Journal of the Korean
OR/MS Society
Vol. 22, No. 3, September 1997 81

A Branch and Bound Algorithm for Solving a
Capacitated Subtree of a Tree Problem in Local
Access Telecommunication Networks

Geon Cho * - Seong-Lyun Kim**

Abstract

Given a rooted tree T with node profits and node demands, the capacitated subtree of a tree
problem(CSTP) consists of finding a rooted subtree of maximum profit, subject to having total demand no
larger than the given capacity H. We first define the so-called critical item for CSTP and find an upper
bound on the optimal value of CSTP in O(nz) time, where »n is the number of nodes in 7. We then
present our branch and bound algorithm for solving CSTP and illustrate the algorithm by using an example,
Finally, we implement our branch-and-bound algorithm and compare the computational results with those
for both CPLEX and a dynamic programming algorithm. The comparison shows that our branch-and-bound

algorithm performs much better than both CPLEX and the dynamic programming algorithm, where n and
H are in the range of [50, 500] and [5000, 100001, respectively.

1. Introduction

Given an undirected tree T=(V,E) rooted at 0V, let ¢; and d; be the given profit and
demand at node i €V, respectively. Then, for a given capacity H, the capacitated subtree of a
tree problem(CSTP) is to find a subtree 7 of 7 rooted at node 0 so as to maximize the sum of

profits over the subtree 7 under the constraint of which the total demand over 7T does not

exceed H.

* School of Business Administration, Chonnam National University, Kwangju, Korea.

** Electronics and Telecommunications Research Institute, Taejeon, Korea

82 Geon Cho « Seong Lyun Kim BELER S e

CSTP can be served as a subproblem in the local access telecommunication network(LATN)
design problem(see Aghezzaf et all1], Balakrishnan et af[2] and Shaw[15]). Let the root of the tree
be the location of a central office and the other nodes represent the potential subscribers in LATN.
Then, the central office communicates with other central offices through the backbone network and
the LATN contains a dedicated communication channel connecting each subscriber node to the
central office. Each subscriber node has a demand which represents the required number of circuits
from that node to the central office. This demand can be satisfied in either routing the circuits to
the central office directly by using the dedicated cable or routing those to a concentrator, an
electronic device that compresses incoming signals on multiple lines into a single higher frequency
signal that requires one outgoing line(see Balakrishnan et affl2]). Here, we assume the indivisible
demand requirement, that is, all circuits from one subscriber node must have the same routing
pattern. We also assume the contiguity restriction, that is, if one subscriber node is served by a
concentrator, then all subscribers on the path from that node to the concentrator must be served by
the same concentrator, Let each concentrator have the given capacity. Then, the objective of the
LATN design problem is to select concentrator locations and to assign each subscriber to one of the
selected concentrators so as to minimize the total cost, subject to the concentrator capacity constraint.
This problem can be solved by solving a sequence of CSTPs{see Aghezzaf et al[1] and Shaw [15]).
However, CSTP is an NP-complete problem, since it is reduced to the 0-1 knapsack problem when
the depth of the tree is one,

Other applications of CSTP arise in modeling a single machine scheduling problem(see Ibarra and
Kim [6]), a p-median problem on an undirected tree network(see Kariv and Hakimi [8]), and a
capacitated facility location problem on an undirected tree network(see Mirchandani and Francis
[13D).

Cho and Shaw [4] and Johnson and Niemi [7] proposed dynamic programming(DP) algorithms for
solving CSTP in O(nH) and O(nC"). respectively, where n is the number of nodes in the tree
and C is the optimal value of CSTP. Consequently, CSTP can be solved by a DP algorithm in
O(nmin (C', H)).

