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Closed Queueing Networks and Zeros of Successive Derivatives®

Su Hyeon Namn**

Abstract

Consider a Jackson type closed queueing network in which each queue has a single exponential server.

Assume that N customers are moving among & queues. We propose a candidate procedure which yields

a lower bound of the network throughput which is sharper than those which are currently available : Let
( p1,**,0%) be the loading vector, let X be a real number with 0<x<N., and et ¥(x) denote that
y is a function of X and be the unique positive solution of the equation . Z‘y(x)p J(N—Ax)xp)=1
Whitt [17] has shown that y(N) is a lower bound for the throughput, In this paper, we present evidence

that y(N —1) is also a lower bound. In doing so, we are led to formulate a rather general conjecture on
“Migrating Critical Points” (MCP). The MCP conjecture asserts that zeros of successive derivatives of
certain rational functions migrate at an accelerating rate. We provide a proof of MCP in the polynomial
case and some other special cases, including that in which the rational function has exactly two real poles

and fewer than three real zeros.

1. Introduction.

Consider a Jackson type closed queueing network where N customers are moving among k

queues. Each queue has a single exponential server with a fixed service rate g; When a
customer completes his service at queue 7, he then joins queue j with probability P,~,~ where the

P ; satisfy the usual condition 2P,~,~=1 for all Z. Assume that the Markov transition matrix
=
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is irreducible and let _9;=(x1,"'x z) be the unique positive solution of the system

= ﬁ‘x P =1,k for which ﬁlx,-=l. Let _5=(p1,‘“,.0k):(xl//lh"',
=

x4/ 124 denote the “loading vector”™ ( o; is known as the utilization factor of queue Z). The

limiting probability that #; customers are in the #th queue for ¢=1, -, &, is given by

Plnyon ) =GR D) " TLoT

where G(N, k,?), the normalization constant, is defined by

cM=cre D= X eI,

The function G(N, k,_fs) is the well known “complete symmetric function” whose properties have
been the object of extensive study (cf. Macdonald [9]). The throughput, which is, by definition,

the mean number of service completions per unit time, is given by the formula:
— — —_ .
TH= TH(N,k, 0)=G(N—1,k, 0)/G(N,k, p). In the sequel, whenever no confusion
may arise, we shall suppress some of the arguments, N, 4, and _5 from G(N, k,_é) and

TH(N, k,_é) and simply write G(N) = G(N, k,_(;). etc.

In practice, when one faces problems of design and control of closed queueing networks, the

knowledge of various mean performance measures (such as throughput) is essential. Unfortunately,
an exact calculation of 7TH requires summing over a huge index set, namely that which is

parameterized by vectors (71,°*,#n,) satisfying the condition #,+:+#z,=N. This is

prohibitively expensive for large values of N. Buzen [3] proposed a recursive algorithm to evaluate

G(N) of complexity O(N,). Harrison [6] and Gordon [5] obtained closed form solutions of

computational complexity O( kz). In addition to the high level of computational complexity, the

implementation of the calculation of closed form solutions becomes unstable when o ; is close to © ;e

The techniques of Mean Value Analysis allow one to recursively calculate mean performance
measures such as the number of customers, the waiting times, the throughputs, etc. These recursive
methods have been widely used by many authors: see for example, Reiser & Lavenberg [13] and

Sauver [14]. However, these methods also require a significant computational effort, similar to that

involved in the direct calculation of G(NV).
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To avoid numerical instability and to reduce computational complexity several simple bounds on the
throughput have been proposed. Such bounds have practical value, since they are easy to compute,
and are of theoretical interest as well. Zahorjan [19] et. al proposed the following simple lower

bound for the network throughput:

TH,= N < TH(N), (L1)
élpi'i'(N_ 1)9 max

where 0 oy = max(o, ", 0 2. Whitt [17] introduced a method known as the Fixed
Population Mean approach, which approximates a closed network by the corresponding open network
with specified expected equilibrium population size. His lower bound, TH ,,, is the unique positive
solution of the following equation:

Tpri —

Also note that Knessl et. al [8] derived the same procedure as (1.2) using aymptotic expansion

method. In this paper, we propose a candidate, TH , which is sharper than TH , and TH ,:

Define TH , as the unique positive solution to the following equation:

