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The Optimal Warranty Servicing for Repairable
Products with Phase-Type Lifetime Distributions'

Ho Gyun Kim*

Abstract

This paper considers warranty servicing for repairable products when product lifetimes are
phase-type(PH) distributions. Two replace-repair strategies are analyzed based on renewal processes. The
quantities of interest can be expressed in terms of the renewal function which, in general, is very difficult
to evaluate, By exploiting properties of PH distributions we obtain simplifications to evaluate these
performance measures. Numerical examples for four different PH distributions with typical hazard functions

are presented and the results are discussed.

1. Introduction

Warranties are becoming an increasingly important part of the market place. A warranty is a
contractual obligation incurred by a manufacturer or vendor in relation to product sales and services.
Manufacturers use them as a powerful marketing tool. At other times, warranty is imposed on the
manufacturer, by certain laws, to protect consumer interests, When a product is sold with a
warranty, the manufacturer has to service it if the failure occurs during the warranty period. This
consists of actions, termed warranty servicing, such as replacing a failed product with a new one for
nonrepairable products and either repairing or replacing a failed product for repairable products,
Product warranties can be modeled through the renewal process generated by product failures and

the associated cost of actions at each failure. While the literature[1,4~7,10,13] dealing with
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warranties for nonrepairable products is large, the literature[1,9.11] for repairable products is
somewhat limited. In most warranties, the performance measures are quite complicated and typically
involve the renewal function and related functions. It is well known that the evaluation of the
renewal function for an arbitrary probability distribution is very difficult, Outside the exponential
family, computing these performance measures requires intricate numerical integration.

Phase-type(PH) distributions(Neuts, 1981) exhibit a wide range of qualitative features. By
exploiting various properties of PH distributions, some studies[4~6,13] simplify the related renewal
functions and render them amenable to numerical solutions. Kao and Smith(1993) simplified
performance measures of Mamer's(1987) model and enhanced the applicability of useful but
computationally unwieldy results. Rao(1995) developed evaluating algorithms for free replacement
warranty and described the effects of various parameters on product warranty decisions, Kim(1996)
analyzed free replacement and pro-rata warranty policies for products with renewable warranties and
showed that irrespective of the pattern of hazard function, pro-rata warranty policies are preferable.
Kao and Smith(1996) obtained simplifications for two hybrid warranty policies proposed by Nguyen
and Murthy(1984a) and introduced computational approximations, But these studies are concerned
with nonrepairable products,

This paper considers warranty servicing for repairable products with phase-type lifetime
distributions and obtains simplifications to evaluate performance measures of interest in decision
making. Since probability distributions of practical interest can be represented or approximated by
phase type distributions (see Johnson and Taaffe, 1990 and O’Cinneide, 1990), requiring lifetime
distributions to be of phase-type is not all restrictive,

The remainder of the paper is organized as follows. We briefly discuss phase-type distributions and
phase-type renewal processes in Section 2. In Section 3, we analyze two replace-repair strategies and
obtain simplifications to performance measures, In Section 4. we give numerical examples for four
different PH distributions with typical hazard functions and provide qualitative informations, Finally,

we conclude with a discussion on some further extensions.

2. Phase-Type Distributions and Renewal Processes

A probability distribution is said to be of phase-type if it can be described as the probability
distribution of the time until absorption in a finite Markov chain(Neuts, 1981). Consider an m+1

state continuous-time Markov chain (CTMC) with initial probability row vector(B, 8,,+1), and
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infinitesimal generator Q
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where the m-vector 8 denotes ( 81, ***, Bm), S%=-Se and e is a column vector of ones.

States 1, -+, m are transient, and state m+1 is absorbing. Distribution F' corresponds to that of the
time until absorption. The PH-distribution F' with representation (8, S) is denoted by PH(B, S) and
is given by F(x) = 1 - Bexp(Sx)e. Without loss of generality, we assume that B,+1= 0.

meaning that the time to absorption is always greater than zero. The i-th noncentral moment of
PH(B, S) is given by

g; = (=1 S%) fori 20 (1)

A renewal process in which the interarrival time distribution F is phase-type is known as a
PH-renewal process(Neuts, 1981). Let (B, S) be the representation of F. Associated with the

PH-renewal process is an m-state irreducible, recurrent CTMC {X(f), t=0} with generator

Q =S +S%8. Several important properties of PH-renewal process can be expressed in an

efficiently computable form as follows :

- Let N(t) denote the number of renewals in (0, t] The renewal function M(t) = E[N(t)] of
the renewal process {N(t), t=0; is given (Neuts, 1981)by

M) =¢t-¢t Bexp(QDS le-1,t20

where § =1/ g, is the asymptotic renewal rate.