In this paper, we develop a branch-and-bound(B&B) algorithm for solving CSTP. The so-called
critical-item plays a central role in determining a bound during the process of our B&B algorithm.
For the 0-1 knapsack problem which is a special case of CSTP, the critical--item can be easily
obtained through sorting in {zln #) time(see Horowitz and Sahni [5] and Martello and Toth
[11,12]). Moreover, by using the median-finding procedure, the critical-item for the 0-1 knapsack
problem can be found in O(#%) time as in Balas and Zemel [3] and Lawler [9]. It is well known

that the critical item for the 0-1 knapsack problem not only determines the optimal solution of the

H22% IR A Branch and Bound Algorithm for Solving a Ca pacitated Subtree of a Tree -~ 83

linear programming(LP) relaxation of the problem. but also plays an important role in defining
several upper bounds on the optimal value of the problem(see Martello and Toth [12]). However.
defining the critical-item for CSTP is not a trivial problem because of the contiguity assumption.
One of main contributions of this paper is to be able to successfully define the critical-item for
CSTP and to find it in O(nz) time. Based on the procedure of finding the critical-item, we develop
a B&B algorithm for CSTP. Computational results indicate that our B&B algorithm is much superior
to CPLEX, a general integer programming solver, and the depth-first DP algorithm developed by
Cho and Shaw [4], where # and H are in the range of [50,500] and [5000,10000], respectively.
This paper is organized as follows. We first formulate the capacitated subtree of a tree
problem (CSTP) in Section 2. Then, in Section 3, we develop a polynomial time algorithm for the
uncapacitated subtree of a tree problem(USTP), which will be used for solving Lagrangian relaxation
of CSTP with respect to the knapsack constraint, Section 4 defines the critical item for CSTP and
finds an upper bound on the optimal value of CSTP in O(n®) time. We then present our
branch-and-bound algorithm for CSTP in Section 5. In Section 6, an example and computational

results are provided. Finally, Section 7 concludes the paper.

2. Problem Formulation

Let T=(V,E) be a given undirected tree rooted at node 0, where V={0,1,2,+-,n}. We
assume that all nodes in 7T are labeled in the Breadth First Search(BFS) order. For each node
i €V,c,, is an integer representing the potential profit at node 7 and d; is a non-negative integer
representing the demand at node 7 Let p; denote the predecessor of node 7 and F{z,j] denote the

unique path from node i to node ; We define P(i,7j] as H7,7]\ {7}. Define a relation ‘<’ as

follows:
V'<VeT =(V',E’)is a subtree of T =(V,E) rooted at node 0.

Let H be the given capacity for the concentrator located at the root node. Then the capacitated
subtree of a tree problem(CSTP) is to find a subtree 7 =(¥V, E) of T rooted at node 0, where,

V= TR Zcl R d<H

Vi<v

84 Geon Cho * Seong Lyun Kim EESEH R

Let

X = [1 if node jisserved
’ 0 otherwise.

Then, CSTP can be formulated as the following integer programming problem:

max gocjx,- (2.1)

(CSTP) st. %y, 2 x; 7j=1,2,, m (2.2)
godjx, < H (23)

x; € (0,1} (24)

Without loss of generality, we assume that
d;< H ;=0,12,...,n
and
314> H.
=0

Otherwise, either the problem size can be reduced or the knapsack constraint (2.3) can be
eliminated, and the problem is reduced to the uncapacitated subtree of a tree problem(USTP). In the

next section, we will present an algorithm for solving an USTP in X #) time.

3. Uncapacitated Subtree of A Tree Problem

The uncapacitated subtree of a tree problem(USTP) can be formulated as follows:

max 2 CiX;
7=0
(USTP) S.t. x,,iji_ j=1,2y"',n

x; € {0,1}.

It can be easily seen that (UUSTP) can be solved by the following algorithm in O(#) time. Let

F22% $3% A Branch and Bound Algorithm for Solving a Ca pacitated Subtree of a Tree -~ 85

x1r = (x;) e, where T is a subtree of 7. Define

7(?) = {j| jis a descendant of i}
={jlie A0, 1}

Then 7Y% is a complete subtree rooted at node i
Algorithm 1.

begin
forall i€V do
begin
set Cii=c; x:=1;
end
for 7: =#n down to 0 do
begin

if (C; <0) then

x iy =0
else
Cy, 1= Cp + C;
end if
end
end

Algorithm 1 is a bottom-up process, which follows the reverse of BFS order. Clearly, max
(0, Cp) is the optimal value of (USTP). 1t is also obvious that x;=1 implies C; = 0, but the

reverse is not true. Now, we prove that the LP relaxation of (USTP) satisfies the integrality

property (A different proof can be found in [10]).

Theorem 1. The linear programming relaxation of (USTP) has an integral optimal solution.

