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ABSTRACT

Performance of an algorithm can be measured from several aspects. Suppose there is a query formulation al-
gorithm. Even though this algorithm shows high retrieval performance, i., high recall and precision, retrieving
items can take a long time. In this study, we analyze the time complexity of automatic query reformulation
algorithms, named the Query Tree, DNF method, and Dillon's method, and compare them in theorctical and
practical aspects usirig a real-time performance(the absolute times for each algorithm to formulate a query) in a
Sun SparcStation 2. In experiments using three test scts, CACM, CISI, and Medlars, the Query Trec algorithm

Time Complexity Analysis of Boolean Query Formulation Algorithms

was the fastest among the three algorithms tested.

1. Introduction

With the proliferation of computers, it becomes ea-
sier to produce and access information than ever be-
fore, In addition, the technology of digital network
enables us to connect computers in remote areas and
to retrieve a large amount and variety of information
on-line regardless of their location. A major problem
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is that it gets harder to find right information as we
have more information available. For example, infor-
mation on the Internet which connects the millions of
computers and grows everyday is so overloaded that
@ user i general has a difficult time to find infor-
mation he desires. On the Internet there are special
types of computers, which guide a user and search for
requested information. These computer scrvers are
Internet search engines that allow a user either to go
through a menu system(categorized by subjects) or to
formulate a query. Good examples of such systems
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are the Yahoo, InfoSeek, Lycos, and Altavista. These
sysiems are a special lype of Information Retrieval
(IR) Systems.

The most fundamental IR model is the Boolean re-
trieval model and most of commercial IR systems are
based on Boolean query formulation. The Boolean
query is a list of keywords connected by the Boolean
operators(AND, OR, and NOT), and the search is
based on exact matching. Information is generally
stored in inverted files. The advantages of this model
are simple structure, easy implementation, and fast re-
trieval. Ils inverted file structure allows set operations
to be carried out easily. From this on, our main focus
in this paper is a Boolean-based IR system.

A main purpose of information retrieval systems is
to deliver user-requested information quickly, accu-
rately, and easily. Current IR systems are often critici-
zed for delivering only a portion of what is requested
along with nonrelevant information. Improvements in
retrieval performance(i.e., ability to retrieve only the
relevant information) can be achieved from more ef-
fective query formulation. The quality of a cquery fed
to an IR system has a direct impact on the success of
the search outcomes, i.e.; garbage in garbage out. In
fact one of the most important but frustrating tasks
in information retrieval is query formulation. Most
IR system users, especially novices, experience some
degree of difficulty in transforming their information
needs into the required query language(e.g., Boolean
expression) of an IR system. In addition, there is very
little help provided by current IR systems. Users us-
vally employ a trial-and-error search and often have
to rely on an intermediary(e.g., librarian) in searching
for right information. As more computers and net-
works become available, experts would be less likely
to be present in every site and expensive to employ.
There is a definite need for an IR system which can-

_mnot only help users formulate an effective query but
) also increase retrieval performance.
In the research of Kim, Brown and French[5, 6], a

"Boolean query formulation algorithm(called query tree)

which automates query formulation from the user’s
relevance feedback(i.e., a set of information that a
user assigns if it is relevant to his search or not) is de-
veloped. The performance of an IR system can be
measured in large from two different perspectives, i.e.,
effectiveness and efficiency [13]. In short, the effec-
tiveness measures the quality of the retrieved infor-
mation, (e.g., among retrieved items, how many of
them are relevant?) On the other hand, the efficiency
concerns with issues such as accessibility of IR sys-
tems, ease of use, cost of retrieval, and response time.
Even though an IR system achieves high effectiveness,
the system can’t be regarded as good unless its re-
sponse time s folerable to a user.