Tani .
1= N_(N_l) Tani -

1. (1.3)

We conjecture that 7H, is a lower bound for the throughput of the network. Since
TH ,>TH ,, this is a stronger lower bound (see Proposition 3.1). Numerous examples were
tested numerically, in which the two bounds were compared. In each case the mean error of TH,
is about an order of magnitude smaller than the mean error of TH ,. A sample of comparisons is
provided in Table 1.1, where the mean error is defined as:

1
fO[TH(k=2,P1=1, py)— TH(k=2,0,=1, 05)]dp, and TH, refers to one of the

bounds, TH ,,, TH ,, or TH,  For numerical integration we used a symbolic manipulation

language, MAPLE.
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Table 1.1: Numerical Comparison of Mean Errors for k=2
N TH , TH, TH , N TH TH, TH ,
2 0.0105 0.0407 0.2514 15 0.0039 0.0258 0.0649
3 0.0122 0.0495 0.2145 16 0.0036 0.0245 0.0611
4 0.0116 0.0498 0.1835 17 0.0034 0.0234 0.0578
5 0.0106 0.0475 0.1591 18 0.0031 0.0224 0.0548
6 0.0094 0.0446 0.1398 19 0.0029 0.0215 0.0521
7 0.0084 0.0417 0.1244 20 0.0027 0.0206 0.0496
8 0.0075 0.0389 0.1120 25 0.0020 0.0186 0.0401
9 0.0068 0.0364 0.1016 30 0.0016 0.0146 0.0336
10 0.0061 0.0341 0.0930 40 0.0010 0.0113 0.0254
11 0.0055 0.0331 0.0856 50 0.0007 0.0092 0.0203
12 0.0050 0.0326 0.0793 60 0.0006 0.0078 0.0169
13 0,0046 0.0286 0.0739 70 0.0004 0.0068 0.0145
14 0.0042 0.0271 0.0691 80 0.0003 0.0059 0.0127

2. A New Lower Bound.

In this section we formulate our conjecture on the throughput inequality (THI) and we prove it

for the case k= 2. We also show that the conjectured inequality is sharp.
Conjecture THI: TH(N,_,S) >TH,.

Note that the evaluation of TH , in (1.3) is fast since the function ©;x/[N—(N—1)p;x]. for

x=[0,1/p ,~] is increasing and convex in x. Let

_ > PiTH(N)

Then Conjecture THI is equivalent to showing that F(N, k,?)zl. Observe that the conjectured

inequality is sharp: When all o, are equal to a fixed number © (the “balanced case”), then

TH(N) = (N;:_kl_2>/p (N;_kl_l) which is equal to TH,. It is also easy to prove the

conjecture for the case A£=2. Without loss of generality, we may assume max(p,, ) =1.
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Let x=min(o,,04). The statement F(N, k,_p;) >1 is equivalent to the inequality:

_1 .
&‘x’ > Nx V"2 Note that this inequality is obtained by substituting 7TH , for TH(N) in
=

(1.3) and the inequality holds by the arithmetic-geometric mean inequality.

3. Comparison with Other Lower Bounds.

In this section we show that TH , yields a sharper lower bound than that provided by TH, or
TH ,.

Proposition 3.1.

(a) TH ,2TH ,.

(b) TH,=2TH,.

Proof (a): trivial,

{b): Without loss of generality, we may assume ﬁ‘p ;/=1. Then we need to show that
=

g TH .0 ;/[N—(N—1)TH .0 ]<1, which is reduced to glp JUIN=1Xpo mx— P ) +1I<1.

But, since g o ;=1, it suffices to prove /[ (N—1)p mx — @) +11<p; This is equivalent
to showing that (N—1)(0 max — ©;) = 0, which is clear. n

4. Migrating Critical Points (MCP).

Statement of Results

The rest of this paper will be devoted to a study of Conjecture THI. Our approach is as follows:
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We first construct the generating function g{(#) whose Taylor coefficients are given by the sequence
G(N—1)— G(N). Conjecture THI has a surprisingly natural reformulation in terms of the

analytic properties of the function g(£) (see Theorem 4.1). We are led to a rather general
conjecture which predicts the migration properties of successive derivatives of rational functions (see
Main Conjecture). The Main Conjecture may be viewed as a contribution to the research area

initiated by G. Polya. The main focus of Polya’s school can be summarized by the following

question: “How do the zeros of the nth derivative f‘™(x) behave as # increases?” (see Polya
[111). Much work has been done in this area: See, for example, Boas et. al [1], Craven et. al [4],

Reddy [12], and Sheil-Small [16]. But all the previous authors have restricted their attention to
migration properties only when # tends to infinity. In our setting, it becomes important to consider
values of #, both large and small: Our theorems and conjectures predict the migrating properties of
zeros of (%) for all #=0. These results appear to be new, even in the case where f is a
polynomial.