Proof: Given undirected tree 7'= (V, E), we define a directed out-tree 7. =(V,A) T where
A={(p;7)|i#0,i € V}. Let B be the arc-node incidence matrix of T . Then the constraint
X, = x; can be written as B”x < 0. Let (LP) denote the LP relaxation of (USTP) and Zp

be the optimum value of (LP). Then, the dual of (LP) is a minimum cost network flow problem

86 Geon Cho * Seong Lyun Kim BESENSEEE

and Zpp< X7 ¢lc;l. Therefore, the system of linear inequalities in (LP), BTx <0, is Totally

Dual Integral(see Nemhauser and Wolsey [14] for details). Since the right-hand side of BTx <0 is
integral (= 0), the polyhedron of the feasible solutions of (LP) has only integral extreme points. (]

4. Critical Item and Upper Bound

In this section, we first define the critical item for CSTP. As we mentioned earlier, the critical
item for the 0-1 knapsack problem can be found by consecutively inserting sorted items into the
knapsack until the first item which results in exceeding the knapsack capacity is found. The critical
item for the 0-1 knapsack problem plays a key role in determining the optimal solution of the LP
relaxation of the problem(see Martello and Toth [11,12]). One of the main reasons that we call the
root of the last deleted subtree the critical item for CSTP is that it also plays a central role in

determining the optimal solution of the LP relaxation of CSTP as we will see in Theorem 2.

Without loss of generality, we assume that all ¢,'s are non-negative integers, since (CSTP) can be
reduced to the problem with non-negative ¢;'s by applying Algorithm 1, Let C;= X;cqyc;
Di= Zjenpdj and ; =C;/D;. Let 7 ;,=min{7r;|i€T}.If Dy— D;< H , then i is
called the critical item for CSTP. Otherwise, after updating C; D and 7; by C;,= % e TNT() €

D;= Zicnarind;, and 7;= C;/ D; for all ie P(7, 0], we find the smallest ratio
re=min{7;| ieT \ T(i)). (41)

Note that we used in 7;=7; in (41) for all ie T\ (T(i)) UP(i; 0]). ¥ Dy~ (D;+ D) <H,

then 7, is called the critical item for CSTP. Otherwise, we continue the above procedure, In general,

the critical item for CSTP can be defined by the following.

Definition 1. Let 4 be a node such that 7,=min{71ieT\U*Z1 7G)). 1

s=min{k| Dy — X }.; D; < H}, then i, is called the critical item for CSTP.

D,= ; d;, and 7;,, > 7,20, for all
& TGNT 4 TG,)

Note that C;= ; :
o tha * fem,)§::',m,>c’ g

B22% F3W A Branch and Bound Algorithm for Solving a Ca pacitated Subtree of a Tree - 87

t=1,2,--,5s. We now utilize a Lagrangian relaxation method to obtain an upper-bound on the
optimal value of CSTP. For any A€R:={non—negativerealnumbers}, the Lagrangian

relaxation of CSTP with respect to the knapsack constraint (2.3) is as follows:

f(/1)=max go(c,- —/1d,~)x,~+/1H
LR(A) s.t. xp2x;, j=1,2,n
x;€{0,1}.

Then we have the following Lagrangian dual of CSTP

(LD) f(A#)=min f(4)
A=0

For a given A, LR(A) is an USTP and can be solved in O(#) time by Algorithm 1. Therefore,

we can prove the following lemma.
Lemma 1, Let i be the critical item for CSTP, Then, we have
A 7)=(C— BTH+ 7,,(H-(Dy— 2, D).

Proof : Let a;=c¢;— 7,d; for all j=0,1,2,, % Then, we have f(7;)=max(0, Ao+ 7 H)

by Algorithml. Since 7, = 7; = 0 for all k=1,2, s, we know that
A= o 4=Cy=7,D;, <0 forallk=1,2,,s.
je TENU T TGy
Therefore, by Algorithml, we can obtain an optimal solution of LR(7;)

x,=[1 if jeUf=1ﬂi1)
7 . . .
0 if jelUi-,7G)

and we have
A(7)=(Cy = 2 T+ 7, (H=(D,— 3. D5,). 00

Now, let (CSTP) be the LP relaxation of CSTP. Then, we have the following theorem,

88 Geon Cho - Seong Lyun Kim HESER Rt

Theorem 2. Let i, be the critical item for CSTP, Then f(A*)=f(7;) and it is also the

optimal value of (CSTP). Moreover, x"=(x) defined by

1 if je Ui 76)
x;=1{0 if je UZITG)
p if je T(:)
is the optimal solution of ((CSTP), where p=H—(Dy —Z $-1D;)/ D;.

