|

2

E o] AxHE Alzglo] Bt

Tlo

NBHL 01 LTEA0 WA AL BB 247 97

:?L

off

b

o}

2ZEH o] A 7L 124 2L Adsted AHE g P And A4e Oe Jad)
ol A SFes AL T4 5 AL FARFE 44 ¢ ¢ Ak B @AM CcR CHE AR

B 9N Z=E g Foz GFTHE o fdte] A rted FEE REHL O X

& A R A, fdd

A48 4 Y& AAHE A2 CSORUS(C and C ++ SOurce ReUse System)® 4 % 7-Astsiry. & 2ohe

olg el ANE FES FEY A AT BoplA A8 PR L AE DL

AAE R ¥ F|2E A

AR ¥ EH AERS A28 M99 FARFE 44 8 F Avke A3l gl

A Study on Software Reuse System Using Reverse Engineering

Eun Man Choi'

ABSTRACT

Software reuse techniques make reapplication of various well-organized information and knowledge to system
development so that improve productivity and make it casy to maintain software. This paper describes the design
and implementation of CSORUS(C and C -+ SOurce ReUse System) which can extract reuse components using
reverse engineering, and store, retrieve, merge them written with C or C 4+t programming language. The con-
struction of remse components usipg reverse engineering has advantage in software quality assurance because
they are reliable components already tested in real environments.

1. Introduction

The technical advances of the decades allowed for
the development of larger and more complex software
systems that was possible in the past. Application

needs software advances. Software advances foster de- -

mand for more software. However, software supply is
not satisfying explosively increasing demand for soft-
ware. There have been many technical and mana-

138 459 AFe T8+
19969 14 259, HA SR 19969 99 17¢Y

gerial attempts to improve software productivity. For
instance, standards for software components, CASE,
version control technique, reverse engineering, soft-
ware reuse, efc. Object-oriented paradigm has estab-
lished the foundation of software reuse and has ac-
celerated the application of software reuse techniques.

Software reuse is a technology that reapplies infor-
mation and knowledge such as design, design com-
ponents, source code, documents in already dével_oped
systems to a new application in same domain[l]. The
reuse of proved software components makes new sys-

tems reliable and amplifies programmer’s productiv-

98 StRFEACIRE =2 K43 M1 =(97.1)

ity. It results in less time spent on analysis and design
phase and in less efforts in maintenance. Reuse im-
proves the software quality from developing software
based on well designed, documented, tested, and certi-
fied components.

Even through software reuse promises less cost and
fewer defects, this technology does not prevail in soft-
ware industry. What makes reusing software artifacts
difficult? Reuse workshop[2] concluded that non-tech-
nical reasons inhibit widespread reuse. There was no
motivation to salvage and reuse software artifacts.
Reuse is like a saving account. We have to put a lot
in before we get anything out. However, many soft-
ware organizations are hesitant to invest the time and
money needed to convert old code and design infor-
mation into reusable components. It is hard to manu-
ally investigate all possible reusable systems, find out
the reusable component, and construct a reuse Li-
brary. In this paper, we suggest a tool and method to
extract, restore, retrieve and synthesize reusable com-
ponents from the source code in C or C ++ by using
reverse engineering technique.

To make a rense system, we stidied a general chara-
cteristics of reusable components. The extracied can-
didate of reusable components is measured and as-
sessed by reuse metrics including complexity, regu-
larity, reuse frequency, class attributes. The reuse sys-
tem also provides retrieval mechanism to reduce cog-
nitive distance for passive reuse approach. The reuse
components are generic_and combined to produce
new tlarget systems. Therefore, individual program-
mers must be aware of existing components, where

they are, and how to use them.
2. Software Reuse

Software reuse reapplies source code, design com-
ponents, documents to new development with mini-
mum changes. New target system inherits accuracy,
maintainability, portability, reliability, and other attri-
- butes of executed system. It realize gains in pro-

ductivity and improvements in quality,

Major topics of the research on software reuse arc
method to pick up reusable components, classify them,
construct a reuse library, and retrigve appropriate
reuse componenis. There have been other researches
on characteristics of reusable components, guideline
to design reusable components, and domain analysis
for reusability.

