BEST APPROXIMATION SETS IN LINEAR 2-NORMED SPACES

S. ELUMALAI, Y. J. CHO AND S. S. KIM

ABSTRACT. In this paper, we give some properties of the sets $D_z(x_o, G)$, $P_{G,z}(x)$. We also provide the relation between $P_{G,z}(x)$ and Gâteaux derivatives.

1. Introduction

The concept of linear 2-normed spaces has been initially investigated by S. Gähler ([7]) and has been developed extensively by Y. J. Cho, C. Diminnie, R. Freese, S. Gähler, A. White and many other ([2], [7], [8], [11]).

Let X be a linear space of dimension greater than 1 and let $\|\cdot, \cdot\|$ be a real-valued function on $X \times X$ satisfying the following conditions:

 $(N_1) ||x,y|| = 0$ if and only if x and y are linearly dependent,

 $(N_2) \|x,y\| = \|y,x\|,$

(N₃) $\|\alpha x, y\| = |\alpha| \|x, y\|$, where α is real,

 $(N_4) ||x+y,z|| \le ||x,z|| + ||y,z||.$

 $\|\cdot,\cdot\|$ is called a 2-norm on X and $(X,\|\cdot,\cdot\|)$ is called a linear 2-normed space. Some of the basic properties of 2-norms are that they are nonnegative and $\|x,y+\alpha x\|=\|x,y\|$ for every $x,y\in X$ and every real number α .

Let $(X, \|\cdot, \cdot\|)$ be a linear 2-normed space and V(x, y) be the subspace of X generated by x and y in X. For all $x, y \in X$, define

$$n(x,y|z)(t) = \frac{\|x+ty,z\|-\|x,z\|}{t}$$

Received November 15, 1996. Revised July 2, 1997.

¹⁹⁹¹ Mathematics Subject Classification: 46A15, 51K05.

Key words and phrases: $D_z(x_o, G)$, $P_{G,z}(x)$, Gâteaux derivatives, Best approximations, b-extensions.

for any real t and $z \in X \setminus V(x, y)$.

Then the functional n(x, y|z)(t) is non-decreasing of the real positive variable t for any fixed x, y in X and for arbitrary z in X. Moreover, the limit $\lim_{t\to 0^+} n(x, y|z)(t)$ exists ([1]).

Put $N_+(x,z)(y) = \lim_{t\to 0^+} n(x,y|z)(t)$, which is called the *right-hand Gâteaux derivative* of the 2-norm $\|\cdot,\cdot\|$ at (x,z) in the direction y. In [1], Y. J. Cho, S. S. Kim and A. White obtained the following properties of $N_+(\cdot,\cdot)(\cdot)$:

For every x, y in X and $z \in X \setminus V(x, y)$,

- $(1) |N_+(x,z)(y)| \leq ||y,z||.$
- $(2) N_{+}(x,z)(y+y') \leq N_{+}(x,z)(y) + N_{+}(x,z)(y').$
- (3) $N_{+}(\alpha x, z)(\beta y) = \beta N_{+}(x, z)(y)$ for all reals $\alpha, \beta \geq 0$.
- (4) $N_+(x,z)(0) = 0$ and $N_+(0,z)(y) = ||y,z||$.
- $(5) -N_{+}(x,z)(-y) = \lim_{t\to 0^{-}} (\|x+ty,z\| \|x,z\|)/t \le N_{+}(x,z)(y).$
- (6) $N_+(x,z)(\alpha x) = \alpha ||x,z||$ for all real α .

Recently, some results on best approximation theory in linear 2-normed spaces have been obtained by S. Elumalai and R. Ravi ([4], [5]), I. Franić ([6]), S. S. Kim and Y. J. Cho ([9]), S. A. Mariadoss ([13]), R. Ravi ([19]). These papers are based on the reseach works in normed linear spaces made by G. Godini ([10]), T. D. Narang ([14], [15]). P. L. Papini ([16], [17]), P. L. Papini and I. Singer ([18]), I. Singer ([20]), and they have contributed to the study on the geometric structures of linear 2-normed spaces.

For a fixed $z \in X$, the function $p_z(x) = ||x, z||, x \in X$, is a seminorm on X and the family $P = \{p_z : z \in X\}$ of seminorms generates a locally convex topology on X, which is called the *natural topology* induced by the 2-norm $||\cdot, \cdot||$.

In this paper, we give some properties of the sets $D_z(x_o, G)$, $P_{G,z}(x)$. We also provide the relation between $P_{G,z}(x)$ and Gâteaux derivatives.