Proof : Since i, is the critical item for CSTP, we have H—(D; — X §=15,»)20 and
H—(Dy — X 21 D;) <0. Therefore,

0<p= H—(Dy — % -1 D;)/ D, =(H—(Dy — % ;=1 D;)+ D;)/ D; <1,

and thus, 0< x ;<1 for all j. Since x} = x; clearly for all j=1,2,,n, 2" =(x;)
defined above is a feasible solution of (CSTP). We now prove that f(7;)=2Z {zszp, Where

Z ‘zs7p) denotes an objective value of (CSTP) corresponding to x".

Z =m= ieLE.:,m,) it].g;ir) c;+ (H=(Dy— 2151',)/ D;)
=(C— 3T+ ;- (H-(Dy— 3,5,/ D)

=(Cy = Z,CH+7.(H—(Dy — £, D)
—1(7).

But, we know that Z wsp < f(4"), where Z & and F(A") are the optimal values of
(CSTP) and Lagrangian dual of (CSTP), respectively. Moreover, by the integrality property of
USTP proven in Theorem 1, we have f (A%) =f(A"). Therefore, Z wgrp =f(A")=f(7.).
Consequently, x"=(x ;) defined above is the optimal solution of (CSTP). OO

Corollary 1. U;= | f(A*) | is an upper bound on the optimal value of CSTP, where | al

denotes the largest integer not greater than a.

H22% H3W A Branch and Bound Algorithm for Solving a Ca pacitated Subtree of a Tree -~ 89

The following algorithm finds the critical item (and thus finds U;) in a strongly polynomial time,

O(n*) time.
Algorithm 2.

begin

Apply Algorithm 1 ;

Compute 7; for all with x,=1;

D; =X (jly=1d;:

while (Dy> H) do

begin
i =argmin{7;| x;,=1}:
%t =0:

for (i€ P(:*,0]) do

begin
T :=C- T,
D;:=D— Dy
#;:=Ci/ Di;
end
end
Ai=ra U= LAY
end

Note that the output Z* of Algorithm 2 is the critical--item for CSTP. Algorithm 2 finds the

critical item 7% in O(nz) time, since the while-loop in the algorithm can be repeated at most n+
1 times and also each while-loop can delete at least one node and at most n + 1 nodes. Algorithm 2
can be also interpreted as a procedure of deleting subtrees rooted at a node having the smallest ratio
until the remaining subtree of T has the total demand that does not exceed H,

We call U, Dantzig upper bound and incorporate it to develop a B&B algorithm for CSTP in the

next section.

90 Geon Cho - Seong Lyun Kim BESER SR

5. A Branch-and-Bound Algorithm for CSTP

In this section, we develop a B&B algorithm for CSTP that utilizes the procedure of finding the
critical item. STACK is used to store all variables which have been fixed during the algorithm. We

put “7 ” into the STACK if x;=1 and put “ —7¢ " otherwise. A forward move consists of

deleting a subtree rooted at a node having the smallest ratio, which is done by the procedure
delete(-). The procedure find_ critical_item which performs a sequence of forward move

determines:

i) the critical-item

ii) a feasible solution which is used to update the incumbent solution.

After we have found the critical-item s, the root of the last deleted subtree, we branch on the

node s by setting x,=1. Then, all nodes on path P[s,0] must be included (ie., set to 1). This is

equivalent to compress nodes in P[s,0] into a super root, which is done by the procedure
compress(s), After the compression, we again use the procedure find__ critical _item to obtain a
new upper-bound for the compressed tree. We continue the above process until the current upper
bound is less than or equal to the incumbent solution value (ie., a fathoming condition is satisfied).
Then, a backtracking move is performed. The backtracking move consists of adding subtrees deleted
in the process of finding the latest critical-item by applying the procedure add(-). Precisely

speaking, suppose that we have just found a critical-item s and an upper-bound U} which is less

than or equal to the incumbent solution value. Let ¢ be the last node in STACK being set to 1.
Then we continue adding subtrees deleted in the process of finding the critical-item s until we meet
“t " in the STACK. Then we decompress node t by taking out ¢ from the compressed super root.
It is done by applying the procedure decompress(f). We continue applying decompress(-) until
we hit the last node & in the STACK being set to 0. Then we branch on the node k by setting
xx=1 {ie, by applying compress(k)). If such a node k does not exist, the algorithm is
terminated.

