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A WEAK NEGATIVE ORTHANT DEPENDENCE

KwANG-HEE HAN

ABSTRACT. In this paper we introduce a new concept of negative de-
pendence of multivariate random variables. This concept is weaker
than the negative orthant dependence(NOD) but it enjoys some prop-
erties and preservation results of NOD

1. Introduction

Lehmann(1966) introduced the concept of negative quadrant depen-
dence(NQD) together with some other dependence concepts. Ebrahimi
and Ghosh(1981) extended this negative concepts of bivariate random
variables to the multivariate random variables and introduced the concept
of negative orthant dependence(NOD), and Joag-Dev and Proschan(1983)
introduced the concept of negative association. Recently, Kim and Seo
(1995) also introduced some negative dependence concepts which are weaker
than negative association but stronger than negative lower orthant depen-
dence or negative upper orthant dependence and derived some relations
among them.

Most of the dependence concepts introduced in the literature are stronger
than the negative orthant dependence. In this paper we introduce a new
concept of negative dependence of multivariate random variables. The
importance of this concept of negative dependence lies in the fact that it
is weaker than the negative orthant dependence(NOD) and it enjoys some
properties and preservation results of NOD.

In section 2, some definitions, some new results of weak negative quad-
rant dependence, and preliminary results are given. In section 3, some
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preservation results are derived such as closure under convolution, mix-
ture of a certain type, transformations, and limit in distribution.

2. Preliminaries

In this section we introduce some definitions and basic properties.

DEFINITION 2.1. (Ebrahimi and Ghosh(1981)) The random variables
X1, -, X are said to be negative upper orthant dependent(NUOD) if

(2.1) P(Xy > 21,0, X > 2) < [ P(X: > 22)
i=1
for all real numbers zy, ..., z, .

DEFINITION 2.2. (Ebrahimi and Ghosh(1981)) The random variables
X1, ..., Xy are said to be negative lower orthant dependent(NLOD) if

(2.2) P(X1 < @1, Xp < 20) < [[ P(X: < 22)
i=1
for all real numbers z,, ..., T,,.
The random variables X3, ..., X, are said to be negative orthant depen-
dent(NOD) if they are NUOD and NLOD. For n = 2, (2.1) and (2.2) are
equivalent. However, as one might expect, these are not equivalent for

n > 3. Ebrahimi and Ghosh(1981) gave an example of trivariate distribu-
tion which is NUOD, but not NLOD.

DEFINITION 2.3. The random variables X, ..., X, are said to be weakly
negative upper orthant dependent of the first type( denoted by WNUOD1)
if

(23) /Oo /w{P(ﬁ Xi > S,‘) - Iq[ P(X., > si)}dsn...dsl S 0
T1 Tn i=1 i=:1

for all real numbers z;, ..., z, and X, ..., X,, are said to be weakly negative
upper orthant dependent of the second type( denoted by WNUOD2) if

(2.4) /_ /j"{P(ﬂ X;>s)— H P(X; > s,)}dsp...ds; < 0

for all real numbers z,, ..., z,.
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We call that the random variables X1, ..., X,, are weakly negative up-
per orthant dependent(denoted by WNUOD) if they are WNUOD1 and
WNUOD2.

DEFINITION 2.4. The random variables X1, ..., X,, are said to be weakly
negative lower orthant dependent of the first type( denoted by WNLOD1)
if

for all real numbers zy, ..., z, and X,, ..., X,, are said to be weakly negative
lower orthant dependent of the second type( denoted by WNLOD?2) if

(2.6) ‘/fl“l[%kfﬂr}Xigsﬂ——IIFKngsJ}cwnmdﬁ <0

for all real number x,, ..., z,.

We call that the random variables X}, ..., X,, are weakly negative lower
orthant dependent(denoted by WNLOD) if they are WNLOD1 and WN-
LOD2. We also call that random variables X, ..., X,, are weakly negative
orthant dependent(denoted by WNOD) if they are WNUOD and WN-
LOD. In the bivariate case, (X,Y)(or the distribution H) is said to be
weakly negative quadrant dependent of first type(denoted by WNQD1) if

/ /[HX>&Y>0—HX>ﬁHY>mm%SO
z Jy

/m/ﬂmxg&yg@_mxggmygnuwsgo

and it is said to be weakly negative quadrant dependent of the second
type(denoted by WNQD2) if

/1 /y [P(X >sY >t)— P(X > s)P(Y > t)dtds < 0

O

r
/ /”HXS&YSQ—HXSQHYSMﬁwgon

We say that the bivariate random variable (X.Y) is weakly negative
quadrant dependent(denoted by WNQD) if it is WNQD1 and WNQD2(see
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Alzaid, (1990)).

