on bus A for the transmission of
the tagged packet.
Let S, denote the time spent by the tagged packet in the TB. Let. E[ Sl E[Sm 2]. and

Var[S,,] denote the mean, second moment, and variance of Sy, and let Pn=An E[Sy]. If we

can estimate E[S,] and E[SpZ], then we can obtain E[W,], the expected time the tagged

packet spends in the local queue of station m, using the Pollaczek-Khinchin formula [5] as

AnE[Sg?]

2(1—Pmw) (3.2)

E[Wm] =
We will refer to S,, as the service time at station m. We can express S as the sun of five

components as follow:
Sm=U+Vm+Xml+Tm+X1m, (33)

where a) U is the time interval from the instant the packet arrives at the TB until Slot__1 passes
station m, b) V, is the time interval from the instant Slot__1 passes station m until Slot_m
passes station m, ¢) x,; is the time taken to propagate Slot_m to station 1 and registers its
request there, d) T, is the time from the instant Slot__m passes station 1 until the slot reserved
by this request is released by station 1, and e) X, is the time taken to propagate this slot from

station 1 to station m. When we say that a slot “passes” a station we are referring to the instant at
which the head of the slot passes by the station.

We assume that the propagation speed is the same on both buses, namely that ~ xip =X, We
refer to V, as the “marking delay,” and to T, as the “reservation delay” at station 1. In

general, there may also be a constant “phase delay” y., which represents the time between the
instant a slot on bus B reaches station 1 and the instant a slot on bus A just passes station 1. This
term does not affect the computation of the unknown components of the service time. Hence, for

ease of discussion we ignore the effect of y on the service time for the moment.

The mean of S,, can be computed if we obtain the means for the terms on the right hand side of
equation (3.3). Under the assumption that the terms in equation (3.3) are independent, the variance
of S, is obtained as the sum of the variance of the individual terms. We compute the first and
second moment of V, and T, by considering four exclusive modes of operation, based on the

following possible outcomes of the attempts to mark Slot_ 1.
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i) Slot__1 is not marked by any downstream station, the tagged packet marks the slot, and no

upstream station attempts to mark the slot. The tagged packet is thus transmittted in the
slot actually reserved for it. We term this the “normal” mode of operation. Let mn( N)
denote the long-run probability that the system operates in this mode, and let Sa(N)
dencte the service time in this mode,

i) Slot__1 is marked by a downstream station, the tagged packet attempts to mark the slot, and
no upstream station attempts to mark the slot. The tagged packet is transmitted in the slot
reserved by a downstream station, j, We term this the “gain” mode of operation. Let

m(3,G) denote the long-run probability that system operates in this mode, and let

S i,G) denote the service time in this mode.

iii) Slot__1 is not marked by any downstream station, the tagged packet marks the slot, and at
least one upstream station attempts mark the slot.
iv) Slot__1 is marked by a downstream station, the tagged packet attempts to mark the slot, and

at least one upstream station also attempts to mark the slot.

When the system is operating in either mode iii) or iv), we say it is operating in the “loss” mode.
Let my(j,L.) (75, (j,Ly)) denote the long-run probability that the system operates in mode iii)
(mode iv), where j is the station most upstream of station m that attempts to mark Slot_ 1. Let
Sm(3,L,) (Sn(j,Ly)) denote the service time in this mode.

