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ON REFLECTED DIFFUSION WITH
DISCONTINUOUS COEFFICIENT

YOUNGMEE KWON

ABSTRACT. Consider a d-dimensional domain D that has finite Lebe-
sque measure and a Dirichlet form which has discontinuous coefficient.
Then the stationary Markov process corresponding to the given Diri-
chlet form is a semimartingale under suitable condition for D and the
coefficient.

1. Introduction

Let A and D be bounded and open in R™ with A C D and let m
denote Lebesque measure on D, normalized so that m(D) = 1. Consider
a piecewise continuous dxd symmetric matrix valued function a(z) =
(ai;{x)) such that

a(z) = a*(z) on A
(1) =a?(z)on D\ A
=1 on 0A

where a! and a? are C! on A and D \ A resepectively and there exist
constant M;, M, independent of x such that |a(z)| < My, |[V.a(z)| < Ma

for z € D\ OA. Here V.a(z) = (b*(z), ..., b%(z)) where | | denotes the

matrix norm and b*(z) = ijl %jaji(x)-

(2) a(zx) is uniformly positive definite, that is , there is A > 0 such that
Zf,j:l aij(®)y:y; > My|? for all y € R? and z € D.
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Now we consider a Dirichlet form (£, D(€)) such that

E(f, 1) :% /D VfaVfm(dz), feD(E
D(E) ={f € L*(D,dz) N HY(D) : £(f, f) < 00.}

(3)

Here H'(D) = W'2(D), the Sobolev space of functions f € L2(D)
that have all distributional derivatives in L?(D). Then we concern the
stationary Markov process X; associated to £ and show that under some
conditions for D, A, and q, it is a semimartingale,that is, a sum of
martingale and bounded variation processes. The association between
X and (€, D(£)) is following: Let (T}) be the transition semigroup of X
and (f,g) = [, fgm(dz). Then

(4) We define that C C R? has the finitely upper Minkowski content if
the following holds:
— m{z e C; dist(z,0C <)}

lim, 10 " < 00.

This is known to be finite when C is a Lipschitz domain. (See [4])
(5) We assume that D and A have the property (4) and m(9A) = 0.

Pardoux and Williams showed in [3] that under some condition for D,
which is more general than having finite upper Minkowski content and
the condition that a(z) is locally Lipschitz continuous with condition (2),
there exists the associated stationary Markov process X; to £ and it is a
semimartingle (Theorem 6.1 of [3]). We show that they hold when a(z)
is piecewise continuous by approximating a(z) with smooth coeffients.

2. Tightness

Let a domain A C R be given and for = € A, 6(z) be the distance
of z from OA. We need §(x), the regularized distance function whose
existence is guaranteed by Stein ([4], p.171).
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LEMMA 1. There exists a function §(z) = §(x, 0A) defined for z € A
such that

(i) c16(z) < 6(z) < c20(z) for all x € A and

(ii) 6 is C*° in A and for any multi-index (3, the 8- th derivatives §(?)
satisfies the following inequality:

6P ()] < bg(6(z)) 18 for all z € A.

The constants bg, ¢1 and ¢y are independent of A. Now we have an
important lemma for §(z).

LEMMA 2. Suppose A has the condition (4). Then there is a finite
constant C such that for each i € {1,2,...,d},

<
/‘sz z))|de < C

for any monotone function q defined on [0, 00), which is C' on (0,00)
and satisfies q(0) = 0 and g(o0) = lim, o g(z) = 1.

PRrROOF. In Lemma 2.2 of [5], Williams and Zheng showed that the
lemma holds with B,, N A instead of A and the constant depends on n
where {B,,n = 1,2,...} denotes some open sets in R% such that A C
UpBp and A has their Condition (2.1) which implies (4). Hence we can
choose ﬁmtely many B, such that A C UX_, B, and take C such that
Jans, iaxz (0(z))|dz < C for any n = 1,2,...,k and the lemma holds.
O

REMARK 1. We can extend d(x) to R? such that §(z) = 0 if = ¢ A.
Then 6(x) is continuous on R? and C* on R\ 8A. From now on, we
mean 6(z) as this extension.

When a(z) = (a:;(z)) is C!, symmetric and uniformly positive defi-
nite and D has the property (4), Pardoux and Williams ([3]) showed that
the stationary Markov process X, associated to £(f, f) = 5 f pVia
Vfm(dx) with D(E) = {f € L*(D,dz) N HYD) : £(f,f) < oo} is a
continuous semimartingale. More precisely
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THEOREM 1. Let b(z) = (b,...,b%)(z) such that b*(z =3 ijl 3e;
a;i(z)) and {FX} be the filtration generated by X. Then fort € [0,1].

t
X, = Xo + M, +/ b(X,)ds + Vi,
0

where M is a martingale relative to {F;* } with < M;, M; >;= fo ai;(Xs)
ds and V is a {FX} adapted process of bounded variation such that for
each v € C?(R%, RY), fo (X¢).dVy] = —3 [, div(av)m(dz).