Let g{(x) be a rational function (ie., a quotient of two polynomials). Assume that g has real

coefficients, and that all the zeros (roots of the numerator) are positive real numbers, and the poles
(roots of the denominator) of g are negative real numbers. Let % be the degree of the

denominator of g and # the degree of the numerator,

Define the sequence of critical points: #;= min{x>0 : g Wx)=0}, 7=20. (Note that
without loss of generality we can restate 7 ;= max{x>0 : g =0}, i=0 by taking

g(—x) instead of g(x). In this section, we shall examine the migration properties of this

sequence. In particular, we are interested in the “acceleration” of the sequence. That is,
a;j=vj.1—V; where v;=7;.,—7;, j=0. In the following we list the conjecture and

theorems to be discussed in the subsequent sections.
Main conjecture: The acceleration is non-negative, that is a ,-20 for all j .
Theorem 4.1. The main conjecture implies THI.

Theorem 4.2. The main conjecture is true in the following cases: Let %, # in ( %, #) denote

the degree of denominator and numerator of g, respectively.
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1. (kn) (0.n) with n arbitrary (ie. g is a polynomial).

2. (kn) (2n).n = 1. 2.

Theorem 4.3. Conjecture THI is true for N = 2, 3, and 4.

Remark: For simplicity, we have assumed that all the poles of g are negative and all the zeros of
g are positive. But with minor adjustments in formulation, we can relax the hypothesis as follows:

We assume that all the zeros and poles of g are real numbers, and we further assume that all the
poles are to the left (respectively to the right) of all the zeros. Then we conjecture that the

acceleration is non-negative (respectively non-positive).
Proof of Theorem 4.1.

We shall show that if we assume the main conjecture holds in the special case where g has
exactly one zero, then THI follows. To prove THI, without loss of generality we scale —;) such

that TH ,(N, _;;) =1 and based on (1.3) assume that

[ —
1= N-—(N—l)p,

1. (4.1)

We must show that (4.1) implies
G(N—1,70) = G(N, 0). (42)

Now using the generating function of G(N) let

g(f)=ﬁ__lL)=—l+ 21[G(n—1)—G(n)] ", (4.3)
]._p,'t "
=1

g(t) _ d -1 }:___pi iti
From (4.3) observe that 2D dr In(g(H)= =1 + S T1—pt" Thus condition (4.1)

is equivalent to the condition: g (1—1/N)=0. Therefore, if we assume {4.1) holds, we conclude

that vo=—1/N. Note that (4.1) implies that o ; < 1 for all 2 and in particular, all the poles of
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£ are to the right of the unique root of g. Thus, the hypotheses of the main conjcture are

satisfied. The main conjecture now implies v; < —1/N for all j. In particular, since 7y=1,
we conclude that 7 5 < (. This means that g(N)(t) > () for all ¢ in the interval [0,1]. Since

g2 M(0)/N = G(N—1) — G(N). we conclude that G(N—1)— G(N) = 0, which concludes the

proof of Theorem 4.1. L]

5. Proof of MCP for Polynomials (Theorem 4.2 part 1).

Let g(x) be a polynomial of degree #m with real coefficients, Assume = =3 and that all the
roots of g are real. Let #=m—1 and let C be the “center” of g, thatis, C is the average

of the roots of g. For (0<j<m, define

R;=max{re R:g(x=0},

r;=min{re R:g¥(x)=0}.

It is clear that »y<r<<y,=C=R,<R,_;<-<R,. Theorem 42, part 1 can be

restated as follows:

Theorem 5.1. The sequences {#;} and {R;} accelerate towards the center, C. That is,

rj—rj_ISr]-H—r,- and Rj_l_RjSRj—RH.l, for ].S]Sn—l.