-Let v(t) = Bexp(Qf), for t>0. We see that the jth element of the m-vector V(t) gives
P{X(t)=3 given that the initial vector v(0) is B. Since V(t))0 and V(t)e = 1. a distribution with
representation (v(£), S) is also of phase type. Let g,(t) denote i-th noncentral moment of PH(v(t),
S). pu,(t) is given by (1) with v(t) replacing B and note g;(0)= y;. The renewal function can be

written as
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M) =8t +¢&mt)-1,t>0 (2)

Define an m-vector v(t,h) =v(t) exp(Sh) for t h>0. Note W 1)=v(¢,0) and v(th+z) = v
(t.h) exp(Sz) for all ¢, h, z> 0. Since ¥( t, B) =0 and v(t, h)e<], a distribution with representation
(v(t, h), S) is also of phase type.

*Let B(t) denote the excess life of the renewal process at time ¢ and F ,(x) denote the
corresponding  distribution, ie. F,(x)=P{B(t)<x) The excess life distribution of a PH renewal

process with interarrival time distribution PH(B, S) is given (Kao and Smith, 1992)by

F,(x) = 1-v(t) exp(Sx)e, x>0 (3)

for any t>0. In other words, F y I8 PH(V(t), S).

3. Replace - Minimal Repair Strategies

For repairable products sold with free-replacement warranty. the manufacturer has the option of
either repairing it or replacing it with a new one. The optimal strategy is one that minimizes the
expected cost of servicing the warranty over the warranty period W. There are many different
possible strategies with regard to replace-repair decisions (see Blischke and Murthy, 1994). This
paper considers the following two relatively simple approaches proposed originally by Blischke and

Murthy and corrects some representations of their model of the analysis in strategy 2.

Strategy 1 : A product is replaced by a new one if it fails in (6, W - T4y] and subjected to
minimal repair if it fails in (W - 7y, WI. The parameter T4(0 < Th< W) is
selected to minimize the expected cost of servicing the warranty.

Strategy 2 : A product is subjected to minimal repair if it fails in (0, 75) and is replaced by a
new one if it fails in ( 73 WJ]. The parameter 7,(0 < T,< W) is selected to

minimize the expected cost of servicing the warranty.

We carry out the analysis of these two strategies when the product lifetime is PH (8, S).
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3.1 Strategy 1

Replacements in (0, W- T3] occur according to a renewal process with the distribution of time
between renewals given by F, if the time to replace is negligible. The expected number of

replacements over this period is given by M(W- T4). To obtain the expected number of repairs in
(W- Ty, W1, note that the time to first failure after W- T is given by the excess life of the
product in use at time W- Ty with the distribution F,. Since failures over (W- T, W) are

repaired minimally, failures occur according to a nonhomogeneous Poisson process with the

distribution F,, if the time to repair is negligible. The expected number of repairs over (W- Ty,
W) is given by —In F, (7)), where F,(-)=1— F,(-)(Nguyen and Murthy, 1984b).
Let ¢, and ¢, be the manufacturing cost and the repair cost per unit. Then the expected cost

of servicing the warranty under strategy 1, C;(7Ty; W) is given by

CAT;W) = e, M(W—T,) — ¢,In F, (T)).
When the time to failure distribution F is of phase type with representation (8, S) and order m,

combining (2) and (3), we can evaluate the expected cost of servicing the warranty simplified

considerably by following equation.

CATEW) = [ ¢ (W=T)+ Euy(W—T)—1]1 — c,In[v(W— Ty, Ty)e] (4)

The optimal 73, 7T; which minimizes C,(T; W) is obtained by examining the servicing costs
at some critical points of 77 and the end points. Some critical points of 7T can be found in the

next theorem 1.

Theorem 1 Provided they exist, some critical points of 7 can be obtained by solving
—cv (W—Ty, TY)e+ ¢, v(0,T)e= 0 (5)

Proof. They can be obtained from %TI’W) = (.
1
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du,(W—T)

Since T =—pmv(W-T,)S"+1,
a _ - 0
dan(VZTTl, T)e _ V(W:(;;L)‘; B;’,T)Z(STI)e and v (W=T)S" is a scalar,
1 1

we have the desired result.