The terms “gain,” and “loss” have an obvious meaning if we compare the operation of the DQDB
protocol in which a station can only transmit its packet on a slot reserved for it. Although the
tagged packet takes unfair advantage over packets at downstream stations in mode iv), we stil
classify it as a loss mode since one or more packets at upstream stations take unfair advantage over
the tagged packet. Note that Slot__ m is the same as Slot__1 in both the normal mode and the gain
mode,

We can estimate the long run probabilities quite easily, First. #,( N) is the joint probability that
Slot__1 is not marked by any downstream station and no station upstream of station m attempts to
mark this slot. If we assume each station attemps to mark slots independently, then we can estimate
Tn(N) as

(N)=  (1-8n rl_;[; (1-29. (3.4a)

Following a similar reasoning, 7,(j,G) is the probability that Slot_ 1 is marked by a downstream
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station, j (with probability A;), and no station upstream of station m attempts to mark Slot__1.
Note that station m finds Slot_ 1 marked with probability By, in which case the probability that it

is marked by station jis A;/Bm. Hence,

=1
(i, G)= A 'le (1=A), j=m+1,~ M—1. (3.4b)

In the loss mode, there may be more than one upstream station that attempts to mark Slot_ 1.

Each one of these stations will transmit their packet before the tagged packet. Let station j be the

station most upstream of station m which attempts to mark Slot__1. The probabilities mm(3,La) and

7m(j, L) are obtained as

Tm(3,La) = A;(1— Br) ﬂz (1-4), 7m(i,Ly)=A4iBn ﬂz (1-4), i=2,~,m—1,(34c)

The service times in the different modes of operation are (implicitly, in the gain mode the index j

ranges from m+1 through M-1, and in the loss mode the index j ranges from 2 through m-1):

Sa(MN)=U+V,(N)+ T, (N)+ 2xyy, Sn(i,®)=U+V,(,G)+T,({,G)+2xy,, (35a)

Su(i, L) =U+V,(, L)+ Tu(, L) +2%1m, Sn(i,Ly) =U+V,(, Ly) + Twli, Ly) +2x1m,
(3.5b)

If we can compute Sp( +) under the four modes of operation, then we obtain the first and second

moments of Sp(and, thereby, Var[S,]) as:

E[S0] =1n(NEISp N1+ 2 10, OFLS, (.01 + T, B2, LOEISA (G, LOL (362)
EIS3] =r,(NESLNI+ 2, 7,6, QBISAG, 01+ 3, Bymn( LOBISAGLL  (360)

Since the arrivals are Poisson, it can be shown that U is accurately described by a uniform random
variable distributed over the range [0.1]. Therefore, the mean and variance of U are E[U]=1/2, and
Var[U]=1/12, The propagation time X is a constant which is computed from given physical data
on the location of station m with respect to station 1, the propagation speed of the medium, and the
speed of the bus. Thus, we only need to estimate the mean and variance of V(-) and Tn(-)

in the different modes of operation. We now describe how these terms are computed.
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Consider an arbitrary request marked by some station, and let J denote the time from the instant
the request reaches station 1 until the instant the slot for this request is released on bus A by
station 1. It is convenient to refer to this request as the “tagged request.” We first obtain the

distribution of J, and use it to compute the mean and variance of T,, under the different modes of

operation. (Recall that T, is the time from the instant Slot_ m reaches station 1 until the slot for
this request is released on bus A by station 1.) We note that J depends on the values of the
req-counter and the cd-counter at station 1, at the instant the tagged request reaches station 1.
Figure 3.1 depicts the situation at this instant, In Figure 3.1, the tagged request is identified by a *;
this Figure also depicts the phase delay, y.

station 1 station 1
— |<_ empty slots
T bwa 1

! ] cd-counter
: after time y LREE I

] ] req-counter :>

bus B

the tagged request
[T requests accumulated ahead of the tagged request
] packet in TB at station 1

Figure 3.1 Pictorial representation of J

In general, slots passing station 1 on bus B are marked with probability #), and each marked slot

increases the req-counter by 1. Since station 1 always has a packet ready for transmission, every
time its cd-counter becomes zero station 1 immediately transfers the contents of its req-counter to
its cd-counter and transmits a packet on the next slot on bus A. Note that the value of the
req-counter transferred to the cd-counter represents the number of requests registered at station 1
between successive transmission of packets from station 1. If we view station 1 as a server serving
the requests(releasing slots) registered at the station. and the time taken by station 1 to transmit a

packet as a vacation, we have the following analogy.