Lemma 5.1. Let #>2 and let @, -, @, be a decreasing sequence of real numbers. Let

P = (x=a).
Let 5 be the largest root of P'(x)=0. Then
ﬂZ (a 1;‘ a 2) .

Proof of Lemma 51: If @)= a3, then B=a,= @, and the result is clear. Since P (a@;)>0
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and P(a5)<0. we have @ > as.

__P(B _ 1 1 1
0= B 121 B—a; = /3—0’1+ B—ajy’

which implies the result. n

We now return to the proof of theorem 5.1. First we note that if a,b,ce R with ac+0
then it suffices to prove the theorem for cg (ax+ 8). In fact, replacing g(x) by g(—=x). it
suffices to prove that {R ,-} accelerates. By induction on the degree of g, we need only show that
Ry—R{<R,—Rj; Replacing g(x) by glax+b) for appropriate @,b& R, we may
assume that Ry=2 and R,=0. Thus, our task is to prove R;=1. If g has two or more

non-negative roots, then Lemma 5.1 implies that K,=1. Thus we may assume that g can be

written in the form:

g0 = (-2 [ (1409,

with o,;> 0. Let

G(0)=Glpy, - 0,)= 295—2,2;9{9,-. (5.1)

Then R,;=0 implies G(p)=0. To show R, =1 it suffices to prove that g"(1) < 0. Since
g(1) < 0, we are reduced to proving g'(1)/g(1) =0, that is, if we define

O
1= 1+p,- ’

F(p)=

then we must show that G(—Z) =) implies F(_(;) >1. Let

S={peR":G(p)=0, p,;20 for all i{ and ;>0 for some 3}
Lemma 52. Let 0 < €< 1/2(n—1).

(i) If _56 S then p; > & for some 1.

(i) If _56 Sand p;> 1 for some 7 then p;> & for some j¥i.
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Proof: For (i), observe that (5.1) is equivalent to G(7)= gp,-(l— ,Z-:,-"‘)' Thus, if p,{1/(n—1)
for all G(?))O. For (ii), assume that o> 1, and assume that p; < 1/2(n%—1) for all i.

Then we have:

Gp)=p1(1-220)+ 20 1= 2ip) > 0. .
Lemma 53. The function F achieves its minimum on the set S.

Proof:  Note that if o;=1/(mn—1) for all i, then —z e S and F(To) =1. Now choose K

to be a large real number, and let

S(K)={pe S p;<K for all i}

Then, by Lemma 5.2, the set S(K) is compact. Also, if _p) & S(K), then

K 5
K1 e+1

F(o) » > 1

for K sufficiently large (again, by Lemma 5.2). This proves Lemma 5.3. n
Let S min be the set of points where F achieves its minimum value. Let T & S ., be the

subset consisting of those points with the maximal number of components which are zero.

Lemma 54. Let @ & T be a point with a minimum number of distinct non-zero entries.

Then all the non-zero entries of @ are equal and I (_t;) =1].

Proof.  Assume not: Then we may assume @ #a, and @,2,#0. Let A=ga3+ - +a,
and B=2 3;( aa,let x=a,+ayand y=aas. Consider the function
[AY)

Q(x,y)zG(—cl))z01(1——2A)+a2(1—2A)+A—2alag—B=x(1—2A)—2y+A—B.

The domain of @ is

D={(x,y) € R?: x%>4y>0}.
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Let

— () =—-21 az . _xt2y
Rx,9)=F(a) 1+a1+1+a2+c 1+x+y+C'

where C is a constant depending only on as,*'*,a, Now our assumptions imply that if we

restrict  A(x,y) to the line segment Q(x,3) =0, (x,3 € D, then the minimum of f oceurs

in the interior of the line segment. But since the first derivative of the function
Ax[x(1-24)+A—BY/2) is just 2(—5A+ B+4)/(2Ax—3x—A+B—2) % the function has
no local minima (or maxima), a contradiction. Thus all the non-zero entries of _a) are equal, which

yields I (—5) = 1. This proves the lemma, and hence the theorem. L]

For numerical evidence, let g(x) = zljn(x — 1) . Then the center of the zeros of g is 45. We
tabulate v,=7#,41—#; and @;=v;s;—v; in Table 51 As is seen in the table,
@;+1 > a;, which also implies ;12 v;.

