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UNIFORM L?-APPROXIMATION FOR
THE SOLUTIONS OF FUNCTIONAL
STOCHASTIC DIFFERENTIAL EQUATIONS

Do-WoN HONG AND IN-SUK WEE

ABSTRACT. The aim of this work is to obtain uniform LP-approximat-
ion for the solutions of functional stochastic differential equations
driven by continuous semimartingale.

1. Introduction

We are given an one-dimensional continuous semimartingale {Z;, F;}
on a filtered, complete probability space (2, F, F;, P) satisfying the
usual hypotheses. For Fp-measurable random variable £, we consider
the following functional SDE driven by {Z;} :

(1.1) X, = &+ /OtF(X)SdZS.

Here F' is a functional Lipschitz operator which is defined as follows.
We denote C the class of adapted processes indexed by [0, oo) having
continuous paths.

DEFINITION. An operator F' : C' — C is called functional Lipschitz
if forany X, Y € C the following two conditions are satisfied:
(i) for any stopping time o, X? = Y7 implies F(X)° = F(Y)°.
(ii) there exists an increasing process K = {Ky, t > 0} such that

[F(X): — F(Y)| < K; sup|Xs — Y| a.s., each t>0,
s<t
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where for any X € C, X7 is definded to be X7 = Xone.

Under this setting, it is well known that there exists a unique solu-
tion of equation (1.1) in C which is a semimartingale by using Picard
iteration method. (e.g. Emery[l] or Protter(5], [6] ) Although Picard
iteration method is useful to prove the existence and uniqueness theo-
rem, it is not efficient in numerical practice. For a classical Ito equation
driven by Brownian motion, there are various numerical schemes in-
cluding Euler-Maruyama method.([3], [4], [7]) In this work, we obtain
uniform LP-approximation to the solution of (1.1) with the order 1 /2
of error by employing the analogue of Euler-Maruyama method. More-
over, this method seems to provide an alternative proof for existence and
uniqueness theorem for (1.1).

To describe our main result, we assume that Zo =0, and let Z, =
M; + B:, My = By =0 be a decomposition of Z, where {M,, F;} is a
continuous martingale and {B;, F;} is a continuous process of bounded
variation with total variation |B|;. Let

(12) At == t+ <M:>t + IBlt

Assume that F : C — C is a functional Lipschitz satisfying the following
conditions: there exists non-random constant B such that forany X, Y €
Cand 0<s,t<T,

(1.3) Ar < B a.s.,

(1.4) |F(X) — F(Y)] < Bl X: - Y| a.s.,

(15) 1P = FX)sl < B (1t~ sl'2 + X, - X,]) as.,
(1.6) F(0) = 0.

Now for each n, and 0 < k < 2n, we introduce stopping times a,(cn) , and

define {X{™1 as follows :

a((,") =0,

(n) (n)

(1.7) ' B
O, " = inf {t > Or'1s At — 140_1(:)1 > 'ﬁ} A T,
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for ol(cn:’ <t< O',(:jgl.

Our main result is that if p > 1 and E|¢|P < oo, then

E( sup lXt—Xt(")lp) = o (wmy ).

0<t<T

Finally we remark that generic constants throughout the work are de-
noted by the same letter C although they have different values from line
to line.

2. Main result

We assume that (1.3)-(1.6) hold and El{|P < oo for a fixed p > 1.

Recall that a,(cn) and {X't(n)} are defined by (1.7)and (1.8). Before proving
the main result, we need to prove preliminary lemmas. We first introduce
stochastic integral inequality of Gronwall type.

LEMMA 1. (Theorem 2.6.1 of Mao[2])

Let {Ny, 0 <t < T} be a nondecreasing continuous adapted process
such that Ngo = 0 and Ny < K a.s., and let {Y;, 0 <t < T} be a
nondecreasing progressively measurable process where K is a positive
constant. If for any stopping time 7 < T,

,
EY, < ¢+ E/ Y,dN,
0

then EYp < ceX.

LEMMA 2. There exists a positive constant C such that the following
hold :
(a) E (SUPogth lXt|p) < CBPLE|E|PeCP.

(b) supp<p<on—1 E (SUPa,g")gsgaggl | Xs - Xa;cn>|p) < CEgP(1/n)P/2.
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PROOF. (a) Note that for any stopping 7 with 0 < 7 < T,

5 su xr) -5 ( sup e+ / sF(X)udzurP)

0<s<7 0<s<r
8
(2.1) 52”‘1E|§|”+2”_1E( sup ]/ F(X)udZulp).
0<s<r Jo
Using Hélder inequality and Burkholder-Davis-Gundy inequality with
(1.3)-(1.6), we get

E( sup | F(X)udZufp>

0<s<r Jo

< 2p—1E< sup | /0 SF(X)udMul”)

0<s<r
(2.2) +2p“1E< sup | F(X)udBu[p)
0<s<r Jo
T p/2 7 p
< CE‘/ |F(X),|?dA,| +CE / |F(X)q|dA,
0 0

<opE [ |x.Faa,
0

for any stopping time 7 with 0 < 7 < 7. Using Lemma 1 with (2.1) and
(2.2), the assertion follows.