Observation From the viewpoint of the tagged request, station 1 behaves like a B/G/1 queueing
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system with vacations, where the server closed the gate when it begins a vacation. Requests arrive
at this system according to a Bernoulli process with rate B;. The service time for a request and the

vacation time are both equal to 1 slot time. "
Based on Observation, we obtain the probability distribution of J by analyzing the B/G/1 gated

queueing system with vacations.
3.1 The Discrete Time B/G/1 Gated Queueing System with Vacations

The gated service mechanism in our model is different from the gated service mechanism usually
considered in the literature in which the server closes the gate when it returns from a vacation and
services the customers that arrived during the previous cycle. In our model, the server closes the

gate when it begins a vacation. That is, if we number the sequence of vacations and service periods

as (vp ty), n=1,- then the customers arriving during vacation v, and service period t, are

served during tgp4;. This system has been analyzed by Noh [9].

Let G(z) denote the probability generating function (p.g.f) of the number of customers that a
random departing customer leaves behind, Using the well known BASTA property (Bernoulli
Arrivals See Time Averages), the distribution seen by a departing customer is the same as the
distribution of the number of customers at a random point in time. The M/G/1 decomposition
property presented by Fuhrmann and Cooper [6] applies to our model as well This results in the

following expression for G(z):
- _1—A(z)
G(z)= F(z) AD1=2) D(z). (3.7

In equation (3.7), F(-)., A(-), and D(-) are, respectively, the pgfs for the stationary
distribution of the number of customers already present when a vacation begins, the number of
customers that arrive during a vacation, and the number of customers that a random departing
customer leaves behind in the corresponding standard B/G/1 queueing system where the server is
always available.

The model we consider has the service time and vacation time both equal to one slot time.
However, we obtain A(-), D(+), and F(-) for arbitrarily distributed service and vacation times,
and subsequently specialize the result to our model. Let B(z) and E(z) denote, respectively, the p.g.f
of the service time and vacation time distributions. Let C(z) denote the p.gf. for the distribution of

the number of customers arriving during a service time. Since arrivals follow a Bernoulli process,

C(z) = B(1—8,+ Bz), and A(z)=E(1—8,+ Bz). (38)



154 Seung J. Noh BEREREeR

Let P= 8, B’(1). We can write

z—C(z) - z—B(1— 8+ Biz)

D(z)= (3.9)
Denote by @{j | H+B'm} the probability of j arrivals during a time interval that consists of a
vacation of duration H followed by k services of duration B'm. Note that B*m is the convolution

of k independent services having p.gf. (B(z))*. Let N denote the number of customers present in
the system when the vacation begins, Since the gate closes when the servier begins a vacation, it

can be easily shown that

PIN=i}= 3 P(N=K) &( | H+B""),

and so

F2)= ZPIN=j) ' = 3} 3 PIN=Kl6li |H+B""} 2/

Since H and B'm are indepent, using equation (3.8), the above equation is rewritten as

F(z)= 2 PIN=K} (B(L~ 8+ 82))*E(1 -4, + $,2)

= F(B( -8+ B82)E(1- 8+ B8z). (3.10)

Equation (3.10) presents a recursive expression for F(z), which is used to compute the desired
moments of F(-). Thus we obtain the moments for the distribution of the number of customers in
the system, in a straightforward manner, from equations (3.7), (3.8). (3.9) and (3.10).