It is obvious that if the random variables X, ..., X,, are NOD then they
are WNOD. But the following example shows that WNOD does not imply
NUOD.

EXAMPLE 2.5. Let X, X5, X3 be random variables with the following
joint probabilities P(X, = 1, Xy = 22, X3 = x3):

X3 =0 X; =1
Xo Xy
0 -1 2| 0 -1 -2
0[2/40 0 3/40[2/40 0 3/40
6/40 3/40 1/40 | 6/40 3740 1740
2] 0 1740 4/40] 0 1/40 4/40

X,

oy

By tedious calculation it can be checked that (X, X,, X3) is WNUOD1
but not NUOD.

We list below a number of basic properties of WNUOD and WNLOD
variables :

(NO) Any set of NUOD(NLOD) random variables is WNUOD(WNLOD).

(N1) Any subset of WNUOD(WNLOD) random variables of size > 2
is WNUOD(WNLOD).

(N2) If X4, ..., X, are WNUOD(WNLOD) then a; X, +by, ..., a, X, + b,
is WNUOD(WNLOD) for all a; >0, i = 1,2, ..., n.

(N3) The union of independent sets of WNUOD(WNLOD) random
variables is WNUOD(WNLOD).

DEFINITION 2.6. (Ebrahimi and Ghosh(1981)) A random vector Y is
stochastically increasing(decreasing) in the random vector X if E[f(Y) | X
= g] is increasing(decreasing) in z for all real valued increasing functions
f. We shall use the abbreviations SI and SD for stochastically increasing
and decreasing, respectively.

The following theorem gives a sufficient condition for WNQD-ness.

THEOREM 2.7. (Alzaid(1990)) (X,Y) is WNQDI(WNQD2) if and only
if
Cov(f(X1),9(X3)) >0
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for all functions f and g such that f is increasing nonnegative convex
(nonpositive concave) and g decreasing nonpositive concave (nonnegative
convex).

THEOREM 2.8. Let
(a) (X1, X2) given A, a scalar random variable be conditionally WNQD]1
(WNQD?2), and
(b) Xy be SI'in A, and X, be SD in A, or
(b') Xy be SD in A, and X, be SI in ).
Then (X;, X3) is WNQD1(WNQD2).

PROOF. Let f be an increasing nonnegative convex(nopositive concave)
function and g be a decreasing nonpositive concave(nonnegative convex)
function.

(2.7)
Cov[f(X1), g(Xa)] = Cov(E[f(X1)|A], Elg(X2)|A))+E[Cov(f (X1, g(X2)|N)]

From Definition 2.5 the conditional expections in the first term on the
right hand side of (2.7) are increasing function of A. By property P3(Esary
et al.(1967)) A is associated. Thus by Esary et al.(1967) the covariance
of conditional expections in the first term is nonnegative. Since condi-
tioned on A, (X1, X5) is WNQD1(WNQD2) by Theorem 2.6 the second
term on the right hand side of (2.7) is also nonnegative. It follows that
Cov(f(X1),9(X2)) > 0. Thus (X1, X5) is WNQD1(WNQD2). O

COROLLARY 2.9. Let (X, X;) be WNQD1(WNQD2) and let Z be in-
dependent of (X,,X;). Define X = X;+aZ,Y = Xo+bZ. Ifab < 0
then (X,Y) is WNQD1(WNQD2).

PROOF. Let a > 0,6 < 0. Then X = X;+aZisSlin Z and Y =
X3 +bZ is SD in Z. Since (X,Y), given Z is WNQD1(WNQD2), by
Theorem 2.7, (X,Y) is WNQD1(WNQD2). Similarly, one handles the
case a <0, b>0. O

We close this section by introducing orthant convex order and orthant
concave order notions.