Biggerstaff{1] classified the reuse techmology into
two major groups that depend on the nature of the
components being reused. Two major approaches are
composition technology with building blocks, and gen-
eration technology with patterns. The first approach
is characterized by the fact that the components
stored in library are largely atomic, and ideally are
unchanged in their use. Therefore, this is a sort of
passive way reuse systemm composed by an external
agent. Deriving new systems from building blocks is a
matter of understanding reusable components and
composition of them. In generation approach, the
reused components are often patterns of code and
transformation mules. This active methods involve
components which were executed to generate target
systems. These generators are reused whenever they
are executed. Since the general problem of program
synthesis is very difficult, most of these systems must
be specially tailored for a specific application area.

Considering two approaches based on user inter-
vention, building block method needs a user to re-
trieve reuse library, identify proper components, and
synthesize them info a new target system. Generation
method makes a minimum user intervention in para-
meterizing reuse patterns. Most current reuse systems
are based on building blocks which have function
encapsulated and well-defined interfaces. RSL[3] is an
example of reuse system based on building blocks.

2.1 Classification of reuse components
Prieto-Diaz[4] introduced two types of classification
schemes for reusability:enumerative approach and

facet approach. Enumerative method postulates a uni-

verse of knowledge divided into successively narrow
classes. These classes include all the possible sub-
classes and compound classes arranged in hierarchical
relationships. When the reuse components have clear-
cut relationship, they can be retrieved fast. But an in-
herent problem with enumerative schemes is travers-
ing the hierarchical tree to find the appropriate class.
Selecting the most appropriate class is a difficult task
because more than one class may be applicable. More-
over, enumerative approach has difficulty in adding
new class because it makes reuse hierarchical tree
reconstructed.

In facet approach new classes can be easily added
without reconstruction. Reuse components are repre-
sented with collection of related common terms,
called facets. Each reuse component has several types
of characteristics which are identified to facets. Facets
can be considered as function, objects, system-type,
function area, etc. Fach facet has items to be ordered
according to how closely related they are each other.
This idea has been exiended to provide an even more

precise measuremnent of similarity among items. If no .

match of a description can be made during the re-
trieval, the conceptual closeness is measured and
other closely related items are provided. The facet ap-
proach uses a basic class to represent reuse compon-
enls so that it makes easy classification and under-
standable. However, adding a new item increases the
number of facets which means more difficult in
representing relationship of items and dealing with
synonym.

Weiping[5] suggested an interesting reusability ap-
proach which is based on software engineering and in-
formation engineering concepts. Software engineering
concepts includes commonality, portability, modu-
larity, maintainability, accessibility, understandability,
reusability. Information engineering concepts are te-
chnical feasibility, generality, modifiability. Reuse com-
ponents are classified in these concepts. It is not easy

to provide objective measurement of reuse com-

ponents.

AFSE 01T AT ERH THALE MALO) 2t 451 90

2.2 Retrieval of reuse components

Reuse components library is retrieved through sev-
eral methods. The user provides keywords which rep-
resent information and knowledge about needed reuse
components. The keywords are used in case that
enough information and knowledge are known. There
is another retricval method by enumeration of beha-
vior. This is effective when the function of reuse com-
ponents is already known. The third method is inter-
active retrieval with a user. The user gives the infor-
mation incrementally until the system finds out the
exact proper components. Browsing the reuse code,
explanation, or documents help understanding reuse
components. That will make cognitive distance short[6].

3. Related research

Most reusc libraries are constructed forward for the
future reuse in software development. Another ap-
proach is a technique which applies reverse engineer-
ing to extraction and abstraction of reuse compon-
ents; It takes too much time and effort to develop
reuse libraries from scratch by forward engineering.
Reverse engineering gives a clue to build “reuse
libraries and saves time to code repeated trivial stuff,

There have been three main research stream:(1)
characteristics of reuse components to be used in ev-
aluating reusability, (2) revse system development in-
cluding extraction, classification, retrieval, and modi-
fication of reuse components, (3) methods to shorten
cognitive distance. Amnold[7] defines reuse component
as a module that is referenced frequently, has low
coupling, and high cohesion. Dunn and Knight[8]
suggested an algorithm to find abstract data type by
analysing call relationships and use of global vari-
ables among modules. They also developed the code
miner which finds a place of reusable components. -
The code miner use inference engine of Prolog to
know the place of reusable components,

We can classify reuse system into two types. The
first type of reuse system is reverse-oriented. CIA(C