In this study, based on the research of Kim [5], the
efficiency of query iree and other query formulation
algorithms developed by Saltor, et. al. [14] (named
DNF method) and by Dillon, et. al. [3, 4] (named
Dillon’s method) is compared and analyzed from the
point of query formulation time, i.e., time taken to
formulate a Boolean query. (Analyses of retrieval ef-
fectiveness for these algorithms are presented in
article [6]). The next section describes how analysis of

algorithm’s efficiency is performed.

2. Methods of Time Complexity Analysis

In producing a complete complexity analysis of the
query formulation time of an algorithm, two phases
are necessary:a priori analysis and a posteriori test-
ing. In a priori analysis a function is obtained, which
bounds the algorithm’s computing time(the frequency
of execution of the statements in the algorithm). On
the other hand, in a posteriori testing actual statistics
about the algorithm’s consumption of time is col-
lected while it is executing [2]. In our priori analysis
we use the asymptotic notation called O-notation(e.g.,
0O(n), @ (n), etc., for definition, see [2]), which are cus-
tomary in the analysis of time complexity. For ex-

ample, O(x) is defined as



J)=0(g(n) if and only if there exist two positive
constants ¢ and »,
such that | f(m)| <clg@®)| forall n=n,

Two cases, the best and worst cases of an algorithm
are considered in our priori analysis. The best-case pri-
ori analysis considers the shortest time which an al-
gorithm can take while the worst-case computes the
longest time. For a posteriori testing, actual query
formulation time of an algorithm is collected using
SparcStation 2. From three test scts, CACM, CISI,
Medlars, an average query formulation time of each
algorithm is computed by keeping the total time and
dividing it by the total number of queries in a test set.
The results of these analyses including a brief descrip-
tion of algorithms’ effectiveness, recall and precision
are discussed in the final section.

The following section describes how the query tree
-algorithm works and what its query formulation pro-
cedure is, including a priori analysis of its query for-
mulation time. Section 3 and 4 explain DNF and
Dillon’s methods, respectively, along with their priori
analyses. The last section summarizes the results of
priori analysis and prsteriori testing, and reports ex-
perimental results run on three benchmark test sets
(CACM, CISI, and Medlars).

3. Query Tree

Query formulation in information retrieval is in
fact a classification problem. That is, a Boolean query
is a classifier which classifies information in a data-
base into two classes, i.e., relevant and nonrelevant
information. The retrieved information belongs to the
relevant class and the rest to the nonrelevant. Based
on the CART(Classification and Regression Tree [1]),
which is a tree-structured classification algorithm, a
tree classifier, named query tree capable of assigning in-
formation to either relevant or nonrelevant categories
was developed in [5, 6]. To complete a query tree, two
xriai'ﬂ“phases need to be processed: query tree growing

{lmnalization)
11 LeR={d{deD;} (*D;=initial input doc. and R = root node )
N_stack = Push(R) (" Push the root node into the stack N stack. *)
12 7 =({sl4=landreD;} (*collect term t assigned in D), *)
({ree Growmg)
WHILE (V_stack * &) DO
21 C_mode  Top(N_stack)
22 ™Y (C_nadey= min, [Pr(i | C_nade))
where Pr(# | x)] is the proportion of data belonging 10 class 7 at node x.
23 IF (¥ (C_node) <& ) and (C_node » root node)
THEN
23.1 TFPr{i| C_nade)> Pr(j | C_nadr)
THEN C node=classs (*Set C node as terminal nods
ELSE C node=classj  and assign 2 class to C_nocde)
ELSE
232 1= minMAC _nade, i) adieT;
233 Create the left and right child nodes for C_rode and
FOR eachd & C_nade
IF #* is presentin d
THEN assign d to the Jeft child node
ELSE assign ' to the right child node.
END OF FOR
234 Pul these child nodes in N stack,
END OF-IF
END OF WHILE

(Fig. 1) Procedure for the query tree growing

and query tree pruning. Then, from a pruned query
tree a Boolean query is generated to be finally sub-
mitted to the system.