2. $D_z(x_o, G)$ and $P_{G,z}(x)$

In this section, we define and study two subsets of X, denoted by $D_z(x_o, G)$ and $P_{G,z}(x)$.

Let $(X, \|\cdot, \cdot\|)$ be a linear 2-normed space and G be an arbitrary nonempty subset of X and $x_o \in X$. Then for every $x \in X$ and for every $z \in X \setminus G$ which is independent of x and x_o , we have

(1)
$$d_z(x,G) \le ||x - x_o, z|| + d_z(x_o, G),$$

where $d_z(x, G) = \inf_{g \in G} ||x - g, z||$. For each $G \subset X$ and $x_o \in X$, we define

(2)
$$D_z(x_o, G) = \{x \in X | d_z(x, G) = ||x - x_o, z|| + d_z(x_o, G)\}$$

for any $z \in X \setminus G$ which is independent of x and x_o .

Note that $D_z(x_o, G) \neq \phi$ since $x_o \in D_z(x_o, G)$. If $x_o \in \text{Int } G$, the interior of G, then $D_z(x_o, G) = \{x_o\}$.

We denote

(3)
$$P_{G,z}(x) = \{g_o \in G : ||x - g_o, z|| = d_z(x, G)\}$$

and

(4)
$$P_{G,z}^{-1}(x_o) = \{x \in X : ||x - x_o, z|| = d_z(x, G)\},\$$

where $x_o \in G$.

We now provide some simple properties of $D_z(x_o, G)$.

LEMMA 2.1. Let $g_n \in G, n = 1, 2, \dots$, such that

$$d_z(x_o, G) = \lim_{n \to \infty} ||x_o - g_n, z||.$$

Then for each $x \in D_z(x_o, G)$ and for any $z \in X \setminus G$ which is independent of x and x_o ,

$$d_z(x,G) = \lim_{n \to \infty} \|x - g_n, z\|.$$

PROOF. For each $x \in D_z(x_o, G)$,

$$d_{z}(x,G) = \|x - x_{o}, z\| + d_{z}(x_{o}, G)$$

$$= \lim_{n \to \infty} (\|x - x_{o}, z\| + \|x_{o} - g_{n}, z\|)$$

$$\geq \limsup_{n \to \infty} \|x - g_{n}, z\|$$

$$\geq d_{z}(x, G).$$

Therefore, we have $d_z(x,G) = \lim_{n \to \infty} \|x - g_n, z\|$. This completes the proof. \Box

LEMMA 2.2. (i)
$$||y-x_o,z|| = ||y-x,z|| + ||x-x_o,z||$$
. (ii) $y-x+x_o \in D_z(x_o,G)$.

PROOF. (i) Let $x \in D_z(x_o, G)$ and $y \in D_z(x, G)$. Then, by (1) and (2), we have

$$\|y - x_o, z\|$$
 $\leq \|y - x, z\| + \|x - x_o, z\|$
 $= \left(d_z(y, G) - d_z(x, G)\right) + \left(d_z(x, G) - d_z(x_o, G)\right)$
 $= d_z(y, G) - d_z(x_o, G)$
 $\leq \|y - x_o, z\|.$

Therefore, it follows that $||y-x_o,z|| = ||y-x,z|| + ||x-x_o,z||$.

(ii) Take x and y as in the proof of (i). Then, from (1), we have

$$\begin{aligned} &d_{z}(y-x+x_{o},G) \\ &\geq d_{z}(y,G) - \|y-(y-x+x_{o}),z\| \\ &= d_{z}(y,G) - \|x-x_{o},z\| \\ &= \left(\|y-x,z\| + d_{z}(x,G)\right) - \|x-x_{o},z\| \\ &= \|y-x,z\| + \left(\|x-x_{o},z\| + d_{z}(x_{o},G)\right) - \|x-x_{o},z\| \\ &= \|(y-x+x_{o}) - x_{o},z\| + d_{z}(x_{o},G). \end{aligned}$$

Again, by (1), it follows that

$$d_z(y - x + x_o, G) = \|(y - x + x_o) - x_o, z\| + d_z(x_o, G),$$

which proves (ii). This completes the proof.

LEMMA 2.3. Let $x \in D_z(x_o, G)$. Then

(i)
$$[x_o, x] = \{\lambda x_o + (1 - \lambda)x : 0 \le \lambda \le 1\} \subset D_z(x_o, G).$$

(ii)
$$D_z(x,G) \subset D_z(x_o,G)$$
.