(b) As in the proof of (a), we get, for each 0 < k <2n -1,

/

FE sup ’Xs e Xa(n)lp = F (
k

\

(n) (n)
o <s<oy

sup [/(n) F(X),dzZ,|P
Tk

(n) (n)
oy Ss<o

olm)
< C’(l/n)(P_Q)/QE/(k)+ |1 X,|PdA,
Ukn

< C(1/n)p*E (o?f% lth”>

< C(1/n)P2E|gP.
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v (7)
LEMMA 3. supgci<an ElXa}c") - Xa(n,lp =0 ((1/n)p/2).
k

Proor. To simplify the notation, we fix n and denote a( and X (T(L,)L)

by ox and X,, respectively. We first consider the case when p is an even
integer. Observe that for 0 < k < 2n —1,

14

Y p \ —1m
IXUk.H - X0k+1 Ip = Z (m> (Xak - Xok)p

. < /U T (R, - (X)) dzs>m.

k

As in the proof of Lemma 2-(a), we get the following estimates:

_ Tk41 oo
B, = X0, [ (X0 = F(E),) 2
Tk
(2.3) <C(1/n) " H(EB|Xpy—Xo ) P
C"k+1 1/p
(E —F(X®),, ]”dA)

and for 2 < m < p,
_ Tk+1 —
Bl Xy, - Xo ™| / (F(X>s — F(X%),,) dZ,™

(2.4) < C(1/n)z" ? (B| Xo— X oy | )
O'k+1 m/p
(E (X"k)akl”dA> .

Combining (2.3) and (2.4), we have
EIXUM—l - X'—"’k+1 |p < E[Xak - Xak |p + C(l/n)lnl/p (E'XGk - Xcklp) e

. 1/p
k41 _
: (E/ IF(X)s — F(X"k),k|pdAs>

Ok

P m )
(2.5) +C S (1/n)TTF (BlXo, — Xo|P) TP

m=2

o 1 m/p
- (E/ R, - F()_("k),,kl”dAs> .

k
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Using (1.3)-(1.5) and Lemma 2-(b), we get
Tk+1 _
B[RO0, - FX),, pda,
Ok

Tk+1 _
<2B [ P(X)s, ~ PR, A,
* Ok41
+ 2P—1E/ |F(X)s — F(X),, |PdA,
0k+1ak _
< CE / | Xo, — Xo, |PdA,
Ok

Ok+1
+ CE/ (|s — oY+ | X, — X,,k|)pdAs

k
< C(Yn)E|Xo, — Xo\ | + C(1/n) /2
Putting (2.6) into (2.5), we obtain that for 0 < k < 2n — 1,
E|X

Tk+1 X0k+1 ’p SEIXG;C - X‘7klp + C(l/n)ElXUk - Xﬂk v
+ C(1/n) 12 (BIX,, — X, |P) 727

P ,
+ > (1/n)™ (B X, — Ko P)TR
m=2

Let e, = E|X,, — X,,|P. Then

P
ex+1 < e + Cex(1/n) + Cep YP(1/n)+1/2 4 C > e Py,
m=2
Let mke1 = m + Cne(1/n) + Oy VP(1/m)+2 4 CSP e "7
(1/n)™, no = 0. Since €, < 1, it suffices to show that n;, < O(1/n)?/2.
Since 7, is monotonically increasing, there exists a ky such that Mo <
(1/n)P/2, and n, > (1/n)P/? for k > kg. Then for k > ko,

p
77k+1 :T]k + an(l/n) + Cn;_l/p(l/n)l—’_l/z + C Z ni—ﬂl/}?(l/‘n)m

m=2

p
<k + Cmi(1/n) + C Y (1 /n)™/?

m=2

<m(1+C/n).
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Hence for any even integer p > 1,
Mk < Mo (1 + C/n)™ < Cngy, < C(1/n)P/2.

The proof is completed for general p > 1, if we write p = k + a where k
is an even integer and 0 < a < 2 and use Hélder inequality. 0]

Now we are ready to present the proof of the main result.
THEOREM. Ifp > 1 and E|£|P < oo, then

E( sup |X; —X§">|P) =0 ((l/n)p/2).

0<t<T

2n—1 F(n _
PROOF. Let ¢(s) = > i~y F(X( ))U,(c"’x{a,(c")<ssa£1)l} and ¢(0) =

0. Note that for o{™ <t < o{™) |

t
XM = 64 /0 #(s)dZ,.

As in the proof of Lemma 2-(a), we have

t
E sup |X™ - X,)P =E sup | (¢(s) — F(X),)dZ,|P
0<t<T o<t<T Jo

T
<CE / 16(2) — F(X),JPdA,
0

2n—1 a’(cn}l

:C’EZ/ " lo(t) - F(X),FdA,

SCY (UmE| sup  6(t) = F(X).P
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Using (1.3)-(1.5), Lemma 3 and Lemma 2-(b), we get

E| sup j¢(t) = FXuP|=E| sup |[F(X™) () — F(X)l?
k

Y<i<ol?) oy <t<ol?

O'(n
k k41

< 2P~1ﬁpE|X(n) _Xa,(c")lp

o (™

4
+2P~18PE  sup (|t—01(cn)|1/2+ |X: — X (n)|>
Ufc")fts"fc?l Tk

< C@/n)P?

which completes the proof. I:I
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