A brief pseudo algorithm for query tree growing is
listed in (Fig. 1). Since the main interest of this study
is in time complexity analysis and comparisons of the
different query formulation algorithms, description of
the query tree algorithm will be short here. In ad-
dition, the query tree pruning procedure is omitted in
this paper because the performance of a query tree
with pruning didn’t show any improved performance
(i.e., recall and precision) compared to that of the one
without pruning. For interested readers, please refer
to [5, 6].

The main idea of the query tree growing is to ident-
ify and capture characteristics of the input data and
to group them into a same class(e.g,, what makes this
input data belong to a certain class?). Growing a qu-
ery tree consists of the three operations[1]:(1) deter-
mination of terminal nodes(2.3 in Fig. 1), (2) selection
of splitting criteria for nonterminal nodes(2.3.3 in Fig.
1), and (3) ei;sigmnent of the terminal nodes to a class
(23.1in Fig. 1). - ' o
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In the initialization phase, the input documents (D,)*
are prepared and the root node is pushed into the N_
stack (Step 1.1). Then, the index terms assigned in the
input documenis are saved in T (Step 1.2). A node is
popped from the N_stack (Step 2.1) and its impurity
level (¥) is computed (Step 2.2). If the current node
of the ¥ is under the threshold value, § and not a
root node, the class of that node is determined in
Step 2.3.1; otherwise, go to Step 2.3.2 and find an in-
dex term £* which provides the lowest misclassificat-

ion cost, M, where

M,(t, x)=a - Nr/n(t, x) +(l _'d) - Nn/r(ta x)

Nix)

where a= m

(Fig. 2) An example of query tree

NA{x) and Nu(x) be a number of relevant and nonrele-
vant documents at node x, respectively, and Nyu(f, x)
and No{f, x) be the number of documents assighed
as relevant given that they are nonrelevant, and the
number of documents assigned as nonrelevant given
that they are relevant at the node x by the term £, re-
spectively. In Step 2.3.3, the right and left child nodes
of the current node are created and the documents
assigned to the current node are distributed to the
child nodes according to the presence of the term I*.

(Query Generation)
1. FOR. {each node x in query tree) DO
IF ( xe Xr.) THEN
Set C nedesy
WHILE ((_node # root node) DO
Collect 2 term £ in pareai(C_nade)
IF t = 1 THEN collect it in And_Term
IF ¢ — 0 THEN collect ‘nof + 1 in And_Term
Set C_node = parent{C_node)
END (WHILE)
Connext 1erms in And_Term with 'and and store it in Or_Clause
END (TF)
END OF FOR
2. Fonmulate & query in DNF by connecting clauses in Or Clause with ‘o'
operator.

(Fig- 3) Query generation from a query tree

Finally the created child nodes are pushed to the N_
stack. Steps from 2.1 to 2.3.4 are iterated until the N_
stack is empty. An example of the query tree con-
structed is illustrated in (Fig. 2). The alphabets {e.g.,
a, b, ¢, ete.) in (Fig. 2) represent £* at each node.
After the query tree is completed, the documents In
the database D can be classified by sending them thr-
ough the root node and see where they end. Examin-
ing every document in the database would be very in-
efficient, especially for a large database. The query
tree can be easily transformed into a Boolean query
in disjunctive normal form (DNF). Call a query gen-
erated from the query iree the tree-derived query. The
transformation procedure is described in (Fig. 3).
First, collect the T-nodes (i.e., terminal nodes) classi-
fied as relevant and denote them as Xr,. For every x
in X7, starting from the node x, read and collect its
parents’ splifting index terms recursively up the root
node ;connect each term in the collected set with the
Boolean operator and. If the term is equal to zero,
add the Boolean operator not in front of the term.
After finishing this proc;:ss with every relevant ter-
minal nodes, connect the anded clauses (ie., conjun-
cts) with the Boolean operator or. The Boolean query
generation procedure is described in (Fig. 2), If a
Boolean query is generated using (Fig. 2), it would be

T For experimental purpose, the input documents were sslected randomly from the database D,



{b AND a) OR (d AND (NOT b) AND a) OR (C AND {NOT a)).