PROOF. (i) Let $y = \lambda x_o + (1 - \lambda)x$ such that $0 \le \lambda \le 1$. Then we have

$$d_z(y,G) \ge d_z(x,G) - ||x-y,z||$$

$$= ||x-x_o,z|| + d_z(x_o,G) - ||x-y,z||$$

$$= ||y-x_o,z|| + d_z(x_o,G).$$

So, by (1), it follows that $d_z(y,G) = ||y - x_o, z|| + d_z(x_o, G)$ implies $y \in D_z(x_o, G)$.

(ii) Let $y \in D_z(x, G)$. Then, by Lemma 2.2 (i),

$$\begin{aligned} d_z(y,G) &= \|y - x, z\| + d_z(x,G) \\ &= \|y - x, z\| + (\|x - x_o, z\| + d_z(x_o,G)) \\ &= \|y - x_o, z\| + d_z(x_o,G). \end{aligned}$$

Therefore, we have $y \in D_z(x_o, G)$. This completes the proof.

LEMMA 2.4. Let $x_o, y_o \in X$ and $\lambda \neq 0$. Then

(i)
$$D_z(x_o, G) + y_o = D_z(x_o + y_o, G + y_o)$$
.

(ii)
$$D_z(x_o, \lambda G) = \lambda D_z(x_o/\lambda, G)$$
.

PROOF. (i) Let $x \in D_z(x_o, G)$. Then we have

$$\begin{aligned} d_z(x+y_o, G+y_o) &= d_z(x, G) \\ &= \|x-x_o, z\| + d_z(x_o, G) \\ &= \|x+y_o - (x_o+y_o), z\| + d_z(x_o+y_o, G+y_o). \end{aligned}$$

Therefore, $x + y_o \in D_z(x_o + y_o, G + y_o)$. Conversely, let $y \in D_z(x_o + y_o, G + y_o)$. Then we have

$$\begin{aligned} d_z(y - y_o, G) &= d_z(y, G + y_o) \\ &= \|y - y_o - x_o, z\| + d_z(x_o + y_o, G + y_o) \\ &= \|(y - y_o) - x_o, z\| + d_z(x_o, G). \end{aligned}$$

Therefore, it follows that $y - y_o \in D_z(x_o, G)$ and so

$$D_z(x_o, G) + y_o = D_z(x_o + y_o, G + y_o).$$

(ii) Let $x \in D_z(x_o, \lambda G)$. Then we have

$$\begin{split} d_z(x/\lambda, G) &= \frac{1}{|\lambda|} d_z(x, \lambda G) \\ &= \frac{1}{|\lambda|} \big(\|x - x_o, z\| + d_z(x_o, \lambda G) \big) \\ &= \left\| \frac{x}{\lambda} - \frac{x_o}{\lambda}, z \right\| + d_z(x_o/\lambda, G). \end{split}$$

Therefore, $x/\lambda \in D_z(x_o/\lambda, G)$. Conversely, let $x \in D_z(x_o/\lambda, G)$. Then we have

$$d_z(\lambda x, \lambda G) = |\lambda| d_z(x, G)$$

$$= |\lambda| \left(||x - \frac{x_o}{\lambda}, z|| + d_z(x_o/\lambda, G) \right)$$

$$= ||\lambda x - x_o, z|| + d_z(x_o, \lambda G).$$

Therefore, $\lambda x \in D_z(x_o, \lambda G)$.

In particular, if G is a subspace of X, then

$$D_z(\lambda x_o + g_o, G) = \lambda D_z(x_o, G) + g_o$$

for every $g_o \in G$ and $\lambda \neq 0$. This completes the proof.

LEMMA 2.5. Let $G \subset G_1$ and $x_o \in X$, where G_1 is a subset of X such that

(5)
$$d_z(x_o, G) = d_z(x_o, G_1).$$

Then $D_z(x_o, G_1) \subset D_z(x_o, G)$.

PROOF. Let $x \in D_z(x_o, G_1)$. Then, by (5), we have

$$d_z(x,G) \ge d_z(x,G_1)$$

$$= ||x - x_o, z|| + d_z(x_o, G_1)$$

$$= ||x - x_o, z|| + d_z(x_o, G).$$

By (1), it follows that $d_z(x,G) = ||x-x_o,z|| + d_z(x_o,G)$. Therefore, by (2), $x \in D_z(x_o,G)$. This completes the proof.

THEOREM 2.6. (i) $P_{G,z}(x_o) \subset P_{G,z}(x)$ for every $x \in D_z(x_o, G)$. (ii) $D_z(x_o, G) = P_{G,z}^{-1}(x_o)$ for every $x_o \in \overline{G}$.