DEFINITION 2.10. (Shaked, Shanthikumar(1994)) For n-dimensional ran-
dom vectors X = (X1,...,X,) and Y = (¥1,...,Y,), X is smaller than Y.
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in the upper orthant-convex order(denoted by X <,, .., Y) if and only if

/ / / P(Xl > 81, Xo > S9y .y Xp > Sn)dSn...dSQdSI
< / / / P(Y1> s1,Y2 > s9,..., Yy, > 8,)dsy...dsads,

for all z = (zy,...,2,), and X is smaller than Y in the lower orthant-
concave order(denoted by X <,,_., Y if and only if

T1 T T
/ / / P(X1 S SI,XQ S S2, .._,Xn S Sn)dSn...d82d81

Ty T2 Tn
< / / / P(Y1 <5,Y; <s9,...,Y, < 5,)ds,...dsyds,

for all = (24, ..., z,).

According to Alzaid(1990) the order <,,_., is an extension of the vari-
ability order(see e.g. Ross(1983) p270), which is also called convex or-
der(see e.g. Stoyan(1983) p8) and the order <;,_., is an extension of
concave order (see e.g. Stoyan(1983) p11).

THEOREM 2.11. (Shaked, Shanthikumar(1994)) Let X = (X, ..., X,)
and Y = (Y1, ..., Y,) be n-dimensional random vectors. Then
(1) X <wo—ez Y if and only if

H.% 1< EIng 19)

for all nonnegative jncreasmg convex functmns gl Gn.
(i1) X <ip-e Y if and only if

Hh ]<E[Hh

for all nonnegative increasmg concave fu.nctmns hi, ..., hy.

3. Some preservation results with application

DEFINITION 3.1. A random vector Y is said to be stochastically right
tail increasing(decreasing) in the random vector X if £ [f(Y) | X > z] is
increasing(decreasing) in z for every real valued increasing function f.
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THEOREM 3.2. Let
(a) X = (Xy,..., X,,) be WNUOD,
(b) Y1,...,Y,, be conditionally independent given X, and
(¢) Y; be stocastically right tail decreasing in X for all i = 1,...,m.
Then (i) (X,Y) is WNUOD, (i1) Y is WNUOD.

PROOF. (i) First we show the WNUOD1 case:

/ / / / P(ﬂ(X, > Si), ﬂ()/_] > tj))dtm...dtldSn‘..dSI
T Tn JY Ym i=1
P(

2

P

m n

_ /°°/°°/°°/:° N > tj)ilol(X»si))

Jj=1

P([((Xi > si))dtm...dtrds,...ds,
g=1

S A N CCRRA T )

—

j=1

-

P((\(Xi > 5:))dtm...dt1ds,...ds,

[ [ T

H P((Y; > t;)dty,...dt ds,...ds;.

=1

IA

The second equality follows from assumption (b) and the above inequality
follows from assumptions (a) and (c). Similarly, the WNUOD?2 case is
proved.

(i) follows from (z) immediately by property (N1). O

‘THEOREM 3.3. Let Hy and H; be two multivariate WNUOD distri-
butions both having the same one dimensional marginals. Then if H, =
aHO—*—_(l“a)Hh a e (O’ 1); where Ha(l'i; ~-';xn) = PHQ(Xl > CEl,_...,Xn >

Tn), Hi(z1,...,20) = Py (X1 > 21, ..., Xp > zn), ¢ = 0,1, then H, is also
WNUOD.
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PROOF. By definition, the one dimensional marginals of H, are the
same as those of Hy or H1 Next,

/ / Py, (X1>s1,..,Xp > s,)dsp...ds,
= a/ / Py (X1 > s1,.., X > 8,)dsn...ds;

+(1 - a)/ / Py, (X1 > s1,..., Xy, > s,)dsp...ds
< / / HP(Xi > 8;)dsn...ds,

Tn =]
+1-a / / HP(X > 5;)dsp...ds
= / / H P(X, > si)dsn.‘.dsl
Tn =1
Hence H, is WNUODI. Similarly, H, is WNUOD2 and thus the proof is
complete. O

COROLLARY 3.4. Let Hy and H; be WNLOD distributions both having
the same marginals. Put Hy = aHy + (1 — a)H,,0 < o < 1. Then H, is
also WNLOD.

LEMMA 3.5. Let X = (Xy,...,X,) be a random vector and let X* =
(X1, X3,..., Xy} be an n-dimensional random vector with independent
components such that X} =% X;,i = 1,...,n (where = stands for equality
in distribution). Then

(i) X is WNUODI1 if and only if X <yo-cz X*,

(ii) X is WNLOD2 if and only if X <jp_ oy X*.