3.1 Priori Analysis of the Query Tree

In our priori analysis, the best-case and worst-case
for the query tree algorithm were investigated and we
arc only interested in a single query formulation, not
including the retrieval of documents from the data-
base. As described in the previous section, query for-
mulation in the query tree algorithm consists of three
procedures : tree growing, tree pruning?, and tree trans-
formation to a query in DNF.

Let D; be a set of input documents from the data-
base D and T be a set of index tenms assigned to the
documents in the database D. Define T as a set of in-

dex terms (T =T) such as
Ti=@1A, d)=1 for YIET and VIED)

where A(t, d) is equal to 1 if index term t is assigned
to the document 2, otherwise 0. Assume that, |T;|=
k, | Ti=m |D/l=n,and (D|=E.

The best-case (denoted by Tereu(query tree)) for the
algorithm occurs when there is a term £* in 7y which
assigns all the relevant documents at the root node to
its left child node and the nonrelevant to its right
child node. First, at the initialization procedure, Step
1.1 (in Fig. 1) takes # steps for assigning input docu-
ments to the root node and 1 step for putting the root
node into a stack;Step 1.2 takes »-#z steps to collect
the index terms assigned to the input documents;the
while loop takes 1 step to check if the stack is empty:
Step 2.1 takes 1 step to pop a node from the stack
and Step 2.2 takes 2(z +1) steps since the number of
the classes is 2 and n +1 steps to compute a prob-
ability;Step 2.3 takes 2 step;since the node is the
root node the process moves to the Step 2.3.2 and it
takes 4n +6 steps to compute the misclassification
cost and % steps to find £*, thus, total (4n +-6) &; Step
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2.3.3 takes 27 step to assign input documents to the
child nodes;Phase 2.3.4 takes 2 steps to put them in
the stack. Returning to the while statement, Steps 2.1,
2.2, and 2.3 are executed and with zero impurity level,
the process moves to Step 2.3.1 which takes 2 steps.
The same process goes to the rest child node. With an
empty stack (it takes 1 step to check the stack’s st-
atus), the algorithm stops. Thus, the total number of
executed statements (Tiow) is

Tio{growing)==z +1 +n-m+{1 +1 +21n +2)
+an +6)k+2n +2 +2 +1
=nlm-+4k +5) +6k +10

Without loss of generality, we may assume &<

Twalgrowing) < n(m +4m +5) +6m +10

Finally the tree-driven query will consist of a single
term, and take a single execution time to transform a
tree query into DNF. Therefore,

for some constant ¢, .

Tioa{query tree) < c;-n-m

Hence,

Toes(query tree) = O(m-n).

The worst-case (denoted by Tyendquery tres)) is more
complicated than the best-case. The worstcase will
occur when the tree is grown to a full size, i.e., every
terminal node contfains a single document. With »
number of input documents, there will be % number
of terminal nodes and #—1 number of nonterminal
nodes. Since every nonterminal node is split, this
implies that there will be 2 —1 node splits during the
tree growing procedure. The total execution time is (n

2 As described, the tree pruning procedure is not implemented in this research, and the time -
comiplexity analysis of the algorithm is analyzed without the tree pruning procedure.
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—1) multiplied by the execution time taken during
Step 2.1 through 2.3.4 in (Fig. 3-6). That is,

Tiowlgrowing) = (n—1)(1 +1 +2n +2 +H4n +6)- k +21+5))
=(n—1)4n +4n-k +6k +9)
<¢emen®  for some constant ¢
In the query tree, there are » number of terminal
nodes and #—1 nonterminal nodes. For the nonter-
minal nodes, they do not satisfy the condition of the
IF statement in (Fig. 3) that the process returns to the
FOR loop without any computation. On the other
hand, the terminal nodes runs at most » WHILE
loops. Therefore, the total execution time for the tree
transformation procedure in (Fig. 3) is bounded by