Table 5.1. Example of MCP for a Polynomial

] Y v; a;
0 0.0000 0.2925 0.0266
1 0.2925 0.3191 0.0307
2 0.6116 0.3498 0.0366
3 0.9614 0.3864 0.0452
4 1.3478 0.4316 0.0586
5 1.7794 0.4902 0.0819
6 2.2696 0.5721 0.1288
7 2.8417 0.7009 0.2565
8 3.5426 09574

9 45000

6. Proof of MCP for Certain Rational Functions
(Theorem 4.2 part 2).

We first treat the case £=2 and #=1. Since the balanced case was already treated in

Section 2, we may assume that the poles are simple. We may normalize g so that the poles are
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negative and such that the unique zero occurs at the origin,

its partial fraction expansion:

Then g may be written in terms of

— 1 1
g(t)_(1+/11t 1+/12f

).

where g, and g4 are positive real numbers. Then #th derivative of £ is given by

©i

n
M2

gP(D=(=1)"n! (

which implies

ui—p3

y,= — — =——| -1+
() (T p 879 #z[

where a=n/(n+1), a=p /iy, and x=n,

that @ > 1. Define Ax) as follows:

a—1

Ro)=—"=7.
) a__ax/(x+1)

(1+u,H"

)

a—1
g— g T&FD

(1+pp"!

(6.1)

].

Without loss of generality, we may assume

(6.2)

If we show that J is increasing convex in x, for x> (), we will be done. We have

a "t (g

f(®=(a—1)

because a > 1.

(a—a™“ D) x+1)2 20,

N (o _ (a—A) In(@)—2(x+ D (a—A)—A In(a)(x+1) "]
f (0=(a—A)a—1) n(@)A (o= At DT

where A= a***V Then we want to show

(a+ax/(x+1)) ln(a)_z(x+l)(a_ax/(x+l)) >0,

or,
xf(x+1)
ln(a)(a-f-x/c(sz) ) > 2(x+1).

a—a
Let 2=1/(x+1). We must show

In(eata'™™ s 2

(a—a'™ b
That is.
In@(a"+D) | 2

Since a’=e"™@ 44 replacing 4 by #/In(a), the inequality (6.3) becomes

b
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A
e"+1 2
=7,
e’ —1 h
or,
ety g H2 > 2
eh/Z_e—h/Z P

€. =€ - <p. (6.4)

We must prove that the last inequality (6.4) holds for all % =(. Since it holds for h=0, it

suffices to prove the differentiated inequality:

_ (e'—e hj_zsl
(e"+e ™ M? ’

which clearly holds. ]
Next we consider the case £=2 and n=2. Then we may normalize so that g(# is of the

form

(=)= 8
=" A1 Fugd

where 4, #£9, @, and f are positive real numbers. Let

H=g(Hh— # p

Then the root of % is smaller than the roots of g, but the roots of the derivatives of /% coincide
with the roots of the derivatives of g. Thus it is sufficient to prove the theorem for h. But &

has a numerator of degree one, and thus we know the result holds for h. L]

As numerical examples we consider two functions and examine the behavior of ;=7 ;41— 7,

and @;=wv,.1—v; in Table 61 and 62 (we used MAPLE to obtain the successive derivatives

and the zeros of the derivatives):

(=D _ (x=1)
g.:(x)= CENETT)) and go(x)= (x+1:)(x+§)(x+ DICENE The examples show

the migrating property. However, compared with the polynomial case where @ ;4 > a ;=2 0, these

rational functions show 0 < a,., { @; and a; approches to O for large j. Also note that
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g1(x) is a function which is considered in Theorem 4.2, and g2(x) is a numerical example of

the main conjecture.