100 SISZERCIEE =X M4 H1=(97.1)

Information Abstractor) defines five types of data ¢b-
jects within C source code. File, macro, data type,
global variable, function are extracted, abstracted, and
stored in relational database. Subsystem can be extr-
acted by analysing source code related with specific
data objects[9]. Another type of Teuse system is for-
ward-oriented. Caldiera, Basili[10] suggested a reuse me-
tric based on cyclomatic complexity, regularity, reuse
frequency, and volume and appled it to building
CARE(Computer Aided Reuse Engineering) system.
CIA abstracts relationship of data and function from
the source code. However, it is not effective to find
reusable components. CARE also needs expert in-
volvement to assess components and give test cases.
After retrieving reuse library, we need a lot of ef-
fort to understand meaning and i/o parameters of
reuse library components. We call it a cognitive dis-
tance, intellectual effort to understand reuse com-
ponent. It could not be measured because it depends
on prior knowledge about reuse domain. Reuse sys-
tem helps to make cognitive distance short. Fischer]6)
developed a code finder guiding a path to reuse
component and expléiner displaying related part of
docnments and executing reusable source code. Code
finder and explainer support Lisp program compre-
hension by reverse engineering graphics library.

4. A Design of Reuse System

A reuse system should support several useful fun-
ctions such as extracting, classifying, and retrieving C
and C ++ source components. The design of CSORUS
starts with extracting reusable components from C
and C-++ source code. The source code should not
have any syntactic error. However, the reuse system
verifies C and C ++ syntax due to the file crash or
modification in reuse process. Lint function in Unix
validates source code with syntactic rules and ident-
ifies various relationships of functions and classes
such as inheritance, coupling, dependency. Those re-
lationships will be used in selection of reusable com-
ponents. Candidates of reusable components are as-
sessed by reusability metrics. The reuse system selects
reusable components and stores them with keywords
and explanation to reduce cognitive distance. In ad-
dition, the system has function to search a proper com-
ponents through several different retrieval methods.

The reuse system has a work flow to make reusable
components as shown Fig. 1. It includes (1) extrac-
tion step, (2) quality assessment step, (3) storing reus-
able components in repository, (4) retrieval step, (5)
components comprehension, and (6) composition of
components. First half has been used in reverse engin-

“k .| Qustivr

Ftru by mi
Hyalom

e
7" Banrce Guede Faunabic l Toet
Y

-
Rru=«e

intarmation
! AR i 2 —
-

Repashary
far Rousn e

e

T (Fig- 1) Reuse system work flow

eering techniques with information abstracted from
source code. Cognitive techniques are applied to sec-
ond half.

We have designed and implemented six reverse en-
gineering tools to extract reusable components. Syn-

tax error checker has the same function as Lint in

Unix. It covers ANSI C and AT&T C++ 3.0 gram-
mars. Pretty printer helps code reading by indentation
and formatting source code with good style. Function
prototype extractor reads C and C—++ source code
excluding class definition to extract function signa-
lure. Class information extractor provides infor-
mation about class definition, member data, and
member functions. Function dependency checker
accepts function prototypes and makes function call
graphs which will be used in assessing reusability.

5. An Implementation of Reuse System

5.1 Extraction of Reusable Components

The key idea of extraction is based on the class and
strong cohesive functions. Class is a real good candi-
date for future reuse because it has been encapsulated
and hidden with cohesive objects. Another criterion is
function call frequency which represents possibility of
reuse. The first step of extraction is an error checking
to assure error-free reusable components. Simple
noise or static error does not allow extraction step to
£o on. If the reuser modify reusable components and
store them in the reusable repository again, it should
be checked synlactically first. Pretty printer gets er-
ror-free source code and make it reformatted such as
indentation and transformation for consistency of
coding style. For example, K&R type function declar-
ation in C program should be converted to ANSI C
style. Next step for extraction is finding out function
prototype and class information. Function call graphs
are generated by function dependency checker,