Now we give the main theorem.

THEOREM 2. Under the condition (1),(2),(4) and (5) for a(z), D and
A, X, the stationary Markov process associated to the Dirichlet form
in (3) is a semimartingale with the decomposition such that

t
Xt:Xo+Mt+/ b(XS)(l(ngaA))d.S-FLt—FVZ
0

where M, is a martingale with < M;,M; >:< ¢t and L; and V; are
bounded variation processes adapted to {F/<} such that L, = fot Lix,coa)

dLs and E[fo +)-Vs] < eyt for any function v € C2(RY, RY) for some
constants c1, ¢o.

PROOF. We consider regularized distance functions §1(z) and dy(z)
for A and D\ A. Then 6;(x) = 0if z ¢ A and d,(z z)=0ifz ¢ D\ A
Take increaing functions on [0, 00), {f,,} such that for each n, f,, € C*®
on [0,00), fu(0) = 0, fo(r) = 1if r > L. Here the derivative of f, at 0
means f;,(0+). We can extend a’(z) and a?(z) to D so that they satisfy
the condition (1) and (2) on D. Now let

c*(z) = a' (z)(1 = fu(2(2))) + a®(@)(1 - fn(b1(x)))

where a' and a? are above extensions. Then c¢" is differentiable on
D satisfying the condition (2). Let &.(f,f) = 3 [, Vf.c"Vfm(dz)
on D(E,) = {f € L*(D,dz) N H'(D) : £,(f,f) < oo}. Let X' be
the statlonary Markov process associated to &£,. Then by Theorem 1,
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x™ = X(”’ + M(") + fO‘ b X("))ds + V™ where < M, M™ >,=
fo 5i(Xs)ds, b (mi(z) = 1 Z] 1 (% (n) (x) and

E[/0 v(Xt(n)).th(n)] = —~%/Ddiv(c“v)m(dz).

Here ¢*(z) — a(z) in matrix norm except JA. Hence by Lyons and
Zheng ([1]), Xt(n) converges weakly to X, associated to E(f, f) = %
[p Vf.aV fm(dz) since m(0A) = 0. In fact, Theorem in [1] is with
respect to E(f, f) = 5 fRd Vf. and:r instead of D. But the proof goes
also in case of D only if ¢"(x) — a(z) except some measure zero set.
Hence for all large n,

El< M{™, M >, E[/ (M)(X(™)ds] < sup |a(z)|m(D)t < c1t.
xeD

Therefore Mt(n) has a subsequence converging to M, in L? norm and M,
is a continuous martingale with < M;, M; >;< ¢;t. Now

()i K, 0 o)
b ()"2(8] (z))

Sy

j=1 "7

l
-

| @

ah(@)(1 — fulba(2)) + %(a;i-(x)(l ~ faE @)

o5

2

™M=

(G ()1 = Fulbu(a)) + ki (2) 51 = FuB o))

k 1

I
i

17

where | =2ifk=1and !l =1ifk = 2. |a§z(a:)| is uniformly bounded
for 4, j, k by the condition (1). Since Xt(n) is stationary,

t
E| / b (X () ds]] < 1 /D 16" () d.

Now we show that for all n, 4, [, |b{™(z)|dz < c2 which shows E[fot b(»)
(X,gn))dsﬂ < caot. Let
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I= /D |<a%(a§i<x>)><:1 ~ fal8i(2)))ldz

and

2
0
=3 / o (Bl

Then for all ¢, j, k, lax (a¥(x))| < M, by the condition (1), hence I <
m(D)Ms. Now for I1, for all n, 7,

II§/ [ifn(dl(a:))ld:c—i—/D|5%fn(r52(x))|dx

0
/ L (60(2))ldz + /D g Tt
<Cm( D)

by Lemma 2. Simiarly for v € C2%(R9, R%), E[fotv(Xs(n)).dlfs(n)] =
/ p div(c™v)m(dx) is uniformly bounded. Hence by Meyer-Zheng con-
dition ([2]), {X™} is tight and we have a subsequence for {.Xt(”)}
converging to a semimartingale. But we already know Xt(n) — X
in distribution. Hence X, must be a semimartingale such that X, =
Xo+ M; + Ay +V, where M, is a martingale with < M, M; > < ert, Ay
and Vi are the weak limits of | £ pin) X'("))ds and Vt(") respectively and

fo X3)1(x,¢04)ds + L; where b(z) = 2(V.a)(x) on D\ A and
Lt varies only when X, is on JA. O

REMARK 2. It is true that B fo (X(">€8A)ds] = 0 but still we do not
know E| fo I(x,c04)ds] = 0. If it is true, we have L, = 0.
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