Let R, denete the residence time (queueing time + service time) for a customer in the vacation
system and let R,(-) denote the pgf of its distribution. Similarly, let Rp and Rg( <) denote
the residence time and the pgf of the residence time distribution in the corresponding standard
B/G/1 queueing system (the system without vacations). Note that J= Rvy-1 since the service time
is equal to one slot time. To determine Ry( - ), we first observe that G( - ) and D( - ) are also

the p.g.f for the steady state distribution of the number of customers present in a vacation system

and in the corresponding standard system at a customer arrival epoch, Next, we observe that, under
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the FCFS service discipline, the number of customers left behind by a departing customer are

precisely those customers arriving during the residence time of the departing customer. Hence,
D(z) = Rg{1—8,+81z) and G(z) = Ry(1—8+ 5 z2). (3.11)
From equations (3.7) and (3.11), we obtain

1—A( z-—(l—ﬁl))

z=(1-8) ) Rx(2). (3.12)

Since the first and second moment of the residence time in the standard B/G/1 queueing system

are obtained from equations (3.9) and (3.11), we can easily compute the first and second moments
of Ry(z) from equation (3.12).

We now specialize the above result to our model where the length of a service and a vacation are
both equal to one slot time. Hence, B(z) =E(z) =z, and A(z)= 1—48,+ 8, z. From equation (3.9),
we observe that D(z) = 1—f;+ 82z, and so from equation (3.11), Rg(z)=2z. Hence, equation

(3.12) simplifies to

Rv(z)=F(z_—(Z,l_é)—)z. (313)
From equation (3,10), we obtain the following recursive expression for F(z),

F(Z)=(1- 8+ fiz) F(1- B+ Bi2). (3.14)
and so the first and second factorial moment of F(z) are

PO = By me P = (315)

Hence, from equations (3.13) and (3.15),

RV,(I) = 1+ 1_1/31 ,e and RV”<1) = (1361)( lflﬁlz +1)

Finally, since J=Rvy—1, we obtain
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E[]J] = T;l—ﬂl‘, and Var[J] = I—L;lz (3.16)

3.2 Computing S,,(IN)

Since Slot_ 1 is the same as Slot__m in the normal mode of operation, V (i, N)=0. We use
the result of Section 3.1(equation 3.16) to compute T,(N). However, equation (3.16) uses the
parameter B; which includes A, the probability that slot is marked by station m. We assume

that once station m makes a request, it does not make further requests until the packet at this

station begins transmission. Therefore, if we consider the stream of slots preceding a request made
by station m, these slots would be marked with probability 8; —A, when they reach station. 1.
Let

Ym = B1—An (3.17)

We compute E[T,(N)] and Var[T,(N)] using equation (3.16) with 7, in place of 8.

Hence,

E[V,(N)] = 0, Var[V,(N)] = 0, (3.18a)

E[T,(N)]=—1 Var[ T (N)]T_""’—Z . (3.18b)

1_7m ' ym
3.3 Computing S,.(,G)

Note that Slot_ 1 is the same as Slot_m in the gain mode of operation as well, and so

Vn(i,G)=0. In this mode of operation, Slot_m is marked by the downstream station, j, and so

the mean and variance of T (j,G) are obtained by using equation (3.16) with 7; in place of

B1. Hence,
ElVL(,6)] = o, Var[V,(G,G)] = 0, ji=m+1,-,M—1, (3.19a)
E[T.(G,0)] = 1=, ValTa(.G) = —55, j=m+1,~ M—1.

1—y
(3.19b)
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3.4 Computing Sm(i,L,)

This is the service time for the tagged packet when it is transmitted in mode iii}, namely, the
case where Slot__1 is marked by station m, one or more upstream stations attempt to mark Slot__1,
and station j is the station most upstream of station m that attempts to mark Slot__1.