PROOF. (i) (=) Assume X is WNUODI. Then

/ / P(X) > s1,..., X > 8p)dsp...ds;

/ / TTPX > sidsn.ds

In 4=1
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= / / 1 Px; > si)dsn...ds;
1 Tn i=1

= / / P(XT > s1,.., X} > s,)dsy,...dsy.
X*

Hence X <uo—cs
( <= ) It follows from assumptions that

/ / [P(X1> 51,0, Xo > 50) = [[ P(Xi > s3)]dsn...ds,
1 Tn i=1

< / / [P(X] > 51,00 X3 > 80) = [ [ POX? > 50)]dsn...dsy
z Zn i=1
0.

From assumption that X* has independent components in the right hand
side zero follows. Hence X is WNUODLI. Similarly, the proof of (ii) 1s
obtained. a

From Theorem 2.10 and Lemma 3.5 we obtain following theorem.
THEOREM 3.6. Let X = (X},..., X,,) be a random vector.
(i) X = (X1, ..., X,) is WNUODL if and only if
E([] xa) < [[ ElA(X0)]
i=1 i=1

for all increasing nonnegative convex functions Sy fn
(i) X = (X1, ..., X»n) is WNLOD2 if and only if

E[H hi(X3)] < HE[hi(Xi)]

for all increasing nonnegative concave functions hi, ..., hy.

THEOREM 3.7. (i) X = (X, ..., X,,) is WNUOD! if and only if (f1(X1),
-y Jn(Xn)) is WNUODI for all increasing convex functions fio ooy fo
(i) X = (Xy,...,X,) is WNLOD2 if and only if (91(X1), . gn( X)) is
WNLOD?2 for all increasing concave functions g, ..., gn.
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PROOF. It is sufficient to show only if part. (i) Assume X = (X7, ..., X,)
is WNUODI1. Then for all increasing nonnegative convex funcions Fi, ..., F},,

B[ Ao < [T EEC)

i=1 1==1

since F}- f;’s are increasing nonnegative convex funcions. Hence (f1(X31), ...,
fa(X5)) is WNUODI according to Theorem 3.6.

(ii) Assume X = (Xi,...,X,) is WNLOD2. Then for all increasing
nonnegative concave funcions Gj, ..., G,

n

B[] Gilai(X0)] < [] BlGu(a:(X)]

i=1

since G; - g;’s are increasing nonnegative concave funcions. Hence (g, (X}),
.-, gn(X3)) is NLOD2 according to Theorem 3.6. O

The next theorem demonstrates the preservation of the WNOD prop-
erty under limits.

THEOREM 3.8. Let {X,,n > 1} be a sequence of WNOD p-dimensional
random vectors with distribution function H, such that H, — H weakly
as n — oo, where H is the distribution function of a random vector
X =(Xy,..,X,). Then X is WNOD.

ProoF. We will only show the WNUOD case. Writing X,, = (Xin,
ey Xpn)y > 1, X = (X1,..., X,) for any real z,,...,z,, we have by as-
sumptions,

/ / P(X) > s1,...,Xp > sp)dsp...ds;
1 €T

= / / [Um P(Xy, > 81,00 Xpn > Sp)l|dsp...dsy

n-—>00

/ _/ [JLI&HPXJn>3J)]dSo ds;
B / / HP(Xj > s;)]dsp...ds.

xp]l

[N
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Thus X is WNUODI. Similarly, X is WNUOD2. The proof is complete.
d

‘THEOREM 3.9. Let (X1, ...X1p), ..., (Xn1, ...Xnap) be independent ran-
dom vectors and let Y, = fl(Xu,...,an),...,Yp = fp(Xips .oy, Xup). As-
sume that for each i, (X1, ..., Xj,) is WNUODI and f1, ..., fp are nonneg-
ative increasing convex functlons for the ith coordinate, ¢ = 1, ..., n, then

(Y1,....Y,) is WNUODI.

PROOF. Define for k =2,...,n,j = 1,...,p,
k k—
(B1) A (Krnyss ooy Xng) = ELRE D (X oy X)) X o 1ys s Xog )

We also define h;l)(ng, s Xnj) = E{hi(X1j, ..., Xnj)| X2j, ..., Xns} for any
function h;(Xyj, ..., X»;) having property of f;. Then we obtain

Ehi(X1j, o Xnj) = ERP (X5, ., X

ErMD (X5, . X,

(3.2) By (X 2
_ . (n—1) .

