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STRONG LAW OF LARGE NUMBERS
FOR LEVEL-WISE INDEPENDENT
FUZZY RANDOM VARIABLES

YuN KyonGg KiMm

ABSTRACT. In this paper, we obtain a strong law of large numbers for
sums of level-wise independent and level-wise identically distributed
fuzzy random variables.

1. Introduction

Laws of large numbers for sums of independent random sets have
been studied by Artstein and Hart [1], Artstein and Vitale [2], Puri and
Ralescu [16], Taylor and Inoue [18], Uemura [19], etc. These results have
been generalized to the case of fuzzy random variables by several peo-
ple. A SLLN for sums of independent and identically distributed fuzzy
random variables was obtained by Kruse [14], and a SLLN for sums
of independent fuzzy random variables by Miyakoshi and Shimbo [15].
Also, Klement, Puri and Ralescu [12] proved some limit theorems which
includes a SLLN , and Inoue [10] obtained a SLLN for sums of indepen-
dent tight fuzzy random sets. Recently, Hong and Kim [9] generalized
Marcinkiewicz law of large numbers to fuzzy random variables.

In this paper, we obtain a SLLN for sums of level-wise independent
and level-wise identically distributed fuzzy random variables by using a
metric which is stronger than one in works mentioned previously. The
representation theorem of fuzzy numbers by Goetschel and Voxman [7]
will be used.
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2. Preliminaries

In this section, we describe some basic concepts of fuzzy numbers.
Let R denote the real line. A fuzzy number is a fuzzy set @ : R — [0, 1]
with the following properties;

(1) @ is normal, i.e., there exists z € R such that @(z) = 1.

(2) 4 is upper semlcontmuous

(3) supp @ = cl{z € R: @(z) > 0} is compact.

(4) u is a convex fuzzy set, i.e., @(Az + (1 — A)y) > min(@(z), @(y))
for z,y € R and A € [0,1].

For a fuzzy set 4, we define

. {{x:ﬂ(m)Za}, 0<a<xl
L,u = N
supp i, a=0

Then, it follows that % is a fuzzy number if and only if L1% # ¢ and Lot is
a closed bounded interval for each a € [0,1]. From this characterization
of fuzzy numbers, a fuzzy number @ is completely determined by the end
points of the intervals L, = [u;,u}]. We denote the family of all fuzzy
numbers by F(R).

THEOREM 2.1 ([7]). For & € F(R), we denote u~(a) = u; and
ut(a) = uZf. Then the followings hold;

(1) u™ () is a bounded increasing function on [0,1].
(2) u*(a) is a bounded decreasing function on [0,1].
) <

(3) v™(1) <u¥(2).
(4) v (a) and ut () are left continuous on (0,1] and right continuous
at 0.

(6) Ifv~ () and v* () satisfy above (1)-(4), then there exists unique
v € F(R) such that vy = v~ (a), v} = v (a).

The above theorem implies that we can identify a fuzzy number 4
with the parametrized representation {(u;,u})|0 < a < 1}. Suppose
now that 4,7 are fuzzy numbers represented by {(u;,u}t)|0 < a < 1}
and {(v;,v})|0 < a < 1}, respectively. If we define

(@+9)(2) = sup min(a(z),9(y)),
rt+y=z
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o) = { 0 170
where 0 = I{oy is the indicator function of {0}, then
i+7={(ug +vg, v} +vl)|0<a<1},
G — { {Qug, ) 0<a<1}, A>0
{QAuf, Muz)|0<a <1}, A<
Now, we define two metrics d,d* on F(R) by

(2.1) d(@,?) = sup dy(Lad,L,D)
0<a<l1
1
(2.2) d* (@, 7) = / di1 (Laii, Lo)do
0

where dy is the Hausdorff metric defined as
du (Lo, Lo®) = max(Juy — vy |, |ul — v}]).
Also, the norm ||@|| of fuzzy number @ will be defined as

1%l = d(@, 0) = max(|ug |, [ ])-

3. Fuzzy random variables

Throughout this paper, (2, A, P) denotes a complete probability space.
If X : @ > F(R) is a fuzzy number valued function and B is a subset of
R, then X ~!(B) denotes the fuzzy subset of ! defined by

X~Y(B)(w) = sup X (w)(x)
z€B

for every w € Q. The function X :  — F(R) is called a fuzzy ran-
dom variable if for every closed subset B of R, the fuzzy set X ~1(B) is
measurable when considered as a function from Q to [0, 1]. If we denote
X(w) = {(X; (), X} w)0<a< 1}, then it is well-known that X is
a fuzzy random variable if and only if for each a € [0,1}, X and X
are random variables in the usual sense (See Kim and Ghil [11]). Hence,
if o(X) is the smallest o-field which makes X a fuzzy random variable,
then o(X) is consistent with o({Xs,X2| 0 <a<1}). This enables us
to define the concept of independence for fuzzy random variables as in
the case of classical random variables.
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DEFINITION 3.1. Let X , Y be two fuzzy random variables whose rep-
resentations are {(X;,X1)| 0 < o < 1} and {(Y,,Y;)| 0 < a < 1},
respectively.

(1) X and Y are called independent if the o-fields o(X) and o(Y)
are independent.

(2) X and Y are called level-wise independent if for each a € 0, 1]
the o-fields o(X;,X7) and o(Y,,Y) are independent.

(3) X and Y are called level-wise identically distributed if for each
a € [0,1], (X;,X}) and (Y, ,Y;) are identically distributed
random vectors.

Note that the definitions (2) and (3) is firstly introduced in this paper.