Figure 3.2 depicts the loss delay in mode iii) for the case where the tagged packet, which is at
station 4, is able to mark Slot_ 1(the slot marked 4 in the Figure) and station 2 and 3 also attempt
to mark Slot_ 1. For the case considered in the Figure, it is assumed that the two slots following
Slot_ 1 are unmarked when they pass station 4, so that station 3 marks the slot following Slot__1 ,
and station 2 marks the subsequent slot 2 will therefore transmit on the slot reserved for station 4,

and station 4 will transmit on the slot reserved for station 2.

station 1 station 2 station 3 station 4 —_—
bus A

bus B

i | -

slots

Figure 3.2 lllustration of loss delay in mode iii)

34.1 Estimating E[Vm(j,L.)] and Var[V,(j,L,)]

In general, if each station k,j < k { m, attempts to mark Slot__1 independently with probability
A, we can show that E[V,(G,L)] = 1+A;,, where

Ajrn = kz_l/lk_ (320)

It is, no doubt, possible to estimate Var[V,(j,L,)] accurately, by considering all the possibilities
with regard to the attempts made by station j+1 through m-1 to mark Slot__1. However, this
combinatiorial approach does not result in a simple closed form expression for Var[V, (i, L]

Therefore, as a first order approximation, we aggregate all upstream stations lying between stations

m and | into an aggregate station with an arrival rate equal to the sum of the arrival rates at the
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individual stations, Note that simplifying assumption results in exactly the same value for
E[V,(3,L,)] although it would underestimate Var[V,(j,L,)]. However, since the sum of
arrival rates is less 1, the degree of underestimation is unlikely to be significant. Thus, we estimate

E[V4(j,Lo)] and Var[V,,(j, L,)] as

E[V,G, L)l = 1+ A, Var[V,(G,L)] = A,(1— Ag), i=2,-,m-—1.
(321)

34.2 Estimating E[T (j,L.)] and Var[T,(, L]

Consider next, the mean and variance of T,(j,L,), which is the reservation delay for Slot__m,

Note that Slot__m is not necessarily marked by station j (although this is the case in Figure 3.2).
For example, consider the situation where only one upstream station, say j, attempts to mark
Slot__1{which is already marked by station m). If the slot following Slot_ 1{call it Slot__2 is marked
by a downstream station, say k, then station j can only mark a subsequent slot. Station m, however,

will transmit on the slot reserved by Slot_ 2 (station j will transmit on the slot reserved by Slot__1).

Therefore, if we follow the same reasoning as before, we must consider equation (3.16) with 7k in
place of f. It is, of course, possible to evaluate E[T,(j,L,)] and Var[T,(j,L.)] by

considering all the realizations of marking attempts, on the slots following Slot__1, made by the

downstream stations. However, once again this combinatorial approach does not lead to simple
expressions for E[T.,(j,L.)] and Var[T,(j,L,)]. Hence we obtain simple, approximate
expressions for E[T(j,L,)] and Var[T,(j,L,)] assuming that Slot_m is always marked by
station j,

With this simplifying assumption, we can consider using equation (3.16) with 7; in place of £
to estimate E[T,(j,L,)] and Var[ T, (i, L,)]. However, E(J) and Var(J) in equation (3.16)
are estimated based on a probabilistic analysis in which it is assumed that the slots ahead of the

tagged request are each independently marked with probability Bi1. Based on a simplistic reasoning,
each slot ahead of the tagged slot thus probilistically contributes to J a factor B1. We are now
considering the case where each slot ahead of Slot__m is marked probability y; with the exception
of Slot_1 which is marked with probability 1. Hence we use equation (3.16) with 7; in place of
B, but we add a factor (1- 7;) to account for the marked slot when estimating E[T, G, LD
We ignore the effect of Slot_1 on Var[T,(j,L,)]. The presence of a marked slot ahead of
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Slot__m also increases the likelihood of a packet transmission by station 1 before Slot__m reserves a
slot on bus A. Let ¢&; denote the probability that a packet transmitted by station 1 leaves behind i
outstanding requests. The probability that station 1 transmits a packet between the slots released for

two adjacent marked slots is approximated as (1 —&p). Hence, we estimate E[T,(j,L.)] and

Var[T, (j,L,)] as

E[Ta(. L] = T2 +1-9+(1-e), ValTaGL)l=7Zl7, j=2,m-L
3 ]

(3.22)