Table 6.1: MCP for g,(x) Tabie 6.2: MCP for g(x)

j r} v 7 a J ] 7’} v 7 a J
0 1.00000 2.44949 0.01119 0 1.00000 1.07182 0.00808
1 3.44949 2.46068 0.00281 1 2.07182 1.07990 0.00392
2 5.91017 246349 0.00112 2 3.15172 1.08382 0.00219
3 8.37366 2.46461 0.00057 3 4.23554 1.08601 0.00136
4 10.83827 246518 0.00032 4 532155 1.08737 0.00090
5 13.30345 2.46550 0.00020 3 6.40892 1.08827 0.00063
6 1576895 246570 0.00014 6 749719 1.08890 0.00044
7 18.23465 2.46584 0.00008 7 8.58609 1.08934 0.00035
8 20.70049 246592 0.00008 8 9.67543 1.08969 0.00025
9 23.16641 2.46600 0.00005 9 10.76512 1.08994 0.00021

10 25.63241 246605 0.00003 10 11.85506 1.09015 0.00016

11 28.09846 2.46608 11 12.94521 1.09031

12 30.56454 12 14.03552

7. Proof of THI in Special Cases (Theorem 4.3).

In this section, we prove Conjecture THI (stated in section 2) for N =2, 3, and 4. Theorem 4.3

can be restated as follows:

Theorem 7.1. Assume that

.#_:l
1=1 N_(N—].)‘Oz )

Then G(N—1)—G(N) =0 for N=2, 3, and 4.

(7.1)

Recall that G(N, £, _15) is the normalization constant of degree N in the £ parameters
O1,°, 0. We shall often suppress _(; and % in the notation and write G(N)=G(N,k, p). For

%y, x, real numbers we define G(Nix,,,x )= G(N,k+ 172, where O =01, ok, 1),
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We adopt the convention G(—1)=0. For =»n=z1, let A(n)= 21,07. Let 0 pax=max{o, -, 08

and P = min(eq, -+, 04). Finally, we let D(N)= G(N—1)— G(N). For the proof of

the theorem we need several lemmas:

Lemma 7.1. Assume N=1. Let

¥
=1 N—(JV—-DP, )

P=

Then condition (7.1) implies (N—1)P = N—A(l).
Lemma 7.2. 0 min < P < 0 max-

Lemma 7.3. For every integer # = ()} we have

NG(N) = 2A(I)G(N— n+ f GIN—r—1Li0)e .
Lemma 7.4. For every integer N = 1 we have
MN-DDN = o AN= A(D o, (N—1) GN-%0).

Lemma 7.5. Condition (7.1) implies

D(N) = f[N iy ](P p)[—L—l GN=20, P)~ G(N—3i0., P)].

Remark: The case 7= N of Lemma 7.3 is due to Kobayashi [7]. We don't actually need Lemma
7.3 in the proof of Theorem 7.1; It is included since the proof is in the spirit of the generating

function approach and the result may be of independent interest.
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Proofs.
Proof of Lemma 7.1,

pIN—(N—1)po;]
A(1)= lei= g‘ N—(N_l)pz

2
— P A b
_Nz=1 N*(N_I)P; (N 1) 1= N—(N'—l)p,
=N—(N—-1)P.

Proof of Lemma 7.2,

This follows from:
£ min O i O O max O ;
Y o < Qn e Bl
g:l N—(N-1p; = 121 N—(N—1)p; =1 N—(N-1)p;

Proof of Lemma 7.3,
Let

W)=——1—— = 3 G(mi?.
Ij(1~p ) =

and for 1 <i< k let
h{)=hH(1—pH

Then we have

r+1tr+l

o= ) B2 = S| B+ G
-(Z G(N)t)(zlA(l)t) + B h Dol

Comparing coefficients of t we obtain the resu't.

Proof of Lemma 7.4. Note that

EOD(N”N: (t—1)h(P.
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Differentiating both sides with respect to -

S DN = (1Y — B0 =KD+ B0 D~ Do D= Zelth ()

= (- A KD+ 20— 0Dt (D
Differentiating once more with respect to :
S NV-DDEY = (1= AD) Ty D+ 2 Zolei— 0 DO 0™

Comparing coefficients of # N we obtain the result.

Proof of Lemma 7.5, From Lemma 7.1 and 7.4, we see that condition (7.1) implies
DN = B[ =g | (P e ALGW= 2 )= (N=D p)). (12)
Since

e e (G TR

we can subtract from the last bracketed term of (7.2) any expression which is independent of i,

without changing the value of the sum.

Hence NIXN)=

s, (P e G- 20 Y= (V- Do)~ G- ZPN-(N-DP) (7

Comparing equation (7.3) with the expression in Lemma 7.5, we see that to prove the lemma it

suffices to show

—lﬁ[ GIN—20 )(N—(N—1Dp ) —GIN—-2,P)(N—(N-1)P)]

—(p— p)[ L G(N—2p,P) - G(N—3;p,-,P)].

