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(Interrelationship of phase-error variance and correlation
coefficient in microwave imaging)
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Abstract

This paper presents the theoretical derivation relating an image correlation coefficient capable of
assessing image quality, with phase-error variance in antenna aperture domain. We show that when
the phase-error variance of a range bin selected as an adaptive beamformer is known, the quality
of the reconstructed image is predictable and moreover, the resultant correlation coefficient is
obviously greater than the derived lower bound. To support the derivation, real data are used for
image formation where the dominant scatterer algorithm (DSA) is applied for phase compensation.

I. Introduction

The radio camera is a high-resolution, two-
dimensional microwave imaging instrument in
which the distortion in its large aperture, which is
usually a large phased array, is self-corrected by

a process called adaptive beamforming (ABF) .
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Its success depends upon the known properties of
the reradiation from a target or scatterer having
(RCS) and small

physical size. The aforementioned self-correcting

large radar cross section
procedure is called the dominant scatterer al-
gorithm (DSA). The basic procedure for the DSA
assumes that there exists somewhere in the field
of view of the imaging system a point-like
scatterer or source having large radar cross

(21,031 A corner

section or source strength
reflector proves to be an excellent target for the
beamforming procedure. The theory governing

the requirements on its characteristics is given in
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4} It was shown that the physical size of the
source can be no larger than AR/2L, where A is

the wavelength, R is the radar-to-target dis—
tance, and L is the size of the imaging aperture;
and that its echo strength must exceed the total
backscatterer from all the other scatterers in its
range bin by at least 4 dB. Such a target or
source radiates a nearly spherical wavefront,
which induces a simple phase variation across the
array. Provided that the array is linear or planar,
the phase variation is linear if the target or the
source is in the far field, or approximately
quadratic when the source is in the near field.
Deviations from such simple behavior indicate
electrical

geometric distortion in the array,

mistunings, or wavefront distortion due to
turbulence in the propagation medium.

While the success of the radio camera greatly
depends upon the correct phase synchronization
achieved by the adaptive beamforming process,
phase distortions remaining even after the beam-
forming process are in fact unavoidable, resulting
in the image degradation. In case of DSA, the
proper choice of a beamforming bin has a great
effect on the quality of the output image. Hence,
some statistical properties of the measured
signals on the antenna aperture domain were
investigated to see whether it can be a valid
beamforming source. Target-to-clutter ratio is
one of the properties. It was shown that the
beamforming bins having the target-to-clutter
ratio greater than 2.5 can produce a satisfactory
image ' 51

In this paper, we investigate, as an another
property, the phase-error variance of the beam-
forming bin and derive the relation between the
phase-error variance and an image correlation
coefficient which was considered a useful esti—
mator of the image degradation tel

In section II, we present the theoretical
derivation. In section III, we review the procedure

of the image formation. The derived relation is

ZRE 5t

numerically proved with real experimental data in

section IV.

O. Lower Bound of Image
Correlation Coefficient

A complex radiation pattern for a discrete array
is given in detail by the diffraction relation '*7 .
Let g(x) be the complex radiation pattern steered
u, Wwhere wu,=sinf, with 68, describing the
angle from the array broadside to the field point.
Then, the radiation patterns m the absence and in

the presence of the random phase errors are

fl="L 3 A, ()

8, = il (u—u,
ﬁlAneJ&#e sheea(u—u,) (2)
=

z

&)=

where x, is the distance between the first array
element and the nth array element and k=2z/A
with wavelength A. A, is the signal amplitude
measured at the nth element and N denotes the
number of the array elements. 64, represents
phase errors across the distorted array. Since the
measured phases of each range bin are randomly
distributed over [ -, 7 ], we will consider 8¢,
as an independent and identically distributed
random variable with a Gaussian distribution
having zero mean and variance o¢f,. The source
distribution comprised of point targets can be

written as

S(u)=§5i8(u—ui) 3)

where S; is the complex weight of the ith target,
;= sinf; is its angular location with 6,
describing the angle from the array broadside to
the ith target, and I is the number of the targets.
Then, the estimated image sets can be written in
the absence and in the presence of the random

phase errors as

S0 = A= S, Ailu—u) @)