The term g is obtained from the analysis for the B/G/1 gated system with vacations where the
arrival rate is ;. Recall that F( - ) is the pgf. for the distribution of the number of customers
present when a vacation begins(when a customer from station begins transmission). Although the
expression for F(z) given by equation (3.10) is recursive in nature, we can numerically evaluate &g

quite accurately and efficiently.
3.5 Computing Su(3, L)

This is the service time for the tagged packet when it transmitted in mode iv), namely, the case
where Slot__1 is marked by a downstream station, and one or more upstream stations attempt to

mark Slot__1. Station j is the station most upstream of station m that attempts to mark Slot_ 1,
Following a similar line of reasoning as used to estimate E[S,(j,L,] and Var[S,{,L.]1 we

obtain

E[Tn(, Lyl= 72—+ (1= B+ (1= &), ValTaG, L)l =727, j=2,m~1.

4. Numerical Evaluation of the Model

We conducted two simulation experiments for revealing the accuracy of the analytical model and

for illustrating the degree of unfairness downstream stations suffer from in accessing the medium.
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For each experiment, we consider an M=7 station DQDB network with stations 1 and 7 playing the
role of the head of the buses. Stations 2 throught 6 are designed to have the same traffic rate of
A=0.05(packets per one slot time), Note that these stations are expected to have the same delay
if there does not geographical unfairness among stations,

In example 1 the interstation spacing(the distance between two adjacent stations) is set to 1 slot,
whereas in example 2 it is set to 0.5 slot. Simulation runs were conducted using the SIMAN
simulation language [11]. For each example, 20 independent replications were made. The elapsed
time for each run is 6,000 slot times. The packet arrival rate at each station was normalized to
packets/slot-time, All performance measures are scaled to one-slot-time. In each example, we assume
that the stations are equally spaced, ie. the distance between any two adjacent stations is the same
We refer to this distance as ‘interstation spacing’. The distance is measured in slot transmission time
units. We set the phase delay y to —%— for all cases. For all examples, we provide the mean and
variance of the service time, and the mean packet waiting time in the local FCFS queue. The

mean packet access time is omitted since it is simply the sum of E[W_]. We also provide the

95% confidence intervals for E[S,],Var[S,], and E[W,].

As can be seen in the following results, our model estimates the mean packet waiting times with
an acceptable accuracy. Furthermore, it is observed that the mean service time and the mean
waiting time for a packet are absolutely influenced by the relative position of stations. It is also
observed that the distance between stations has an impact on the unfairness feature, That is, the far
the stations are apart from each other, the higher the degree of unfairness in the downstream

stations appear.

Example 1

Az = 005, Ag = 005, /14 = 005, /15 = 005, /15 = 005, and /17 = 0,

y = 0.5, interstation spacing = 1

station E[S.] Var[S,] E[W_]
# Analysis Simulation Analysis Simulation Analysis Simulation
1 1.333 1.333+0.004 - - - -
2 4.250 426310012 0.274 0.267+0.007 0.582 0.549+0.043
3 6.356 6.35310.017 0.478 0.455+0.024 1.498 1.424+0,124
4 8.459 8.459+0.025 0.665 0.644+0.024 3.129 3.319£0.293
5 10.560 10.5714.0.020 0.831 0.813+0.033 5.950 5.693+0.651
6 12.656 12.632£0.025 0.977 0.9900.043 10.972 1047241132
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Example 2

Ay = 005, A3 = 005 A4 = 005 As = 005 Ag = 005 and A7 = 0,

y = 0.5, interstation spacing = 0.5

station E[S_.] Var[S,] E[W,]

# Analysis Simulation Analysis Simulation Analysis Simulation
1 1.333 1.333£0.007 - - - -

2 3.250 3.318£0.022 0.278 0.246+0.025 0.324 0.302£0.045
3 4.356 4,359 £0,026 0.487 0.453+0,026 0.622 0,547 £0.061
4 5.459 5.474+£0.030 0.677 0.648+0.045 1.048 1.127£0.168
5 6.560 6.538£0.029 0.848 0.834£0,043 1.632 1598 +0.184
6 7.656 7.690+0.037 0.998 0.965+0.062 2415 2.410+0.386

5. Summary and Conclusions

We consider a special system in which the most upstream station is saturated in the DQDB
network, This model is used to estimate the mean access time that data packets experience at each
station in the network. The mean number of packets queued at each station can also be obtained
using Little's law.