As computing an upper-bound is relatively expensive (it requires O(nz) time), we store
upper-bounds into a stack, STACK__UB, Whenever we perform a compress{), we put an
upper-bound into the STACK _UB. Whenever we perform a compress{ +), we take out an
upper-bound from the stack.

B22% H3IR A Branch and Bound Algorithm for Solving a Ca pacitated Subtree of a Tree -

91

Algorithm 3.

begin
Apply Algorithm 1.
incumbent__value 1= 0.

upper__bound = +o;

s != find__ critical__item:
stop = 0;

while (stop = 0) do
begin

while (incumbent__value { upper_ bound) do
begin
compress(§):
s 1= find__criticalitem:
end
back__tracking := 1.
next__back 1= 1;
while (back__tracking = 1) and (STACK + ®@) do
begin
pick s from STACK:
if (s > 0) then
decompress(s):
next _back := 0;
if (STACK = @) then
stop 1= 1;
end if
else
5= -g
add(s):
back__tracking := next_back:
end if
end
end

end

92 Geon Cho - Seong Lyun Kim

REESENEEE

Procedure find__ critical__item

begin
s = arg min {r;| x;=1}:
C _ check: = Cy— Cs;
D__check: = Cy— Cy;
while (D __ check) H) do
begin
delete(s);
s := arg min {r;| x;,=1}:
C _ check:=Cy—C;
D __ check: = Cy— Cs;

end

upper __bound := | C_check+ r(H— D _check) | :

if (C__check) incumbent__value) then
incumbent__value := C__check:

end if

return s:

end
Procedure add(s)

begin
X1 + = 1
STACK : =STACK \ {—s}:

i:=s;

while (7#0) do

begin
i =bi;
C;:=C;+Cs;
D;:=D;+ Dg;

7;: =C,‘/D,‘§

H22% H3I% A Branch and Bound Algorithm for Solving a Ca pacitated Subtree of a Tree --- 93

end

end

Procedure delete(s)

begin
xpy =0
STACK : =STACK U {-5s}:
i:=s;
While (i#0) do
begin
1=y
Ci:=C;—Cs;
D;:=D;— Dg;
ri:=C;/ Dy;
end
end

Procedure compress(s)

begin
STACK : =STACK U{s}:
STACK _UB: =STACK _UB U {upper_bound)}
modify the data structure to compress node s to the root 0:

end
Procedure decompress(s)

begin
STACK : =STACK \ {s}:
STACK _UB: =STACK _UB \ {upper_bound}:
modify the data structure to decompress node s from the root 0:

end

94 Geon Cho - Seong Lyun Kim BESENSER

Before we close this section, we discuss some implementation details to improve the efficiency of

the computation. After a compression occurs, the total demands in the super root may exceed the

capacity H. If such a case happens, the following find__ critical__item procedure produces a trivial

critical-item, ie., #*=0 and a trivial incumbent solution value of 0. Therefore, it is better to check

whether the compressed super node would cause such a trivial case or not beforehand. Now, let
7 min ()= min{7; | j& T({)andx;=1}
Then, it can be computed recursively by

7 min (i) = mm{ ¥ min r min(j)}
7E€S(D)
where S(7) represents the set of successors of node i.

Then, the smallest ratio over the tree can be easily obtained as 7 g (0). Whenever a subtree

T(#) is deleted, we only need to update 7, (+) along the path P[7,0] and all other nodes

are unchanged.