Reusable components are extracted according to
the following criterion. functions are referred fre-

quenfly: In function call graph, a component with

_—
s

fio

OIE88 ATEUN THALR AIARIO) 2HEt o472 101

high in-degree and 0 out-degree might be a good can-
didate for reusable component. Reuse system gener-
ates cross-reference table for function prototype in
first pass scanning code. The second pass scanning
determines whether each function call other functions
in table or not. Another criterion for extraction is
AND-OR tree. Structured C program has simple con-
trol flow including sequence, selection, and repetition.
We can construct AND-OR tree in which main rou-
tine is a root node, and, functions are children. Fun-
ctions running in sequence are connected by AND
node. Other types control structure can be repre-
sented as OR node which means running selectively.
The nodes connected with AND have strong coupling
with other node. Because the tesult of a function
affects on the next function executing sequentially,
Functions connecting with OR node have low coup-
ling duc to running alternatively. The reuse system
traverses nodes from the bottom node to the top. If
OR node is reached, subiree from the bottom to the
OR node is recognized as candidates of reusable com-
ponents. L

Class is considered as an independent reusable unit.
It is encapsulated, self-contained and hides infor-
mation 5o that the class status is changed only by mes-
sage-passing. However, every class can not be a reus-
able component by itself. For example, pure virtual
function which is defined in derived class. That
should be included in final derived concrete subclass.
For another example, inheritance from other classes
and class reference by using friend declaration. That
should be combined with corresponding classes, recogn-
ized as one reusable component. For those consider-
ations, class information extractor gets information
about class name, file names in which classes are de-
fined, start and finish line number of class definition,
class classification representing the possibility of inde-
pendent reuse, super class or subclass, member func-
tion names. Table 1 shows class information extracted
from a sample C++ program in Fig, 2. CSORUS
displays these information as shown in Fig. 3.

102 S=FEXCED =2K H4H B 15(97.1)

9:

10: class stack |

11: private:
12 int top; End Live:
13: char data[10]; TRR
14: public: R E :
15: stack(); | -
16: ~stack();
17 void push(char®); '
18: char* pop();
19: 1 (Fig. 3) Displaying information for extracted class
20:

(Table 2> Relationship of C++ and 00A/Q0D

C++ O0A/OOD
Base-Derived Class -+ Gen-Spec Structure

(Fig. 2) Source code for Stack

Nested Class d Whole-Part Structure
{Table 1) Extracted information for Stack
Type of information Extracted information Step 1:perform the following operations for every
Class name stack type of dlass in QOA/OOD style structure.
File name stack.cpp
Start line number 10 @ Gen type class in Gen-Spec relationship
End line nurnber 18 Search Spec node.
Type of Object class while(found) {
Superclass false Link LowerLink with Spec node.
Subelass false Search next Spec node.
Member function push }
pop @ Spec type class in Gen-Spec relationship
Search Gen node.
while{found) {
Identifying super or sub class needs not only in- Link UpperLink with Gen node.
heritance relationship but also Gen-Spec and Whole- Search next Gen node.
part relationship in OOA/OOD which is suggested by }
Coad and Yourdon[11]. Member functions of specific @ Whole type class in Whole-Part relationship
class will be popped up by clicking the button of "C Search Part node.
functions’ in object type. Table 2 described the map- while(found) {
ping C ++ code to OOA/OOD in class relationship. Link LowerLink with Part node.
After conversion of class structure to OOA/OOD Search next Part node.
style, the system applies the following classification 1
algorithm to instance of relationships and stores class @ Part type class in Whole-Part relationship

_rél%iti'onship in data structure shown as Fig. 4. Search Whole node.

while(found) {
Link UpperLink with Whole node.
Search next Whole node.

Step 2:store identified relafionships into data struc-
ture named ClassRel.

Dpedel sruer |
char *Name:
LIST *AKOlist; /I Gen-Sepe List
LIST *APOlis; JI Whole-Part List
vaid *UpperLink[MAX]: Jf Link 1o

J Upper Level

void *LowerLink[MAX]; /f Link to

[l Lower Level

1 Class Naupe

| GlassRel:

(Fig- 4) Data structure for class relationships

5.2 Quality assessment of Reusable Components

The ultimate purpose of reuse is construction of
high reliable reuse coﬁlponcnfs and improveinent of
producfivity. Qﬁality assessment measures various char-
acteristics of reuse components and decides reusable
library. Reusec components might be considered in
terms of cost, usefulness, quality. All functions and
classes are assessed by different types of quantitative
metrics for candidates of use components.