However, this follows upon substitution of the following identities into (7.3):

GIN—20)=G(N—20,%x—xGN—3;0,%),
GIN—2x)=G(IN—20 ;00— 0 ,G(N=3p0:;%) .
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Proof of Theorem 7.1. By Lemma 7.5 it suffices to show that

Ll GN-20, P~ GIN=3,0, P 20, 0<p,<1, (7.4)
for each 7,7=1,-+, k. Rewriting (7.4) as

N
N—1

By equation (3) of Yao [18], G(N—2;x, P)/G(N— 3;x, P) is an increasing function of x. (Note

GIN—2,x,P) > GIN-3x, P, 0<x<]1. (75)
that in equation (3) there is a small typographical error: The last term should be ,OJIV—IG(N -1
not p{V_IG(l), but this does not affect the result of Yao [18]. Thus, it is sufficient to prove

inequality (7.4) for x=0. That is, we have

N _a
Vo1 G(N—-3P) (76)

4

G(N—-2,P) >

In the following we prove inequality (7.6) for N=2. 3, and 4.

N=2:1>0.

N=3: We have to show that G(1;P)>3/2.

Proof. Since G(1;P)=A1)+P=A1)+[3-A(1)]/2=3/2+A(1)/2=3/2.

N=4: We need to show that G(2;P) > (4/3) G(1;P).

Proof. Rewrite G(2;P) as:
G(2P)=G(2)+ G() P+ P*= G(2) + ALGQ) + P
=GQ)+[U—-AMW) B+ P
=4/3[G(1) +P1 +[3G(2) — A(DG(1) - AQPI/3
=4/3G(LP) +[26(2) — A(DG(DV/3+ [ G(2)— A()P1/3=4/3G(L; P).

The last inequality follows from the fact that 2G(2)=A(1)G(1)+ A(2) > A(1)G(1), and
G(2) =2 G(1) p ax = A(1)P by Lemma 7.2. »
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8. Numerical Testing.

In this section we provide some numerical evidence which supports our main conjecture. First it is
easy to calculate 7TH , by the convexity property of our computational procedure (see Section 2).
That is, a simple binary type of searching is sufficient to get TH ,. For the exact TH, we may

use the two tailed recursion proposed by [3]. In fact, we tested numerous cases with the

parameters drawn from the random number generator {page 1195 in [10]) to detect any counter
examples, without any success. To demonstrate numerical examples here we consider £ = 5, 10,
15, and 20. For each % we increase the population from 10 to 50 and with fixed values of

0;=1/i, i=1,--,k. In Table 81, TH, TH, and TH, are tabulated.

Table 8.1: Numerical Comparison of Throughputs

k 5 10 15 20
N TH| TH,|TH, TH |TH,|TH,| TH | TH,|TH,| TH |TH,| TH,

10 9981 | 9773 | .8921 | 9959 | 9668 | .8843 | 9940 | 9601 | .8794 | .9921 | .9551 | .8758
20 9999 | 9945 | .9476 | 9999 | .9922 | 9457 | 9999 | .9908 | .9445 | 9999 | .9898 | .9436
30 1.000 | .9976 | .9656 | 1.000 | .9966 | .9647 | 1.000 | .9961 | .9642 | 1.000 | .9957 | .9638
40 1.000 | 9987 | .9744 | 1.000 | .9981 | .9739 | 1,000 | .9978 | .9736 | 1.000 | 9976 | .9734
50 1.000 | .9991 | .9796 | 1.000 | .9988 | .9793 | 1.000 | .9986 | .9791 | 1.000 | .9985 | .9790

9. Concluding Remarks.

In this paper we proposed a new procedure which ie conjectured to vield a lower throughput bound
of queueing network. We showed that the procedure is numerically stable and produces a sharper
bound than that of FPM by Whitt. We also reformulated the queueing network problem into a
rather general mathematical problem called “migrating critical points” and proved it in some special
cases including polynomials. Our proposed procedure may be applied to the evaluation of
telecommunication network protocols such as the sliding window [14] and the analysis of the flexible
manufacturing systems [2]. We hope that the conjectures stated in this paper would become the

theorems in the near future.
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