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An Algorithm for Computing
the Fundamental Matrix of a Markov Chain ¥

Jeong-Soo Park* - Geon Cho**

Abstract

A stable algorithm for computing the fundamental matrix (/— @) “lofa Markov chain is proposed,

where € is a substochastic matrix. The proposed algorithm utilizes the GTH algorithm (Grassmann, Taskar
and Heyman, 1985) which is turned out to be stable for finding the steady state distribution of a finite
Markov chain. Our algorithm involves no subtractions and therefore loss of significant digits due to
cancellation is ruled out completely while Gaussian elimination involves subtractions and thus may lead to
loss of accuracy due to cancellation. We present numerical evidence to show that our algorithm achieves

higher accuracy than the ordinary Gaussian elimination,
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1. Introduction

Let Q=(g;) be a nxn substochastic matrix (ie. all entries are nonnegative, and 2, 7= 1q <1

for all 7=1,2,...,n Then we can enlarge @ to a (#+1)x(n+1) stochastic matrix by

adding an nonnegative absorbing state vector, ie.,
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where ¢ ;20 for all ¢ and 7, and Z}':llqi,:l for all i=1,2,...,n.
Our objective in this paper is to develop an efficient and stable algorithm for computing the matrix

(I—Q) ™', where I is the nX# identity matrix, The matrix (/—Q) ™! is called the
fundamental matrix of an absorbing Markov chain, because it plays a vital role in the theory of

finite Markov chains.

The inverse of (I— Q) exists whenever QF goes to zero as # goes to infinity, and it can be

expressed as an infinite series, ie., (I—Q) 7! = goQk (the proof is found, for example, in Seneta

[1973]). Thus we assume that Qk goes to zero as % goes to infinity. That is, we deal with only

such a matrix € assuring the existence of the inverse of (/— ). Actually the assumption is
satisfied for any absorbing Markov chain (see Kemeny and Snell [1960]).

One usual way to compute the inverse matrix (I— @) “1is to apply Gaussian elimination
(LU-decomposition) to I— @ and to solve equations by backward or forward substitutions (see
Golub and Van Loan (1989) for details). However, Gaussian elimination (abbreviately, GE) involves
subtractions, and thus may lead to loss of accuracy due to cancellation. Moreover, Gaussian
elimination does not utilize the nonnegative substochastic property of &.

Grassman, Taksar, and Heyman (1985) introduced a variant of GE for computing the steady-state
distribution (or stationary distributions) of a Markov chain. Their algorithm, which is now known as
the GTH algorithm, involves no subtractions and therefore loss of significant digits due to cancellation
is ruled out completely. Empirical and theoretical evidences that the GTH algorithm computes
steady-state probabilities with smaller relative error than the GE have been presented in Heyman
(1987) and O’Cinneide (1992).

In this paper, we extend the key idea of GTH algorithm to propose an algorithm for computing
the fundamental matrix of an absorbing Markov chain. Since our algorithm does not involve
subtractions, it is clearly more accurate than the ordinary GE method.

This paper is organized as follows, In Section 2, we review the GTH algorithm for computing
steady-state grobabilities. The proposed algorithm for computing the fundamental matrix is described

in Section 3. In Section 4, a numerical example is presented to illustrate the process of the algorithm.
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Finally in Section 5, numerical experiments are given to show that our algorithm is superior to the

ordinary GE method.

2. THE GTH ALGORITHM

In order to introduce the GTH algorithm, we formally state the problem for computing steady-state
distribution of a finite, discrete, irreducible Markov chain. Let P be the transition probability matrix
of an irreducible Markov chain with states 0,1,2,...,% The problem is to compute the

steady-state probability vector x= (m 7, . 7,), which is detremined by

.....

aP=r, ]Z]n,: 1.

The computation of & is of widespread interest (Kemeny and Snell (1960), and Paige, Styan and Wachter
(1975), for example). To solve zP=nx (ie, m(P—D=(), we first find LU-decomposition of (P—1)
by using Gaussian elimination, and the backward substitution is used to get the answer. However, if some
components of & are very small, then GE may give inaccurate results due to subtracting operations
(see Harrod and Plemmons (1984), and Heyman (1987) for details),

The GTH algorithm is a meodification of the Gaussian elimination procedure with the pivot element
substituted by the sum of entries in the right-hand side of the row containing the pivot element
(see Grassman, Taksar, and Heyman (1985)). Note that this substitution does not make the
computation incorrect because the row sum is always zero in any step during the GE process. Now

we present the GTH algorithm originally presented by Grassman, Taksar, and Heyman (1985).