6. Example and Computational Results

Figure 1 : Example

2% H3w A Branch and Bound Algorithm for Solving a Ca pacitated Subtree of a Tree --- 95

To illustrate our algorithm, we consider an example in Figure 1. We assume that all nodes in the
tree are labeled in BFS order and H = 18. Numbers in the square box and above the box in Figure
1 stand for demands and profits, respectively. Initially, we set x; to 1 for all / and assume the initial

incumbent solution value is 0. First, we find a node having the minimum ratio, which is node 4, and

delete the subtree rooted at node 4(in this case, node 4 itself). We then check whether the current

D, (the remaining total demand) is greater than 18 or not. Since it is 23(18), we first store -4’

in STACK and update the ratio #; by _121_{134 =27/7 (this procedure is done by performing

delete(4)). We find another node having the minimum ratio from the remaining tree, which is
node 6, and again delete the subtree rooted at node 6. Since the current 30 is now 12(< 18), we
have found a feasible solution 70 with the objective value of 70 which gives the new incumbent

solution value of max {0,70} = 70.

Note that node 6 is the critical-item. Once we find the critical-item 6, we evaluate an upper
bound U;, which is 86. Since the upper bound of 86 is greater than the incumbent solution value of
70, we may have a chance to improve the incumbent solution value by fixing more variables by

either 0 or 1. Therefore, we branch on node 6 by setting x4 to 1 and store ‘6’ in STACK (this is

done by compress(6)). Note that, after node 6 is compressed, all nodes on the path P[6,0]
become a super root node. Since the total demand of this compressed super root is 10(< 18). we find
a node having the minimum ratio in the compressed tree, which is node 8. We then delete node 8
and have the current of D, of 20() 18). Then we store -8 in STACK and find another node
having the minimum ratio in the compressed tree. It is node 1 which is the critical-item, and thus
we have found a feasible solution with the objective value of 63, which is less than the incumbent
solution value of 70 (thus, the incumbent solution value is still 70}, We also evaluate an upper bound
of 82, which is greater than the incumbent solution value of 70, and then perform the compression
by setting x; to 1. We store ‘1’ in STACK and again try to find the critical-item and continue the
above procedure,

After we repeat the above procedure, we can find an incumbent solution value and an upper
bound which are equal to 76 with STACK={—4,6,—8,1,5, —3}. Since it satisfies the
fathoming condition, we pick the last node -3 in STACK and perform add(3), which adds node 3 to
the current tree, which is equivalent to setting x3 to 1. Then we continue to perform the
decompress{ -) on nodes having positive values in STACK until we meet a negative value in
STACK, which is -8 here. We perform add(8) and follow by compress(8) immediately. At this
point, STACK consists of {—4,6,8}. We again try to find the critical-item for the newly changed

96 Geon Cho * Seong Lyun Kim BESENSet

subtree by applying the same procedure as before. We stop when STACK is empty. We could find
the optimal solution with the optimal value of 76 as shown in Figure 2. The decision-tree of our
branch-and-bound algorithm is shown in figure 3.

We now report the computational results for our B&B algorithm for CSTP. The algorithm was
coded in C language and run on a SUN SPARC 1000 workstation, All the test problems are

Figure 3 : Decision-tree of B&B procedure for the example

F22% 3% A Branch and Bound Algorithm for Solving a Ca pacitated Subtree of a Tree =+ 97

randomly generated. To generate a tree randomly, we first specified n, the total number of nodes in
the tree. Starting from the root node, we randomly generated the number of successors of each node
from an interval [0, log,#] in BFS order until the total number of nodes was met. In our test
problem set, the number of nodes n was in the range [50,500] and two types of the capacity H,
5000 and 10000, were used. The demand d; was randomly generated in the range of [1,100]. We
compared our B&B code with both CPLEX and the depth-first DP code developed by Cho and
Shaw [4]. Table 1 presents the worst, the average, and the best CPU time (measured in seconds)

out of eight randomly generated test problems in each case. It shows that our code is much superior
to the depth-first DP code and CPLEX for most cases.