PROOF. (i) Let $x \in D_z(x_o, G)$ and $g_o \in P_{G,z}(x_o)$. Then, by Lemma 2.2 (i),

$$d_z(x,G) = ||x - x_o, z|| + d_z(x_o, G)$$

= $||x - x_o, z|| + ||x_o - g_o, z||$
= $||x - g_o, z||$,

which proves that $g_o \in P_{G,z}(x)$.

(ii) Let $x_o \in \overline{G}$ and let $x \in D_z(x_o, G)$. Then we have

$$d_z(x,G) = ||x - x_o, z|| + d_z(x_o, G) = ||x - x_o, z||,$$

where $x_o \in \overline{G}$. This shows that $x_o \in P_{G,z}(x)$, i.e., $x \in P_{G,z}^{-1}(x_o)$ and so $D_z(x_o, G) \subset P_{G,z}^{-1}(x_o)$.

Conversely, let $x \in P_{G,z}^{-1}(x_o)$. Then $x_o \in P_{G,z}(x)$. Since $x_o \in \overline{G}$, $d_z(x_o, G) = 0$. Hence, we have $d_z(x, G) = \|x - x_o, z\| + d_z(x_o, G)$ implies $x \in D_z(x_o, G)$. Therefore, it follows that $D_z(x_o, G) = P_{G,z}^{-1}(x_o)$ for $x_o \in \overline{G}$. This completes the proof.

For a subset G of a linear 2-normed space X and for each $b \ge 0$, the b-extension of G denoted by G_b and defined by

$$G_b = \{ x \in X : d_z(x, G) \le b, \quad z \in X \}.$$

If b=0, then $d_z(x,G)=\inf_{g\in G}\|x-g,z\|=0$. This shows that $x\in \overline{G}$

and for each $x \in \overline{G}$, the best approximation of x is itself. Hence, $G_b = \overline{G}$.

THEOREM 2.7. Let $G \subset X, x_o \in X$ and $b \leq d_z(x_o, G)$. Then

$$D_z(x_o, G) = D_z(x_o, G_b).$$

PROOF. From [3], for each $x \in X$ with $d_z(x,G) \geq b$, we have

(6)
$$d_z(x,G) = d_z(x,G_b) + b.$$

Let $y \in D_z(x_o, G)$. Then

$$d_z(y,G) = ||y - x_o, z|| + d_z(x_o, G) \ge b,$$

since $d_z(x_o, G) \ge b$. So, by (6), we have

$$d_z(y,G) = d_z(y,G_b) + b,$$
 $d_z(x_o,G) = d_z(x_o,G_b) + b.$

Hence, we have

$$d_z(y, G_b) = d_z(y, G) - b$$

= $||y - x_o, z|| + d_z(x_o, G) - b$
= $||y - x_o, z|| + d_z(x_o, G_b)$.

Therefore, it follows that $y \in D_z(x_o, G_b)$ and so $D_z(x_o, G) \subset D_z(x_o, G_b)$. Conversely, let $x \in D_z(x_o, G_b)$ such that $x \neq x_o$. Then $x \notin G_b$ and so $d_z(x, G) > b$. By (6) and by $x \in D_z(x_o, G_b)$, we have

$$d_z(x, G_b) = ||x - x_o, z|| + d_z(x_o, G_b) = ||x - x_o, z|| + d_z(x_o, G) - b.$$

Thus, it follows that

$$d_z(x,G) = d_z(x,G_b) + b$$

= $||x - x_o, z|| + d_z(x_o, G_b) + b$
= $||x - x_o, z|| + d_z(x_o, G)$.

which implies that $x \in D_z(x_o, G)$ and so $D_z(x_o, G_b) \subset D_z(x_o, G)$. This completes the proof.

THEOREM 2.8 ([19]). Let $(X, \|\cdot, \cdot\|)$ be a linear 2-normed space. Let G be a linear subspace of $X, x \in X \setminus \overline{G}$ and $z \in X \setminus [x, G]$, where [x, G] is the space generated by x and G. Then for $g_o \in G$, $g_o \in P_{G,z}(x)$ if and only if $g_o \in P_{G,z}(\alpha x + (1-\alpha)g_o)$ for all $\alpha \in R$.

By using Theorem 2.8, we have following:

THEOREM 2.9. Let $(X, \|\cdot, \cdot\|)$ be a linear 2-normed space and let G be a linear subspace of X, $x \in X \setminus \overline{G}$ and $z \in X \setminus [x, G]$. Then the following statements are equivalent:

- (i) For $g_o \in \overline{G}$, $g_o \in P_{G,z}(x)$.
- (ii) $N_{+}(x-g_{o},z)(g_{o}-g) \geq 0$ for all $g \in G$.