The cost of reuse components is sum of extraction
cost, repacking effort, retrieval cost, and integration
cost. That means reuse cost can not be calculated in
construction phase. We decided to measure the reuse
cost indirectly by using complexity, readability, vol-
ume. The usefulness of reuse component is affected
by commonality and variety. Commonality is how
similar extracted component and application domain
are. That can be measured in ratio of calling fre-
quency of reusable component to calling frequency of
standard library. Variety can be represented by mea-
sunng parts of reuse components to be modifiable.

The measurement of variety is more difficult than

ZEUN THALR AIARIO 2Bt 017 103

that of commonality. We apply a principle to measur-
ement of variety. 'f‘he more the cémpfcx system is, the
more functionality the system have. Too much fun-
ctionality means that the system can be implemented
in various ways.

Reliability of reuse library can be represented by
preciseness, readability, auditability, modifiability.
The volume of reuse component plays an important
role of preciseness of reuse component. A small com-
ponent can be expected as a precise functionality. The
auditability is measured by the number of indepen-
dent paths. A large volume and complex system has
high possibility of error and difficult audit. Volume
and complexity can be applied 1o measurement of
preciseness and auditability.

The system uses the Halstead Software Science me-
tric{12] in measurement of volume, McCabe’s cyclo-
matic measurement in complexity. Component regu-
larity measures the readability and the nonredundancy
of a component’s implementation. Again using the
Halstead Soffware Science Indicators, we have the
actual length of the component N=N;+N;z and the
estunated length, N<wy logz n +mlogans. The close-
ness of the estimate is a measure for the regularity of

N
the component’s coding:» =1— N_%_W We can

estimate reuse frequency by comparing the number of
static calls addressed to a component _w_ith the num-
ber of calls addressed to a class of components that
we assume,

Reuse candidates including class have some prob-
lem to apply above metrics. Because class is encapsu-
lated and hides information. Class reuse components
can be measured by checking references from the ex-
ternal module through member function and member
data. Accessibility of member function and member
data is classified as private and public. Private class
does not affect reusability due to the preservation of
all internal information. Public class has an effect on
reusability. Through an empirical study, we can de-
fine reusability of class as the following. Reusability

104 SI2FHEAC|ER] =X M43 H 1=(97.1)

of class is in reverse proportional to the number of
interface, that is, the sum of the number of member
function and the number of member data. Fig. 5
shows the result of components quality metrics. In-
direct metrics represent comparison of measured
value and designated thresholds. The user can select
reusable components with proper degree of quality

characteristics.

tvpedet struct tagCOMPONENT |

baol singleComponent;
boal classComponent:
[INK *relatedTopic:
LINK FprevCamponent,
[INK FnextComponent;
COMPONENTINFO info;
char *relatcdKeyword|)
char *description;

| Component;

5.4 Retrieving Reusable Components

Our reuse system supports a function for retrieval
of reusable components. The user provides require-
ments of reusable components to be used in new ap-
plication and gets source code from the reuse library.
The reuse system has facility to describe properties of
required components. Keyword search and hierarchi-
cal search can be selected by the user for searching
reusable components. The system searches matching
components only by keywords, not by run-time
behavior.

(Fig. 5) Results of software metrics for reusability

5.3 Storing Reusable COmponems]

Selected reusable components are stored n m.for—
mation repository with retrieval keyword and docu-
mentation. The user can add extra information such
as function name, formal parameters, keywords ex-
tracted from comments. The explanation of reusable
components makes cognitive distance short Reusable
components are stored in repository with following

data structure in Fig. 6.

« Complendts 6

]

T v paplanee jg)

: Pt;lnln: \lm‘iﬂ Da(a?

n.aul'lr-bﬂ'l\l\:u-vvﬁ 12
| A o3
1

(E ig. 6) Data structure for stonng reusable components

sy, | prapldcs -
'ﬂ ’-:m upper ievel D =

.| “Compunentisy | Czele -
Fllipew

[T] I I =1 Neseriptian -
5':;‘ : i Contesipty
i !_) A ¢ Mimsiond and Cuinirvent -
i . A - i
o ST e T T e
(3 !] Conrel I ’ l Bnme.'.—l -

(Fig. 7) Searching for reusable components

Keyword search uses combination of logical oper-
ators such as AND, OR. Incomplete keywords can
include meta characters such as 7%, “*’_ If the system
selects more than one component by searching phase,
it displays all possible components in priority order.
After searching phase, the system browses source
code, related keywords and manuals to make the user
understood. If the user selects related topics in Fig. 7,
the system searches other components by wsing re-
lated topic field in data structure.