Table 1. Computational results for B&B, DP, and CPLEX

0 H B&B DP CPLEX

worst | average | best worst | average | best worst | average | best

50 5,000 0.03 0.01 0.01 1.33 1.30 1.26 0.05 0.03 0.02
10.000 0.03 0.01 0.01 2.68 2.58 2.50 0.05 0.04 0.03

100 5,000 0.03 0.02 0.01 2,66 2.60 251 2.10 1.23 0.22
10,000 0.03 0.02 0.01 5.30 5.15 501 0.13 0.09 0.08

200 5,000 0.03 0.47 0.33 12.10 7.64 493 7225 | 17.22 3.48
10,000 0.80 0.03 0.03 10.45 10,31 10.15 16.35 401 0.18

300 5,000 0.05 1.33 1.01 7.76 7.53 7.36 6943 | 2897 8.93
10,000 2.00 047 0.38 15.61 15,10 1460 [12225 | 47.39 6.00

500 5,000 0.65 527 4.63 12.78 12.37 11.96 6122 | 2946 3.07
10,000 5.10 3.65 3.13 38.98 27.07 2410 || 20765 | 53.17 6.88

7. Conclusions

In this paper, we have successfully defined the critical-item for the capacitated subtree of a tree

problem(CSTP) and have shown that an upper bound on the optimal value of CSTP can be

obtained by incorporating the Lagrangian dual of CSTP in X#?) time. Based on this result, we
have presented a B&B procedure for CSTP and have also discussed some implementation details
which are useful for speeding up the computational time. The computational results indicate that our
algorithm performs much better than the depth-first DP algorithm and CPLEX for most cases.
Despite of this success, there is still plenty of room for improving upper bounds on the optimal value
of CSTP, so that our B&B algorithm will have more efficient fathomming rules to speed up the

computational time. Our future research will be addressed to this interesting area.

98 Geon Cho - Seong Lyun Kim BEREREE

References

[1] Aghezzaf, EH., TL. Magnanti, and L.A. Wolsey, “Optimizing Constrained Subtrees of Trees,”
Technical Report, Center for Operations Research & Econometrics, Universite Catholique De
Louvain, Louvain-La-Neuve, Belgium, 1992,

[2] Balakrishnan, A., T.L. Magnanti, and R.T. Wong, “A Decomposition Algorithm for Expanding
Local Access Telecommunications Networks,” Operations Research, vol. 43 (1995), pp. 43-57.

[3] Balas, E. and E. Zemel, “An Algorithm for Large Zero-One Knapsack Problem,” Operations
Research, vol. 28 (1980), pp. 1130-1154,

[4] Cho, G. and D.X. Shaw, “A Depth-First Dynamic Programming Algorithm for The Tree
Knapsack Problem,” Technical Report, School of Industrial Engineering, Purdue University,
West Lafayette, Indiana, 1994,

[5] Horowitz, E. and S. Sahni, “Computing Partitions with Applications to The Knapsack Problem,”
J. of the ACM (1974), vol. 21, pp. 277-292.

[6] Ibarra, O.H. and CE. Kim, “Approximation Algorithms for Certain Scheduling Problems,”
Mathematics of Operations Research (1978), vol. 3, pp. 197-204,

[7] Johnson, D.S. and K.A. Niemi, “On Knapsacks, Partitions, and A New Dynamic Programming
Technique for Trees,” Mathematics of Operations Research (1983), vol. 8, pp. 1-14,

[8] Kariv, O, and S.L. Hakimi, “An Algorithmic Approach to Network Location Problems II : The
p-medians,” SIAM J. on Applied Mathematics (1979), vol. 37, pp. 539-555.

(9] Lawlér. E.L.. “Fast Approximation Algorithms for Knapsack Problems,” Mathematics of
Operations Research (1979), vol. 4 , pp. 339-356.

[10] Magnanti, T.L. and L.A. Wolsey, “Chapter 9. Optimal Trees,” Handbooks in OR and MS, vol.
7, North-Holland, 1995.

[11] Martello, S. and P, Toth, “Algorithms for Knapsack Problems,” Annals of Discrete
Mathematics (1987), vol. 31, pp. 213-258.

[12] Martello, S. and P. Toth, Knapsack Problems, John Wiley and Sons., New York, 1990,

[13] Mirchandani, P.B. and R.L. Francis, Discrete Location Theory, John Wiley and Sons, New
York, 1990,

[14] Nemhauser, G.L. and L.A. Wolsey, Integer and Combinatorial Optimization, John Wiley and
Sons., New York, 1988,

[15] D.X. Shaw, “Limited Column Generation Technique for Several Telecommunications Network
Design Problems,” Technical Report, School of Industrial Engineering, Purdue University, West
Lafayette, Indiana, 1993.