Each station is modeled as an M/G/1 queueing system, in which the service time for a packet is
defined as the time spent by the paket at the Transmission Buffer (TB) of the station. It is
observed that, since station 1 consumes all available slots, stations usually use slots which are
reserved for themselves. This special structure enables us to decompose the service time into a
number of independent components including the reservation delay, the delay that a request
experiences until it reserves an empty slot at station 1. The reservation delay is modeled by
employing B/G/1 gated queueing system. The mean and variance of unknown terms in the
decomposed service time are computed for three different mode of operations:normal, gain, and loss.
The mean waiting time for packets are obtained using the Pollaczek-Khinchin formula. Simulation
experiments show that our model accurately estmates the mean waiting time for packets in a
moderately loaded network. This model also enables us to reveal the degree of unfairness which

downstream stations undergo in an extreme situation where the most upstream station is saturated.



162 Seung J. Noh BEEsER SR

References

[1] IEEE Standard 802.6-1990, IEEE Standards for Local and Metropolitan Area Networks:
Distributed Queue Dual Bus (DQDB) Subnetwork of a Metropolitan Area Network
(MAN), New York: IEEE, 1991

(2] Bisdikian, C., “Waiting Time Analysis in a Single Buffer DQDB(802.6) Network,” IEEE
INFOCOM 90 (1990), pp. 610-616.

[3] Bisdikian, C., “A Queueing Model for a Data Station within the IEEE 8026 MAN,” IBM
Research Division, RC 15587, 1990,

(4] Bisdikian, C, "A Note on the Conservation Law for Queues with Batch Arrivals,” IBM
Research Division, 1990,

(5] Cooper, R. B., Introduction to Queueing Theory, North Holland, New York, 1981,

[6] Fuhrmann, S. W. and Cooper, R. B. “Stochastic Decompositions in the M/G/1 Queue with
Generalized Vacations,” Operations Research, Vol, 33, No. 5 (1985), pp. 1117-1129.

[7] Mukheriee, B. and Banerjee, S., “Alternative Strategies for Improving the Fairness in and an
Analytical Model of DQDB Networks,” Proc, IEEE INFOCOM '91 (1991), Bal Harbour, FL,
pp. 879-888.

[8] Mukherjee, B. and Bisdikian, C. “A Journey Through the DQDB Network Literature,”
Performance Evaluation (1992).

[9] Noh, Seung J. “A note on the B/G/l1 Gated Queueing System with Vacations,” Korean
Journal of Management Science, Vol, 19, No. 3 (1994).

[10] Noh, Seung J. “Two Queue Single Sever Model for the DQDB MAM,” Korean Journal of
Management Science, Vol. 22, No. 2 (1997).

[11] Pegden, C. D., Introduction to SIMAN, System Modeling Corporation, State College, PA, 1987.

[12] Potter, P. G. and Zukerman, M., “Analysis of Discrete Multipriority Queueing System Involving
Central Shared Processor Serving Many Local Queues,” IEEE Jour. on Selec. Areas in
Comm., Vol. 9, No. 2 (1991), pp. 194-202.

[13] Tran-Gia., P. and Stock, T.. “Approximate performance analysis of the DQDB access protocol,”
Proc., Intl. Teletraffic Congress (ITC), Adelaide, Australia, Sep. 1989. (Also, Computer
Nets, and ISDN Syst., Vol. 20 (1990), pp. 231-240.)



