Journal of the Korean Institute of Telematics and Electronics C (전자공학회논문지C)
- Volume 34C Issue 1
- /
- Pages.59-64
- /
- 1997
- /
- 1226-5853(pISSN)
Nonlinear shape resotration based on selective learning SOFM approach
선택적 SOFM 학습법을 사용한 비선형 형상왜곡 영상의 복원
Abstract
By using a selective learnable self-organizing feature map(SOFM) a more practical and generalized mehtod is proposed in which the effective nonlinear shape restoration is possible regardless of the existence of the distortion modelss. Nonlinear mapping relation is extracted from the distorted imate by using the proposed selective learning SOFGM which has the special property of effectively creating spatially organized internal representations and nonlinear relations of various input signals. For the exact extraction of the mapping relations between the distorted image and the original one, we define a disparity index as a proximal nmeasure of the present state to the final idealy trained state of the SOFM, and we used this index to adjust the training of the mapping relations form the weights of the SOFM. Simulations are conducted on various kinds of distorted images with or without distortion models, and the results show that the proposed method is very efficeint very efficient and practical in nonlinear shape restorations.
Keywords