PROOF. (i) implies (ii): Assume that (i) holds. Then by theorem 2.8, we have $g_o \in P_{G,z}(\alpha x + (1-\alpha)g_o)$ for $\alpha \geq 1$. Thus, for all $g \in G$,

$$\|\alpha x + (1-\alpha)g_o - g_o, z\| \le \|\alpha x + (1-\alpha)g_o - g, z\|,$$

which implies that

$$||x - g_o, z|| \le ||x - g_o + \frac{1}{\alpha}(g_o - g), z||.$$

Taking $t = 1/\alpha$, we have $||x - g_o + t(g_o - g), z|| \ge ||x - g_o, z||$. Therefore, we have

$$N_{+}(x-g_{o},z)(g_{o}-g) = \lim_{t\to 0^{+}} \frac{\|x-g_{o}+t(g_{o}-g),z\| - \|x-g_{o},z\|}{t}$$

$$> 0.$$

(ii) implies (i): Assume that (ii) holds. Then, since

$$\frac{\|x - g_o + t(g_o - g), z\| - \|x - g_o, z\|}{t}$$

is non-decreasing function of the real positive variable t, for any fixed $x \in X \setminus \overline{G}, z \in X \setminus [x,G]$ and $g \in G$, we have

$$||x - g_o + t(g_o - g), z|| \ge ||x - g_o, z||$$

for t > 0. So, for t = 1, it follows that $||x - g, z|| \ge ||x - g_o, z||$ for every $g \in G$. Therefore, we have $g_o \in P_{G,z}(x)$. This completes the proof. \square

References

- Y. J. Cho and S. S. Kim, Gâteaux derivatives and 2-inner product spaces, Glasnik Mat. 27 (1992), 271-282.
- [2] Y. J. Cho, C. Diminnie, R. Freese and E. Z. Andalafte, Isosceles orthogonal triples in linear 2-normed spaces, Math. Nachr. 157 (1992), 225-234.
- [3] N. V. Efumov, S.B. Steckin and N. Sovistva, Cebisevskih Mnojestv, Dokladi, Akad Nauk SSSR. 1 (1958), 118.
- [4] S. Elumalai and R. Ravi, Farthest points on suns, Math. Today 9 (1991), 13-18.
- [5] _____, Approximation in linear 2-normed spaces, Indian J. Math. 34 (1992), 53-59.
- [6] I. Franić, An extension theorem for bounded linear 2-functionals and applications, Math. Japon. 40 (1994), 79-85.
- [7] R. Freese and S. Gähler, Remarks on semi-2-normed spaces, Math. Nachr. 105 (1982), 151-161.
- [8] R. Freese, Y. J. Cho and S. S. Kim, Strictly 2-convex linear 2-normed spaces, J. Korean Math. Soc. 29 (1992), 391-400.
- [9] S. Gähler, Lineare 2-normierte Räume, Math. Nachr. 28 (1965), 1-43.
- [10] G. Godini, Best approximation in certain classes of normed linear spaces, J. Approx. Theory **39** (1983), 157-171.
- [11] S. S. Kim, Y. J. Cho and A. White, Linear operators on linear 2-normed spaces, Glasnik Mat. 27 (1992), 63-70.
- [12] _____, 2-Pre-hilbertian 2-norms and Gâteaux derivatives, to appear in Math. Japon. 46.
- [13] S. A. Mariadoss, Orthogonality, Approximation and Fixed Points in Linear 2-Normed Spaces, Doctoral Diss., Madras Univ., 1982.
- [14] T. D. Narang, Best approximation on convex sets in metric linear spaces, Math. Nachr. 78 (1977), 125-130.
- [15] _____, Best approximation and strict convexity of metric spaces, Arch. Math. 17 (1981), 87-90.
- [16] P. L. Papini, Approximation and strong approximation in normed spaces via tangent functions, J. Approx. Theory 22 (1978), 111-118.
- [17] _____, Inner product and norm derivatives, J. Math. Anal. and Appl. 91 (1983), 592-598.
- [18] P. L. Papini and I. Singer, Best coapproximation in normed linear spaces, Mh. Math. 88 (1979), 27-44.
- [19] R. Ravi, Approximation in Linear 2-Normed Spaces and Normed Linear Spaces, Doctoral Diss., Madras Univ., 1994.
- [20] I. Singer, Best approximation in normed linear spaces by elements of linear subspaces, Springer-Verlag, New York, 1970.

S. Elumalai

Ramanujan Institute for Advanced Study in Mathematics University of Madras Madras 600005, India

Y. J. Cho Department of Mathematics Gyeongsang National University Chinju 660-701, Korea

S. S. Kim Department of Mathematics Dongeui University Pusan 614-714, Korea