Tiow(transforming) < ¢;-#° for some constant ¢;
Hence,
Tuor{query tree) =co-m-2% +c3-m-n? < ¢3-7>

Assuming that # <€ m (the number of input documents
is much less than that of index terms in the database),

Tuwors{query tree) = O(m-n>)
4. DNF Method

Salton and his colleagues[12, 14} developed an auto-
matic Boolean query reformmlation technique called
the disjunctive normal form(DNF) method. A disting-
uishing feature in this algorithm is that the user can
specify the number of documents he wants to retrieve.
A summarized procedure of the DNF algorithm is
shown in (Fig. 4). The procedure is for a single query
formulation and can be extended by returning a sub-
set of the retrieved documents with its relevance.

The DNF algorithm computes the term importance
of index terms in the set T (previously defined) using

" a Tunction called relevance weight (rel_wr), which is

Q. Prepare input documents D, and collect
T ={tlr=1andrel))
1. FOR (each fin 1)
Campute relevance weight, rel_wi(r)
END OF FOR
2. Select the best 70 terms by rel_wr and keep them in Heap 1
along with their freq.
3. FOR. 7 =1 10 %C; (evary possible combination of 1y, f; inHeaqp 1)
Compune rel we_double(r,, 1) and freq_double(t,, )
END OF FOR
4, Sclect pairs by rel_wi_double and keep the best 70 pairs in
Heap 2 with their freq_double(t;, ;).
5 FORi=11070
FOR;=11070
compute  freq_triple(ts, fp, t). and rel_wi_triple(t, t, t5).
END OF FOR
END OF FOR
6. Select triples by rel_wt_triple and keep the best 70 triples in Heap 3
with their freq_triple.
7. Ses an initial query, g, 25 disjuncts of terms in Heap | and estimate
the size of reyricval with query ¢ (called estref(g).
8. WHILE (estrer(q) > U _num) DO
8.1 Adjust the number of dlauses in ¢ using terms in Heap 1,2, and 3,
8.2 Update eatres with the adjusted g.
END) (WHILE)

(Fig. 4) Summarized procedure for the DNF method

defined as

rel_wi(®)=[rel(t) /(R +gcount) — (freq(t)/ N)]
X In [N/(freq®) +10)] (E-1)

where rel(f) is the number of relevant documents
containing the term £ in Dy,
R is the total number of relevant docu-
ments D;;
gcourt is a controllable parameter which ad-
justs the occurrence characteristics of
the query terms;
Jreg(t) is the frequency of the term £ in D ;f
N is the total number of documents.
(Note:the definition of rel_wr is a simple version de-
fined on [14]. But it has no effects on overall time com-
plexity lanalysis.) The first part of the equation repre-
sents the proportion of relevant documents, in which
term { occurs minus the proportion of all documents
in the collection in which the term occurs. The right-
hand side of the expression is an inverse document
factor which implies the less term frequency in the
database, the higher the term importance is.
There are two more functions similarly defined for

term pairs and triples. The funclion rel_wt _double(t,,




t;) is the term importance for both term # and f,
together (e, &y and £);rel_wi_triple(t,, 1, 1) is de-
fined similarly defined for #; and 3 and #:. These fun-
ctions are defined same as (E-1) except that rel(f) and
Jreg(t) are replaced by rel_double(t,, t;) and Jfreq_do-
uble(t,, t,) for rel_wi_double and by rel_triple(t, t,,
t:), and freq_triple(t), ty, t3) for rel_wt_triple(t,, t,,
t3). The function 7(#, ;) is the number of relevant
documents retrieved with the terms # and % (e, £
and 1), and freq_double(t,, t,) is the expected number
of documents retrieved by using both terms #, and £»
under the assumption of term independence. The
triple functions rel_triple(t,, ¢2, #3), and freq_triple(t,,
1y, t3) are similarly defined.