Algorithm GTH

for 2=#»n down to1 do
S:=J= by
for i=k—1 downtol do
pa:=palS:
for j=k—1 downtol do
i =pitDaby:
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end
end
end
Tot:=1:
Ty i=1;

for j=1upto n do

71'_,':=P0]'+ gﬂ.ﬁpb N
Tot: = Tot+n, :
end
for j=0 up to = do
7 i=n;/Totl :

end

Note that all of the arithmetic operations use only nonnegative numbers, and that there are no

subtractions. Grassmann (1983) and O’Cinneide

(1992) showed that this kind of nonnegative

arithmetic algorithm is extremely resistant to rounding errors, This algorithm requires about 2n3/3

operations ( #+1 is the number of states). Moreover, note that we are assuming that every pivot

element is nonzero during the whole procedure and therefore no pivoting occurs in this algorithm.

Actually Harrod and Plemmons (1984) showed that this kind of nonnegative arithmetic algorithm is

stable even without pivoting. Thus no pivoting strategy also occurs in our proposed algorithm which

is given in the next section.

3. PROPOSED ALGORITHM

To find an inverse matrix (J— Q) ~lof (I— Q). we use the following steps.

Step 1: Obtain an L U-decomposition of (I— @), where L is a unit lower triangular matrix and

U is an upper triangular matrix.

Step 2: Find a matrix XeR™"” such that

(I-QX = (L)X
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To get an LU-decomposition of (/— &) in Step 1, we use only the crucial idea of GTH algorithm
which substitutes the pivot element by the sum of the remaining entries of the row containing the

pivot element. Note that the GTH algorithm deals with a stochastic matrix and thus we enlarge the

substochastic matrix € to a stochastic matrix P. In fact, our algorithm utilizes the stochastic
property of P to find (I— Q) ~ %
Let x; and e; be the £™ column vectors of X and 1, respectively. If we set G=1I—@Q, then

our algorithm for finding G ~'=(I— Q) "' s as follows:

Algorithm FUNDM
Step 1. { Begin with G and end with L— I+ U}
for k=1 upto n—1 do

s:=0;

for j=%k+1 up to 7 do
s:=s+ Gk, j);

end

Gk kB =@t~
{ no subtraction occurs since s is non-positive }
for i=k+1 upto 7 do
G(i, B) : =G4, k) Gk, B):
Gint1 =qint1— G, BG4 a1
{ no subtraction occurs since G(%, k) is negative }
for j=Fk+1 upto n do
if (%) then
G(i,7) : =G(i, k) — GG, Gk, 7):
else if (i=j=n) then
G(i,7) : =q a1’
endif
end

end

end

Step 2. { Find X=(I—Q) ~* by solving (LI)X=1}
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for k=1 up to n do
solve Ly=e, to get y=L e,
solve Ux,=1y to get x,= U 'y

end

To reduce the space complexity, G(1:&, &) is overwritten by I 1:k &) for k=1,2,...,n, and
G(k+1:m, k) is overwritten by L{(k+1:n, k) for k=1,2,...,n—1 at the end of Step 1. Thus
G(1:k k) and G(k+ 1:n, k) are actually used instead of U and L in Step 2, respectively.

Note that the key idea of GTH algorithm is applied to find LU-decomposition of G in Step 1.
That is, to find the pivot element G(k, &) in the GE procedure, we simply use the key idea of the
GTH algorithm discussed before instead of using the ordinary GE procedure including subtractions.
This is what distinguishes our algorithm from the standard GE procedure.

Note that no cancellation error due to subtraction occurs in the algorithm because of utilizing the
GTH algorithm in Step 1 and the following reasons in Step 2. Since the diagonal entries of G are

nonnegative and the off-diagonal entries are negative, we can solve Ly= e, by forward substitution

without cancellation for each £=1,2,...,n. In fact, the solution v is always nonnegative for each
k=1,2,...,n Therefore we can solve Ux,=y by backward substitution without cancellation for

each £=1,2,...,n

4. AN ILLUSTRATION

To illustrate how our algorithm really works, we consider a substochastic matrix
1l 1
Q=14 4].
1 0

Then € can be enlarged to a stochastic matrix

O'—‘-Dslr-
O O
— O o=
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Let
3 _1
G=1—-@Q = 4 4 |.
-1 1
Then to find G ', we set s=0 and find the sum of entries in the right-hand side of the row of
(G, which is equal to —1/4. Then the pivot element G(1,1) is replaced by
gi—s = 1/2—(—1/4) = 3/4, which is equal to the sum of entries in the right-hand side of

the first row of P.