3.2 Strategy 2

Since all failures in [0, T3) are repaired minimally, the expected number of minimal repairs over
this period is given by — In F( Ty). The age of the product in use at time T, is simply T,
Since products failing in the interval ( T3, W) are replaced by new ones, the number of
replacements in ( Ty, W) follows a delayed renewal process with the distribution for the first failure,

G(x), given by

_ F(x+_T2) —F(Ty)
F(T)

G(x) (6)

and the distribution for subsequent failures, F(x). While Blischke and Murthy(1994) used F,(x)
instead of G(x), G(x) is needed because G(x) is different from F Ax). The expected number

of replacements over the interval ( T,, W) is given by(Ross, 1970)
W—-T,
MAW-Ty) = GW~T,) + fo MW= Ty—x)dG(x )

where M(t) is the renewal function whose interarrival time distribution is F. By applying (6) and

integrating by parts, M W— T) is written as follows,

MAW=T;) =1+ MW—Ty) — F,(T,)/F(T,) )

where Fy (+) is the distribution of the excess life at time W-7: The total expected warranty

service cost under strategy 2. Co( Ty, W) is given by
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Cz( TQ; W) = Cst( W— Tz) - C,IH—F( Tz)

When the time to failure distribution is of phase type, using (2), (3) and (7), the total expected

warranty servicing cost can be obtained by the resulting equation.

Cz( Ty; W) = Cs[ E(W— Tz) + §#1( W— Tz)_ v (W— Ty, Tz)e/ v (0, Tz)e]
- ¢, In[v (0, Tyel (8)

The optimal 7% 7% which minimizes C,(7T5; W) can be obtained from the first order necessary

condition.

Theorem 2 The first order necessary condition for strategy 2 is the same as that for strategy 1.

dCo(Ty; W . )
Proof. The necessary condition is obtained from ~—2(a,7,2——) = 0. Since v(0, TS’ is a
2
scalar, we can obtain this equation.
—c vV (W—T,, To)e+ c, v(0,Ty)e= 0 (9)

This equation is identical to (5) for strategy 1.

Note that the expected servicing costs are different as illustrated in the next section.

4. Numerical Examples

In the implementation of the results obtained in Section 3, we use a numerical method requiring
the evaluation of matrix exponentials. In order to study warranty servicing, we consider different PH
distributions based on the Erlang-2 distribution which Blischke and Murthy(1994) illustrated. Four
different PH distributions with typical hazard functions as displayed in Figl, which are referred to

as DI1- D4 are chosen. We standardize these four distributions to have a mean lifetime of one. The
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parameters of these four distributions are described below,

D1 : Erlang-2(E:) distribution with a rate of 2 in each phase

D2 : Exponential distribution with a rate 1

D3 : Hyperexponential with 2 phases(Hz) distribution with rates 2.82085228 and 0.50806659 and
mixing probabilities 0.6 and 0.4

D4 : Mixture of an E, distribution with a rate of 8.385265 in each phase and E; distribution with
a rate of 0,607932 in each phase with mixing probabilities of 0,814075 and 0.185925

D1, D2 and D3 are an Increasing-Failure-Rate (IFR) distribution, a Constant-Fajlure-Rate

(CFR) distribution and a Decreasing-Failure-Rate (DFR) distribution, respectively. D4 is a mixture

distribution that often arises in a number of reliability situations,

2
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Product Lifetime

Fig. 1 Hazard Functions

The warranty period, W can be viewed as the multiples of the average product lifetime. Let

W=05, 1, 2 years and ¢;=$100. The existence of solutions satisfying (5) or (9) depends on the
distributional form and the ratio ¢,/c,. In general, they should be obtained by numerical methods,

We use a search where values of ¢,/ ¢, range from 0.00 to 1.00 in increments of 0.05 and values of
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T range from 000 to W in increments of 0.01. Table 1 and 2 give results for strategy 1 and 2

when the distribution is D1 and W =1. For c,/ ¢, < 0.75, there is no solution, This implies that the
optimal decision is “always repair”. For 080 < ¢,/c; < 1, there are two solutions T and T2

T and T are the optimal decisions for strategy 1 and 2, respectively. C{0; W) and C{W; W)
for i=1,2 are expected costs of servicing the warranty corresponding to “always replace” and “always

repair”, For ¢,/¢c; = 08, two solutions exist but those expected costs are larger than CAW, W)
for i=1,2. Hence, in this case 7;=100 for i=1,2. Note that an increase in ¢, results in an

decrease in 7} and 73 owing to the burden of repair cost. 77 and T3 are the same for both

strategies.

For distribution D2 and D3, there is no solution ie. the optimal decision is “always repair”. And for
distribution D4, there are two solutions for appropriate values of ¢,/ ¢s and the results given in

Table 3 and 4 are similar to those for distribution D1, Table 5 and 6 summarize the effect of
warranty period on the optimal decisions for distribution D1 and D4. As the warranty period W
increases, the optimal period over which minimal repair is to be performed decreases for distribution

DI, but the opposite result occurs for distribution D4. These are caused by pattern of failure rates.