6. Conclusion

To make sure of the efficiency of developed system
we applied reuse system to three different application

programs. One application is writien in only C pro-
gramming language and has 30 modules for member-
ship management. The other sample is written in
C ++ programming language. It has 135 classes and
113 modules of YACL 1.2 for user interface manage-
ment, Last sample application is multimedia editor in
C ++ programming language, which has 95 modules
and 34 classes. We extracted 21 reusable components
from the first sample program, 178 from the second,
45 from the third. When we construct a reverse engin-
ecring tools for the new application, we can reuse a
large part of the implementation.

From the experiment, we can conclude that reuse
library is constructed more efficiently by reverse en-
gineering. The paper suggests a prindiple of extracting
reusable components and indirect measurement
method to select reusable components. We also pro-
vides retrieval method dependent on the user under-
standibility. The reuse system reduces the size of re-
targeted source code by optimizing useless code.

For the future research, we define various software
metrics which make more effective on selecting reus-
able components. The retrieval function of the reuse
system should be improved for the novice user. One
way to improve usability is extracting constraints or
properties of components for retrieval in reusable
code extraction. CSORUS supports only source code
level reuse. We believe that it can be extended to be
reused in analysis or design phase by design recovery
technology.

References

[1] T. Biggerstaff, C. Richter, “Reusability Frame-
work, Assessment, and Directions,” IEEE Soft-
ware, Vol. 4, No. 2, pp41-49, Mar. 1987.

[2] W. Tracz, “RMISE Workshop on Software Re-

AUBS 08T AT ERI0] THALE AIATIO| B3 17 105

use Meeting Summary,” Tutorial on Software
Reuse: Emerging Technology, pp.41-53, 1990.

[3] M. Lenz, H. Schmid, P. Wolf, “Software Reuse
through Building Blocks,” IEEE Software, pp.
3442, July. 1986.

[4] R. Prieto-Diaz, P. Freeman, “Classifying Soft-
ware for Reusability,” IEEE Software, pp.6-16,
Jan. 1987.

[5] Y. Weiping, M. Tanik, D. Yun, T. Lee, and A.
Dale, “Software Reusability:A Survey and Ex-
periment,” Proceedings of the Fifth Annual Joint
Conference on Ada Technology and Washington
Ada Symposium, pp.65-72, Oct. 1987.

{6] G. Fischer, S. Henninger, D). Remiles, “Cognitive
Tools for Locating and Comprehending Software
Object for Reuse,” Proceedings of the 13th Inter-
national Conference on Software Engineering,
pp.318-329, 1991.

[7]1 R. S. Amnold, “Heuristic for Salvaging Reusable
Parts From Ada Source Code,” SPC Technical
Report, ADA_REUSE_HEURISTIC-20011-N,
Mar. 1991.

(8] M. F. Dunn, J. C. Knight, “Automating the De-
tection of Reusable Parts in Existing Software,”
Proceedings of the 15th International Conference
on Software Engineering, pp.381-390, 1993,

[9] Y. F. Chen, M. Y. Nishimoto, C. V. Ramamo-
orthy, “The C Information Abstraction System,”
IEEE Trans. on Software Engineering, Vol. 16,
No. 3, pp.325-334, Mar. 1990.

[10] G. Caldiera, V. R. Basili, “Identifying and Quali-
fying Reusable Software Components,” IEEE
Computer, pp.61-70, Feb. 1991.

[11] P. Coad, E. Yourdon, Object-Oriented Design,
Prentice-Hall, 1991.

[12] M. H. Halstead, Elements of Software Science,
Elsevier North Holland Inc., 1977.

106 BRFEKCIEE =2A! H4D M 155(97.1)

= 2 o
1982 FFddw AdE
E4(EAD
19859 @x74gri=g A4s
I 2A(HAD
o 1993d o3 [T A8t &9
3 (gkrb
19859 AxEFZATE ATL
19889 ©o|F a7 4
1993E~84 FFd#w AFeETdH 227
BB AAAGF LZELHAFTE, LZTEH] &
A%, 2TEL 0] AALE, 4T