S = S0 (0 = 23S filu— 1) (5)
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where the asterisk denotes a convolution. and
f(w) and f;(w) are the radiation patterns which

do not include beam steering factors in g,(«) and
1
N gx

* The correlation coefficient o between

[61] as

g-(u), respectively. For example, f£(w)=
Ao

two images is given in

[5G0 S, ()]
(B 5ot dan [ 18008

6)

where | | denotes an absolute value and the

superscript “*' denotes a complex conjugate. By

171

using the Schwartz inequality '°, the expected

value of the integral in the numerator can be

written as

A [ 180 S Golaed = B [ S0 Sy ()
=B E 2587 [ A w)i e waull (@)

where the equality holds if and only if

S.(w) = CSy(w), with constant C. ffl(u—u,»)fz'(u—

updu is very small for »; # u, because the

radiation pattern without beam steering factor

»'"1" when the

the

will asymptotically become &«
aperture size is significantly large. Then,

integral can be written only for u;=u«; as
l * l °y *
ﬁlfl(u— u)fs (u— uj)du = fvlfl(u,)fz(u)du
_ 1 —i86, kv 1 ik )
=7 ’glrg‘\Aﬁﬂne e ffle du
3 Ale

— jhu(r— 7
where fe Ml gy = 8, and 48, , represents

—j8bm 8
mn

L
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the Kronecker-Delta equal to one for m=#x and

zero otherwise. Let's assume that all A, are
equal to one across the array. By substituting (8)

into (7), we get

E [ S0 S (=7 Zsi B Ee 11 (9)

B
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since 1S4?=S,$! is real. By using sinusoidal

— 70¢»,

functions to expand e , the expected value in

(9) can be written as

i1 = E| mﬁ:l cos(3¢m)“jnﬁ::l sin{8¢,,) |1

~ B (25 cos 88,1+ { 2 sin(66,01 ]

:E[\/ N+ §$C°5(6¢m_ 8,) 1

:H\/ N+ gi{l_smg(—m)”

=E[N\/1——1%2— gﬁsin‘-’(W)]

= EIN- o 33301 cos (86— 38,0} ]

RT3 LS SRS

=da+e ™+ta-e ™ (10)
where |2 3 Stin’(Haz Py ¢ 1 pre )
=e % with m=+n M>1, and cosé=1—2sin’

(¢/2). By (10 (9), the

expression for the numerator can be written as

substituting into

PN PR
Bl [ S S (dull=

L suspda+e Hrda-o ). ap

The expected value in the denominator is more

simply solved as
B[ 18100 Pl = £ [ 15,00 P

=B35S [ Alu~u) frlu—w)du). (12

Since [ fi(u=udfi(u=u)du is negligible for

u##u;, the integral in (12) can be written only for

u;=u, as
A= st Cu )y

ﬁ: ﬁ; )lmz.(rm-r,,)flle—/‘lm(rm-n)du

L _ 1
L3 = L)



Substitution of (13) into (12) with w;=u; gives

the solution for the denominator, ie.,

A Sl = B [ 1S0ra] = & Zisp. (14)

By using (6), (11), and (14), the theoretical lower
bound p, on the correlation coefficient in terms

of phase-error variance can be derived as

o

P2 tl+e M- =0, (15

2
(15) reveals that the lower bound of the image
correlation coefficient can be represented in terms
of the phase-error variance and the number of
array elements. Thereby, with a priori of the
phase-error variance in antenna aperture domain,
one can easily guess the resulting image quality.
Figure 1 depicts the lower bounds on the image
correlation coefficient according to the root mean
square (rms) phase errors and the number of
antenna elements. The numbers of the elements
used are 100 and 330. It shows that about 28 rms
phase errors guarantee the correlation coefficients
of 0.9. (15) also demonstrates that the smaller the

phase-error variance, the higher the correlation

coefficient.
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Fig. 1. Lower bound of image correlation coe-

fficients based on rms phase errors and
number of array elements.
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. Image Formation

To calculate the correlation coefficient, we need
to have the images reconstructed. In this section,
we briefly summarize the procedure of image