Step 0 (Fig. 4) prepares the input and collect index
terms assigned in the input documents. In Step 1 and
2, the best 70 terms are selected from T by rel_wr
and their frequencies (computed by fregs) are stored
in Heap 1. Pairs and triples are collected from Heap 1
and kept in Heap 2 and Heap 3, respectively (Step 3
thru 6). An initial Booledn query g, is formulated by
connecting terms in Heap | with the operator or (i.e.,
1y or §, or 3 or ... or In). The expected retrieval size
by query g, (denoted as estret(g)) is estimated using
Jreg, that is,

estret(qo) = freq(t)) +freq(ts) +... +freq(tov).

In Step 8, estret is compared with the predefined U/_
num (i.e., the user specified desired number of docu-
ments). If estret(g,)> U _num (it will be always the case
with a broad initial query), the term with the lowest
rel_wit(t) in g, will be dropped or substituted by the
pairs and triples in Heaqp 2 and Heap 3. Then another
estret is estimated for the updated query. This iter-
ation continues until (estret<U _num) is satisfied. The
Salton’s algorithm presented here is a summarization.
For detailed descriptions, refer to [14].

The distinguishing feature of the DNF method is
the capability of controlling the number of documents
retrieved. Once the user specifies the desired number

of documents (i_mum in Fig. 4), the algorithm can
adjust the number of terms in the query to collect the
right size. It is a desirable feature, since it is hard to
control the number of document retrieved by a

Boolean query.

4.1 Prioti Analysis of the DNF method

The best case of the Salton’s method occurs when
the WHILE loop in Step 9 of (Fig. 4) is not executed,
i.e., when the estret(g) is under the threshold value of
U_num. In Step 0, the input preparation takes same as
the query tree case. That is # +#n steps. In Step 1, it
takes (31 +8) % steps to compute relevance weight for
each index term in 7. In Step 2, it lakes & steps lo
select the single best term. Since we need to find the
70 best terms, the total number of steps is 70k. To
find freq for each 70 term, the total number of steps
is 70k (k is the total number of documents in the da-
tabase);In Step 3 it takes %C; steps to prepare every
possible pair terms and (3z +8) steps to compute each
rel_wt _double. For freq_double computations, it requ-
ires 2(70) steps. Therefore, the total is 0Ca (32 48) +
2(70) steps. As for the case in Step 2, Step 4 takes
(70) 7C; steps to collect the best 70 pairs. In Step 5,
it takes (70)(70) steps to prepare triple terms from
Heap 1 and Heap 2 and (3z +8) steps to compute
each rel_wt_triple. For the freq_triple computations,
it requires 3(70) steps;thus, the total number of steps
is (70) (3, +8) +3(70);In Step 6, there are (70)*
number of triples and to select the best 70 triples, it
takes (70) steps:Step 7 takes 1 step to estimate the
size of the retrieved documents. As described above,
Step 8 is skipped for the best case. Thus, the total
number of executed statements (Tioap) is

Tiou(DNF method) =7 +n-m+Q3n +8) k +70k +70k
+2Ca3n +8) +2(70) +(70)%C,
+(70)* (3n +8) +3(70) +(70)° +1

=n+n-m-+3n+8) &k 470k +70h
+1Ca(37) +(70)* (3m)
+large constant
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Without loss of generality, we may assume 2<#2. From
the analysis of the test sets (i.e., CACM, CISI, and
Medlars), it revealed that the number of documents is
less than the number of index terms in the database.
Therefore, it is assumed that < m.

Tioul(DNF method) = n +2-m +(37 +8) m +70m
+70m +20C2 (372) +(70)* (37) +large constant

For some constant ¢s,

Tioa{DNF method) < ¢s7-m
Toea(DNF method) = O(zz-91).