DEFINITION 3.2. A fuzzy random variable X = {(X;,X1)|0 < a <
1} is called integrable if for each o € [0,1], X; and XJ are integrable,
equivalently, [ || X||dP < oco. In this case, the expectation of X is defined
by

EX:/)ZdP:{(/X;dP, /X;dP)mSag 1}

4, Main Result

In this section, a SLLN with respect to the metric d defined as in
(2.1) will be obtained. In earlier works, the metric d* defined as in
(2.2) have been used (see [9],[10],[12]). Note that d is stronger than
d*. First, we need a subspace F¢o(R) of F(R). Let Fo(R) = {i €
F(R)| u, and uf are continuous when considered as functions of a}.
Then it is known that % € Fc(R) if and only if for any 8 € (0,1), there
exist at most two different z1, 22 such that @(x,) = @(z2) = 8 (See [4]
Theorem 5.1). Note that if X is Fc(R)-valued, then EX € Fc(R).
Before we state the main result, we recall the following lemma which is
well-known in the classical Analysis.

LEMMA 4.1. Let (f,) be a sequence of monotonic functions on [0,1].
If fn(x) converges pointwise to a continuous function f(z) on [0, 1], then
fn(z) converges to f(x) uniformly.

We now state the SLLN for sums of level-wise independent fuzzy
random variables.
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THEOREM 4.2. Let {X,} be a sequence of level-wise independent and
level-wise identically distributed fuzzy random varibles with E|X;|| <

. If EX, € Fo(R), then

z”: — 0 a.s.

SI'—‘

PROOF. Let X,, = {(X;,, X;5,)|0 < a < 1}. Then for each o € [0, 1],
{(X;7,, X1.)} is a sequence of independent and identically distributed
random vectors with F|X,,,| < oo and F|X,} | < oo in the classical
sense. By Kolmogorov’s strong law of large numbers,

1 ”
— ZX;Q — EX[, a.s.
i=1

and

—ZX+ —+FX+ a.s.

Now, let {rx} be a countable dense subset of [0, 1] with ro = 0,r; = 1.
Then there exist By € A with P(By) = 0 such that for each w ¢ B

1o~ _ _
(4.1) ~ X () — EXp,
=1
(4.2) = ZXM —s EX{,

If we define B = UZ2 By, then P(B) = 0 and for each w ¢ B, (4.1)
and (4.2) hold for all r;. Now, we will show that for each w ¢ B

1 ZXi;(w) — EX,, uniformly in « € [0,1].
n ;—
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By Lemma 4.1, it suffices to show that for each w ¢ B, and each «,

(1e4

1 > Xio(w) — EXE,.

i=1

Let w ¢ B and € > 0 be fixed. Then by the continuity of EX;,, as a
function of a, there exists 6 > 0 such that

lo — B <6 implies | EX{, —EX{; |<e
If we take ri,r, sothat a —d <y <a<r,, <a+4d, then
EX|,., —e<EX{ <EX] +e
Hence, by the monotonicity of X, (w) with respect to «,
1 n
=3 X, (w) — EX;, — €< ;I:ZX,;(w) ~ EX7,
i=1
I oo _
< ;jZ:Xirm (w) — EXy, +e
which implies
1 n
m in; (w) — EX],.
Similarly, it can be proved that for each w ¢ B

1 n
- ZX;;(w) — EX{ uniformly in «a € [0,1].

Therefore, for each w ¢ B.

( i EXI) — 0.

3|'—‘
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COROLLARY 4.3. Let {X,,} be a sequence of level-wise independent
and level-wise identjcally distributed F¢(R)-valued fuzzy random vari-
ables. There exists b € Fo(R) such that

l e~ -~ -
(4.3) d(E;Xi, b> — 0 a.s.

if and only if E|| X1 < co. Furthermore, if (4.3) holds, then b = EX;.

PROOF. The sufficiency follows immediately from theorem 4.2. To
prove the converse, if (4.3) holds, then for any « € [0, 1],

1 n
;ZX[Q — b, a.s.
i=1

and

i

1 n
—ZX+ — b a.s.
"=

By the converse of Kolmogorov’s strong law of large numbers,
E|X | <oo,E|X{ | <oco foreachacl0,1]
which implies E||X;|| < co and b= EX;. 0

EXAMPLE. Let ¢ € F;(R) be fixed and let {Y,,} beii.d. with ElY1] <
oo in the usual sense. Define X, (w)(z) = 4(z — Y,(w)) i.e., Xp(w) is
the translation of @ by Y, (w) in z-axis. Then

Xnolw) =ug +Yo(w) and X} (w) = ul + Y, (w)

Hence the above theorem implies that
qf En: Xi, EX | 0
- i — 0 a.s.
nis 1
where (EX,)(z) = 4(z — EY}).

As a final result, we give a generalization of Chung’s SLLN to the
case of fuzzy random variables.
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THEOREM 4.4. Let {X,} be a sequence of fuzzy random variables.
If {|| X,.||} are independent random variables in classical sense and

oo

1 -
(4.4) > ~E|| X,|| < oo,

then

=1

Since {[| X,||} is a sequence of independent random variables, (4.4) and
Chung’s law of large numbers yields

n

1 _ _
(4.5) HILIIOIOE;(IIXHI - E|Xi|) =0 a.s.

Now, applying the Kronecker lemma to (4.4), we obtain

lim — ZEHX =0

n—co 1

which implies, together with (4.5),

Jim -~ Z(nx | =0 a.s.

This gives the desired result. Q
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