In view of Theorem 3.6 it is sufficient to prove that for any functions
hi, ..., by having properties of fi, ..., fp, respectively,

(3.3) BT (rs(Xa5, oy X)) <TI0y Bl(R(Xajs oy X))

This is so since for any nonnegative increasing convex functions ky, ... kp
the functions k; fi, ..., k,f, have the same properties as do iy fo
show (3.3) is valid, we follow an iteration argument.

P

E([Jhi(x05 .. X)) = BIE[] [(s(X0j, - Xuj) [ Xag, ooy Xog)]]

j=1 j=1

< B[] Elhi(X1s, o, X)Xz, oy X))

J=l1
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p
1
= B[P (Xe, . X))
j=1
(by proceeding with the iteration argument used above)

- _Hh"” m>1<HE[h‘" V(X))

= J[ERi(Xy, ... Xnj))-

J=1

Note that since (Xi, ..., Xip) is WNUOD1 and h;’s are nonnegative in-
creasing convex functions the first above inequality holds. From the fact
that (X1, ..., Xpnp) is WNUOD1 and h;"_l)’s are nonnegative increasing
convex functions the second above inequality follows and the last inequal-
ity follows from (3.2). The proof is complete. O

A similar result holds for the WNUOD?2 property.

CoroLLARY 3.10. Let (U,,...,Up) be independent and independent of
(Xlla ceey le) yeeey (an, ‘..,an) and let Yl = fl(Ula )&—11, ceey an)’ ceey }/p =
To(Up, X1p, ..., Xnp). Assume that for each i, (X, ..., Xip) is WNUODI and
fi,..., fp are nonnegative increasing convex functions for each coordinate,
then (Y1, ...,Y,) is WNUODI.

ProoF. This follows from Theorem 3.9 since for each i (U;, X1, ..., Xip)
is WNUOD1. ]

The followig Theorem is an application of Theorem 3.9 which is very
important in recognizing WNUOD1 in compound distributions which arise
naturally in stochastic process.

THEOREM 3.11. Let (Ny,...,N,) be a p-variate variable with compo-
nents assuming values in the set {1,2,...} and let {(Xi, ..., Xip) : ¢ > 1}
be a sequence of nonnegative independent p-variate random variables in-
dependent of (Ny,...,N,). Suppose that (Ny,...,N,) is WNUODI and
that (X1, ..., Xip) is WNUODI. DefineY = (11,...,.Y,) by Y; = Z] D¢
i=1,..,p. ThenY = (Y1,...,Y,) is WNUODI.
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PROOF. Let fi, ..., f, be nonnegative increasing convex functions. Then
B[ (v = E[E[I:Il{fi(éxmlfvi:m}n
- E[E[{in(éxﬁ)}n
E[f[E[{fi(iXﬁ)}]]

ng

E’ {fz ZX]’L

N;

EE[{fi( ZXﬂ |N; = ni}]]

IN
::]E

.
Il
i

i
:'e

i
L

I
E'ﬁ

E{fi(Y)}]-

,,
Il
—

The first inequality follows from Theorem 3.9 and assumption and the sec-
ond inequality follows from the fact that E[f;(3 72, X;)]’s are increasing
convex functions in n;. This completes the proof. g

EXAMPLE 3.12. Let {N;(t),...,Ny(t) : t > 0} be the p-variate Pois-
son processes ie, Ni(t) = Zi(t) + W (), ..., Np(t) = Z,(t) + W(t) where
Zy(t), ..., Zp(t) and W (t) are independent Poisson processes. Let {(Xpn;, ...,
Xnp) :m = 0,1,2,...} be a sequence of independent and identically dis-
tributed random Variables. Define the p-variate compound Poisson process

{(Yi(t),..,Y,(t) : t > 0} by

Ni(t) Np()

Yi(t) = Z Xty Y, Z Xp-

Since {Ni(t), ..., Np(t)} is WNUODI for every t >> 0, consequently an ap-
plication of Theorem 3.11 implies {Y(t), ..., Y, (t)} is WNUODI1 for every
t > 0 whenever (X,1, ..., Xpp) is WNUODI.
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