For the worst case (i.e., When Step 8 is executed), it is
more difficult to count the number of times the state-
menls in the WHILE loop are executed because the
threshold value, U _rum is dependent on the user. The
worst case happens when the final query consists of
all the triple terms. It would take % steps to find the
lowest rel_wt and 70k steps to replace all the singles
to pair terms. With the same method, it would take an-
other 70k steps to replace all the pairs to the triples.
Therefore, The worst case of the Salton’s method is

Teors{DNF method) = O(22-m1) +70k +70%
=0(z-m)

5. Dillon’s Method

Another automatic technique for query reformulat-
ion (call it Dillon’s method) was developed by Dillon
and his colleagues[3, 4]. Its procedure is very similar
to the DNF method in that it also has the function
similar to rel_wi. The differences are the ways which
the terms are selected to formulate a query in disjunc-
tive normal form. A summarized procedure is de-
scribed in (Fig. 5).

While in the DNF method the numbers of singles,
pairs, and triples of terms in a Boolean query are con-

~ irolled by the user’s requested number of documents

0. Preparc input documents D;  and collect
I =yl¢=landre Dy}
1. Set floors for single (floor/) and pairs (floor2),
2. FOR {eachzin 7))
Compute prev(r).
END OF FOR
3. FOR (eachtin 75)
Normalize prev(r}
END OF FOR
4. FOR (each 7in 7;) DO
411 (prev(s) > floori) then keep 1 in Heap 1.
421F (floor] < prev(r) < floor2) then keep Temp_Heap
END OF FOR.
5. Ketp every possble pairs in Heap 2 using terms in Temp Heap
&. Formulzie 2 query in DNF with singles and pairs in Heap 1 and Heap 2,

(Fig. 5) The summarized procedure for the dillon’s method

(U _num), Dillon’s method has instead pre-determined
settings, called floors. The floor settings divide the sear-
ch terms into groups and each group is determined to
form a single, double or triple. As described in the
Salton’s algorithm, Step 0 prepares the inputs and
collects their index terms. In Step 1, two floors are set
floorl and floor2. In Step 2, the function called pre-
valence (prev) which measures the term importance is
then computed for each term in the input documents.
The function prev is based on two other measures:
positive prevalence (pos_prev) and negative prevalence
(neg_prev). They are defined as

pos_prev(t)=(# of relevant documents term t appears in)
[(total # of documents judged as relevant)

neg_prev(t) = (# of nonrelevant documents term t appears in)
[(total # of documents judged as nonrelevant)

prevty=pos_prev(B)-neg_prev(®)flog (freq(t)).

where freq(?) is the frequency of occurrence of £ in the
database. In Step 3, the function prev(t) for each term
¢ is normalized by subtracting it from the mean and
dividing it by the standard deviation (for details, see
[4, 5D. The search terms are divided into two groups
by the floor settings initialized in Step 1:the terms
with greater than floor! (call it Group 1) and those
between floorl and floor2 (call it Group 2). If there
are more than 50 terms in Groupl, only the 50 best
terms are kept in Heap 1 (Step 4.1). For the terms



falling into Group 2 are then paired by the Boolean
operator “and” in every possible combination and kept
in Heap 2. The final query is formed by connecting
the terms in Heap 1 and Heap 2 with the Boolean op-
erator “or”.

The major disadvantage of Dillon’s method is its
determination of the floor settings. There is no known
procedure for determining the best cutting point for
grouping single and double.

5.1 Priori Analysis of the Dillon"s Method

The Dillon’s method is rather straight forward than
the query tree and the DNF method. In the query
tree and the DNF case, there are two cases:the best
and worst. In the Dillon’s method, the steps in the al-
gorithm are not dependent on the input documents
that both of the cases are the same and a single time
complexity is analyzed. In Step 0 (imitialization), it
takes # steps to prepare D; and m-# step to collect 7.
To compute prev(t) in Step 2, the steps required is %
{4n +5). The normalization of Step 3 takes (& +1)
steps to compute the average and 2% steps for the com-
putation of its standard deviation.-To assign térms in
the proper groups, Step 4 takes % steps; In Step 5, to
keep every possible pairs in Heap 2, it takes maxi-
mum 5C; steps. Finally, it takes 1 step {o formulate a
Boolean in Step 6. . )