111 The procedure consists of mul-

formation
tiplication, followed by Fourier transform. The
electric field FE(x) measured at the antenna

element is

E(x)=F'[S(w)] (16)

where F~! denotes the inverse Fourier transform,
S(«) is the source distribution defined in (3) and
ku,
coordinate in the antenna aperture direction. Thus,
the

x, the Fourier variable for specifies a

if measured signals across array are
error-free, the image is simply reconstructed by
taking Fourler transform of the measured signals.
In reality, it is not the case and the antenna
weight vector w(x) is multiplied to the electric
field to compensate phase errors, which results in

the following current distribution

{(x) = w(x) E(x) = wlx)F [ S(2)]. 17

It is noted that the process to find w(x) is the
adaptive beamforming algorithm and in this work,
we choose the DSA. The reconstructed image

S(u) is obtained by taking the Fourier transform

of #x), ie,
Sy = Flw(x) E(x)] = Flu(x) F [ S()]1. (18)
IV. Experimental Results
The 83-m, 330-element quasi-linear array
operating at 96 GHz, having 3-m range

resolution and 2-m cross-range resolution and
producing 75 range bins, was used to image the
nuclear power plant in Limerick, PA, USA,
located 17.6 km from the array '''. A basic ABF
algorithm, called the DSA[S], was used for
self-calibrating the large distorted phased array.
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Beamforming bins having the normalized am-
plitude variance not larger than 0.12 have been
shown to yield satisfactory images when the DSA
]

. The

relative effectiveness of 2-D imaging over 1-D

is used for phase-cohering the array[5

imaging has been proved its usefulness to identify
targets In the field of view even though the 2-D
system requires more complicated signal pro-—
cessors 7.

A range bin 67 containing a specular-like
beamformer of the normalized amplitude variance
of 0.06 was selected for the ABF source. The
phase measurements in this bin were used to
compensate the phase errors of its own and the
rest 74 bins. The corresponding image of the
Limerick nuclear power plant is shown in Figure
2(a), which is used as the reference image S, to
calculate the correlation coefficient in (6). As the
next beamforming bin, we take bin 29 having the
amplitude variance of 0.07 which is a quite
satisfactory beamformer since the variance is
smaller than 0.12. Following the previous steps,
we obtain another image S, as shown in Figure
2(b). By comparing the two images shown in
Figure 2, one can easily expect the higher value
of the correlation coefficient. The correlation
coefficient between the images is 0.980. For the
remaining 73 bins, by consecutively selecting
range bins as a test beamformer, we obtain 73
images corresponding to each bin and calculate
the correlation coefficients with respect to the
reference image $,. The image correlation coe-
fficients of 0.9 or higher are shown in Figure 3
and also listed in Table 1. There are 12 range
bins which produce the coefficients of 0.9 or
higher. Figure 3 shows that the measured
coefficients are all greater than the lower bound
of the image correlation and the range bins
having rms phase errors on the order of 30
degrees or less always guarantee the image

correlation coefficients of 0.9 or higher.
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(a) Image obtained using range bin of the
amplitude variance of 0.06. (b) Image
obtained using range bin of the amplitude
variance of 0.07.

Fig. 2.
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V. Conclusions

We derived the theoretical relation between the
phase-error variance and the image correlation
the of

degradation. The resultant relation was supported

coefficient  indicating degree image
via implementing the image formation with real
data where DSA was used as adaptive beam-—
forming algorithm. It is expected that the relation

can help select a suitable beamforming bin and
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predict the corresponding output image even
before the complicated image formation procedure.
The authors wish to thank Dr. Steinberg of the
University of Pennsylvania, USA, for providing

the data for completion of this work.
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Table 1. Measured image correlation coe-

fficients.
R;ngursb}:rm 35 0= 0900

7 2182 0937
8 245 0977
10 70.68 0.930
11 70.61 0931
28 2981 0943
29 1832 0.980
31 27.60 0934
32 2398 0935
51 3215 0925
3 259 0.961
6 31.60 0.944
66 76.39 0912

05 - the rms phase errors in degrees.

o the image correlation coefficient.
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