Table 1. Optimal Repair VS. Replace Decision for Strategy 1 : D1 and W=1
cle, T CU(THW) T8 Cc(THw)  CO;wW)  C(W: W) T1 C(TLHW)

0.75 - - 75458 67.604* 1.00 67.604
080 039 72.302 0.72 72.729 75458 72.111* 1.00 72111
085 023 73.925* 0.84 76.818 75.458 76.618 0.23 73.925
0.90 013 74.852* 091 81.174 75.458 81.125 0.13 74.852
095 006 75.321* 0.96 85.637 75.458 85.632 0.06 75.321

Table 2. Optimal Repair VS. Replace Degision for Strategy 2 : D1 and W=1

cle, TV CATH W) T° C(THEW) GC0:W) C(Wi; W) T; C(Ty: W)

0.75 - - 75.458 67.604* 1.00 67.604
080 039 74.450 0.72 74877 75.458 72.111* 1.00 72111
085 023 75.111* 0.84 78.004 75.458 76.618 0.23 72111
090 013 75.370* 091 81.691 75458 81.125 0.13 75.370

095  0.06 75.448* 0.96 85,764 75.458 85.632 0.06 75.448
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Table 3. Optimal Repair VS. Replace Decision for Strategy 1 : D4 and W=1

cles T'  C(TSW) T2 c(T%wW) o W) C(W; W) T7 C(ThwW)
0.70 - - - - 130.806 116.508* 1.00 116,508
075 024 126.813 0.51 127.629 130.806 124 830* 1.00 124830
080 016 128.485* 0.73 133.784 130.806 133.152 0.16 128.485
0.85 0.11 129.578* 0.84 141.604 130.806 141.474 0.11 129.578
0.90 007 130.282* 0.90 149.815 130.806 149.796 0.07 130.282
0.95 0.04 130.680* 0.95 158.119 130.806 158.118 0.04 130.680
Table 4. Optimal Repair VS. Replace Decision for Strategy 2 : D4 and W=1
cles TV CATHw) 72 CATHE W)  CO:W)  CAW; W) T; Cy(Tyw)
0.70 - - - - 130.806 116.508* 1.00 116.508
0.75 0.24 130.237 0.51 131.053 130.806 124.830* 1.00 124.830
0.80 0.16 130.632* 0.73 135933 130.806 133.152 0.16 130.632
0.85 0.11 130.763* 0.84 142.790 130.806 141474 0.11 130.763
0.90 0.07 130.799* 0.90 150.332 130.806 149.796 0.07 130.799
0.95 0.04 130.805* 0.95 158,246 130.806 158.118 0.04 130.805
Table 5. Effect of Warranty Period on the Optimal Decisions : D1
¢,/ ¢ W=05 w=1 W=2
0.65 always repair always repair always repair
0.70 always repair always repair T* =076
0.75 always repair always repair T* = 050
0.80 always repair always repair T =033
0.85 always repair T* =023 T* = 021
0.90 always repair T =013 T* = (.13
0.95 always repair T* = 006 T* = 0,06
Table 6. Effect of Warranty Period on the Optimal Decisions : D4
¢,/ c, W=05 w=1 W=2
0.75 always repair always repair always repair
0.80 T* = 013 T* = 016 always repair
0.85 T* = 0.09 T = 011 always repair
0.90 T = 0,06 T* = 007 always repair
0.95 T* = 0.03 T* = 0,04 always repair
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From a practical point of view, it is interesting to compare strategy 1 and 2. We represent the
total expected servicing costs for distribution D1~ D4 in Fig2 and Fig.3 corresponding to W=05
and ¢,=80, and W=1 and c¢,=85, respectively. In the case of D2 and D3, the advantage of
minimal repair makes the expected servicing costs decrease, For D1 and D4, the functions globally

increase or decrease depending on the warranty period or ¢,/c,. For the exponential distribution,

D2, the total expected servicing costs of both strategies are same by the memoryless property.
When products have an IFR distribution, DI or the initial failure rate is high as in the case of
D4, strategy 1 is more favorable. But strategy 2 is more favorable when products have an DFR

distribution, D3. As might be expected, the total expected warranty servicing costs are arranged in

order of magnitude in the cumulative hazard function.
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Fig. 2 Comparisons of Strategy 1 and 2 : W=05and ¢,=80
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Expected Servicing Costs
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Fig. 3 Comparisons of Strategy 1 and 2 : W= 1 and ¢,=85

5. Conclusion

We have studied the optimal replace-repair strategy for warranty servicing when product lifetimes
are phase-type. We examined two relatively simple strategies with a single parameter where the
choice is between minimal repair and replacement. It is possible to formulate strategies that include
different types of repair. The computational tractability of phase-type distributions reduces all the
necessary evaluations to matrix inversion and the computation of matrix exponentials, Another
advantage of PH distributions is that many probability distributions used in modeling product
reliability can be approximated by PH representations. Fitting PH distributions is worthy of further
study.
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