Thus, the total number of executed statements
(Ttoul) is

Tow(Dillon’s method) =% +»n-m +Edn +5) +(& -+1)
+2& +k +5C; +1
=n+m-n +4k-n +9%k +5C; +2
Without loss of gnerality, we may assume k<.
Tww(Dillon’s method) <7 +m-n +4m-n +9m +5C, +2

For some constant ¢,

Tia(Dillon’s method) < ¢s-m-n

Toest(Dillon’s method) = Q(z2-m).
6. Posteriori Testing and Conclusions

To investigate a real-time performance of an algor-
ithm, the absolute times for each algorithm to formu-
late queries were measured in a Sun SparcStation 2
(with 64 MBytes of main memory and a 64 KBytes of
cache), and the results are listed in (Table 1). Only
the query formulation times (.c., no document re-
trieval) were measured in seconds using the three test
sets, CACM, CISI, and Medlars. In these experi-
ments, the number of input documents are 3 relevant

and 2 nonrelevant documents.

{Table 1) Average query formulation time in seconds (the
numbers in parentheses represents the number
of queries used in a test set)

Input documents: 3 relevant and 2 nonrelevant.
CACM (1) CISI(73) Medlars 30) Awerage

DNF method 0.95 0.83 1.10 0.96
Dillon’s method 046 0.44 0.57 049
Query Tres 04 0B 027 - 035

As seen in (Table 1), every algorithm took more or
less than 1 second in average to formulate a query.
Without the query tree pruning procedure, the query
tree algorithm takes much less time than the other
methods do. The query tree is almost as four times
faster than the DNF method and twice faster than
the Dillon’s method. The speed of the algorithms is in
order of the query tree, the Dillon’s method, and the
DNF method.

A priori analysis summary of the three algorithms
is listed in {Table 2). By just looking at the theoreti-
cal analysis, we may assume that the best case of the
three algorithms are the same, and for the worst case,
the query tree is the lowest. One of the pitfalls in
theoretical analysis (i.e., priori analysis) is that it gives
little weight to the constants. In the DNF case, there
was a very large number of constant (i.e., 2(70) +#Cs
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70 +(70)* (3 +8) +3(70) +(70)* +1), but it is repl-
aced by some large constant ¢s. Although the con-
stant ¢¢ in the Dillon’s case is smaller than that of the
DNF case, the situation is very similar. The real-time
analysis in {Table 1) shows this situation very clearly.
The number of input documents (i.e., 77) is in general
a small number. In these experiments, 5 documents
are used ; therefore, the best and worst cases of the

query tree may be assumed to be the same.

{Table 2> Posteriori analysis of the three algorithms (#:
the number of input documents ;m: the num-
ber of index terms in the database)

Query Tree  DNF Method  Dillon’s Method
Bestcase  Q(m-n) O(m-n) Ol 1)
Worst-case  O(m-n?) Onn) Olm-n)

In conclusion, the posterioni testing revealed that
the query tree is faster than any other algorthms while
there 1s not much difference among algorithms in the
priori analysis. A lesson to be learned here is that a
theoretical analysis (i.¢., the prioﬁ analysis) alone is a
dangerous approach to analyze the performance of
algorithms and a real-time analysis should accompany
a theoretical analysis. In this paper we have discussed
the query formulation time of an algorithm which is a
part of an algorithm’s efficiency. Another important
aspect of an IR system’s performance is retrieval ef-
fectiveness, which is usually measured by recall and
precision. Since it is difficulf to compare overall sys-
tem’s effectiveness using recall and precision because
of an inverse relationship between them [13], E-mea-
sure [15], which is a composite measure of recall and
precision was computed in these experiments. The
best performance was also achieved by the query tree
followed by DNF and Dillon’s methods (for detailed
analysis, please see [5, 6]). From our research, it is
concluded that the performance (both efficiency and

effectiveness) of query tree is superior than those of

" * ~DNF and Dillon’s methods.
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