Now we evaluate the multiplier G(2,1)/G(1,1) in Gauss transformation, which is -4/3, and store
it in G(2,1). We also update g by gu—G(2,1)g,3 which is 0—(—4/3)(1/2) = 2/3.
Similarly, the pivot element G(2,2) is replaced by the sum of entries in the right-hand side of the

second row of P, which is equal to @gy3=2/3. Therefore we have actually found the

LU-decomposition of G from the algorithm FUNDM, which is stored in G as

G=( —34‘}3 -2}:44) '

In fact, since the returned matrix G from FUNDM is equal to L— I+ U, the unit lower

triangular matrix L and the upper triangular matrix U can be obtained by

(<isd) = (%" )

respectively. Consquently, by solving Ly=e, and Ux,=y for k=1,2, we are able to find

2 1/2
e |

2 3/2

5. NUMERICAL EXPERIMENTS

We compare the accuracy of our proposed algorithm to the GE, using test matrices, The IMSL
(International Mathematics and Statistical Library, 1987) is used for the GE procedure.

The element-wise comparison is done for the following two problems. The elements (?c ,:,‘) of

fundamental matrix are computed in double-precision arithmetic and they are compared with the
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true answers (x ;).

The absolute errors (lx ;— % ;1) and relative errors (|x 5— % 4l/\x 5) are computed, and their

maximum and average are compared. For each test problem, we present the maximum error
(MaxErr), the maximum relative error (MaxRe), the average of error (AveErr) and the average

relative error (AveRe) for both algorithms.

Test Matrix 1.

1.0—-107% 1077
Q= ,

1075 1.0-107*

10741077
0.99x10 -0 *

10 75 10 ~6J-

Table 1. The accuracy measures of the GE and the FUNDM for test matrix 1.

GE FUNDM
MaxErr 203 x 10°° 146 x 10~ 1
AveErr 807 x 10~¢ 367 x 10712
MaxRe 290 x 101 144 x 10716
AveRe 218 x 10”1 642 *10 7

Test Matrix 2,
0 0 10 75
Q={ 0 1.0-107% ¢ |,
10 °° 0 0

1.0+107° 0 1075/(1-10"19
(I-Q = 0 10° 0
10 3/(1-1071) ¢ 1.0+10 %0
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Table 2. The accuracy measures of the GE and the FUNDM for test matrix 2.

GE FUNDM
MaxErr 455 x 10719 148 x 107
AveErr 506 x 1078 162 x 1071
MaxRe 100 x 10”10 1.00 x 1071
AveRe 409 x 1071 400 x 1071

As shown in Table 1 and 2, the FUNDM algorithm produces 10-11 significant decimal digits while
the GE produces only 4-7 digits. Thus FUNDM algorithm provides higher

accuracy than the GE in the above two test matrices.

The following test problems are modified from the matrices considered in Heyman (1987). The

fundamental matrix is first computed in double-precision arithmetic, and the element of the matrix,

x ;. is regarded as the “true” value, because of the difficulty of finding the true value. Then X 5 Is

computed in single-precision arithmetic. Now the relative error is |x;— J?,;l/ l¢;|. This kind of

comparison by the relative error provides information on the stability of algorithms.

Test Matrix 3,

999999 1077 2x10 77 3x1077 4—7
0.1 0 0.1 0.1 0.1
Q=1{5x10"" 0 0 .555555 5x10 771,
51077 0 999999 0 5x1077
2x10 77 3x107" 1077 477 .999999

Table 3. The accuracy measures of the GE and the FUNDM for test matrix 3.

GE FUNDM
MaxErr 1.00 x 1071 593 x 102
AveErr 130 x 1072 427 x 1078
MaxRe 276 x 10”2 131 x 1077
AveRe 401 x 1073 528 x 10~%
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Test Matrix 4.

1,099 .3 .1.2.3.000 0 0 0 0]
2 .2.2.2.2 0 000 0
1 .2.2.4.10 0000
4 21210 0000
o=:2 2.2.2.2 0 000 0
001000 0 .09.2.2.4.1/
0 0000 .2 2.1.3.2
0 0000 .1 .3.2.2.1
0 0000 .2 .2.2.2.2
0 0000 .I .2.2.3.2

Table 4. The accuracy measures of the GE and the FUNDM for test matrix 4.

GE FUNDM
MaxErr 241 x 107} 173 x 1074
AveErr 532 x 1072 142 x 107°
MaxRe 218 x 107 209 x 1077
AveRe 164 x 1074 536 x 1078

As shown in Table 3 and 4, the FUNDM algorithm produces 2-4 significant decimal digits while
the GE produces only 1-2 digits. Thus the FUNDM algorithm provides higher accuracy than GE at
least in the above test matrices.

The computer program for FUNDM is available from the authors upon request,
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