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COVERING RADIUS, VOLUME
COMPARISON AND SPHERE RIGIDITY

GABJIN YUN

ABSTRACT. We prove some relation of volume with the covering ra-
dius of Riemannian manifolds and reprove well-known sphere rigidity
theorems by using it.

0. Introduction

Sphere rigidity problem is the classical and one of the main themes in
differential geometry. So far there are so many theorems about sphere
rigidity. In particular, after Gromov introduced the Gromov-Hausdorff
distance between metric spaces ([5]), the theory of sphere rigidity has
been developed so much and several new concepts came out, for example,
radius, covering radius, packing radius, excess, etc. (see [3], [6], 8], [10],
[9] and references are therein). In this note, we will get some relations
of the covering radius with volume of a given Riemannian manifold with
Ricei curvature condition and prove well-known sphere rigidity theorems
by using simple argument.

Let X be a compact metric space. The k-th covering radius of X is
defined by

Covg(X) = inf 7r(p1,...,p8),
Pty Pk
where 7, (p1,...,pk) = 7 is the smallest number satisfying

B(py,r) U B(p2,7)L -+~ U B(pg,7) = X.
In [3], he proved the following theorem.
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THEOREM 1 ([3]). Let n > 2. Then there exists ¢ = e(n) > 0 such
that if (M, g) is a closed Riemannian n-manifold satisfying

Ky > 1, CovgM > Cov,S™ —¢ for g=n+1 or n+ 2,

then M is diffeomorphic to S™.

Usually, the notion of k-th covering radius lies between volume and
radius, the first covering radius. Recall that the radius of a compact
metric space X is defined as

Rad(X) = min max d(p, g)

which is related with the diameter by
Rad(X) < diam(X) < 2Rad(X).

Note that Rad(X) is the smallest positive number  so that X can be
covered by the closed ball B(p,r) = {z € X : d(p,z) < r} for some
p € X. For example, Rad(S™) = diam(S™) = r and Covg(S™) = 5,k =
2,...,n+ 1 with the standard round metric ([3]).

In section 1, we will prove a relation of covering radius with volume
of a given Riemannian manifold and reprove the well-known results. In
section 2, we will verify that for given n > 2 and v > 0, there exists
¢ = €(n,v) > 0 such that if (M,g) is a closed Riemannian n-manifold
satisfying

Ky 21, vol(M)>v and diam(M) >« — ¢,

then M is diffeomorphic to S™. One can find this problem in [9]. Of
course, it is also almost known due to T. Colding ([4]). However, we
shall prove it here by using other method which is very simple and easy.

The problem without volume condition is still open and looks quite
not easy to prove it. The main idea to prove this theorem is that for
a closed Riemannian manifold M with K » > 1. the lower bound of
diameter of M gives the lower bound of the covering radius.
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1. Volume and Covering Radius

In this section, we shall prove some relation of volume with covering
radius and well-known diffeomorphism sphere theorems due to [8] and
[10] as an application of Proposition 1. First, we have the following
theorem:.

THEOREM 2 ([3]). Covy is continuous on the space of compact metric
spaces relative to the Gromov-Hausdorff topology.

This implies that for given € > 0, there exists a positive real number
d > 0 such that if X and Y are compact metric spaces with dgy (X.Y) <
d, then [Covg(X) — Couvp(Y)| < €.

Second, we need the following theorem which is due to T. Colding
([4]). Denote by w, the volume of S™ with the standard round metric.

THEOREM 3 ([4]). For given e > 0, there exists 2§ > 0 such that if M
is a closed Riemannian n-manifold satisfying Ric(M) > n—1,vol(M) >
wn — 9, then dgy (M, S™) < e.

The following proposition shows that if the volume of a given Rie-
mannian manifold M is almost equal to the volume of the round sphere
S™, then the covering radius of M is also almost equal to the covering
radius of S".

PROPOSITION 1. Let (M, g) be a closed Riemannian n-manifold with
Ric(M) > n — 1. Then, for any € > 0, there exists 6 = §(n,€) > 0 such
that if vol(M) > w,, — 6, then Covy,1(M) > Cov,11(S™) — e

Proor. It follows immediately from Theorem 2 and Theorem 3. O

COROLLARY 1 ([8]). Forn > 2, there exists § = §(n) > 0 such that
if (M, g) is a closed Riemannian n-manifold satisfying

(1) Ky > 1, vol(M) > vol(S™) - 0,

then M is diffeomorphic to S™.
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PROOF. Choose a positive small number ¢ > 0 so that Theorem 1
holds. By Proposition 1 above, there exists § = §(n,€) > 0 such that the
condition (1) implies

COU7L+1 (A.{) Z COUn+1(Sn> — €.
Applying Theorem 1, we get the result. [l

Next, we will show that under the assumption of sectional curvature
> 1, manifolds with the radius almost 7 also has the property that the
(n + 1)-th covering radius is almost equal to that of S™. And then we
will prove a differentiable sphere theorem with radius condition due to
Shiohama-Yamaguchi ([10]).

For a metric space (X,d) with a metric d, we define the distance of
length d; on X by

di(z,y) = inf{l() : 7(0) = =, (1) = y},

where [(7) denotes the length of the curve v. There is no reason, in
general, that d = d; holds for a given metric space (X,d). In fact, the
topologies induced by d and d; may be different (cf. [5]). A metric
space (X, d) is called a length space (or inner metric space) if it is locally
compact and d = d;. An Alexandrov space is a finite topological dimen-
sional complete length space with a lower curvature bound in distance
comparison sense (See, for example, [2]).

PROPOSITION 2. For given € > 0 and n, there is § = 6(e,n) > 0 such
that if (M, g) is a closed Riemannian n-manifold satisfying

K}w Z 1, Rad(M) 2 7w ‘5,

then Cov, 1M > Covy 18" —e =7/2 — .

PROOF. Suppose Proposition 2 is not true. Then for some ¢, > 0,
we can choose a sequence of Riemannian n-manifolds (M;, g;) satisfy-
ing Ky, > 1, Rad(M;) > m — 1/i, but Covys\M; < 7/2 —¢€,. By
the Gromov’s precompactness theorem ([5]), (M;, g;) subconverges to an
Alexandrov space (X, d) with curv > 1. In particular, curvature and ra-
dius conditions imply that M; does not collapse, i.e., vol(M;, g;) > v(n)
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for some constant v > 0, depending only on the dimension n(see [7]).
Since Covy, is continuous with respect to the Gromov-Hausdorff topology
([Theorem 2]), we have

(2) Covy1 X = lim Cov, 1 M; < —g — €.
22— 00

In particular, since Cov; X = Rad(X), we get
Rad(X) = Cov; X = lim CoviM; = lim Rad(M;) > 7.
2—>00

100

On the other hand, curv > 1 implies ([2]) that diam(X) < 7 and so
Rad(X) < diam(X) < n. Hence, Rad(X) = n = diam(X). Thus, it is
easy to see ((3], [6], [2], [11]) that X is isometric to S™. In particular,
Covpy1 X = Covpy1S™ = 7/2, which is a contradiction to (2). O

COROLLARY 2 ([10]). For given n > 2, there exists € = e(n) > 0 such
that if (M, g) is a closed Riemannian n-manifold satisfying

Ky > 1, Rad(M) > 7 —«,
then M is diffeomorphic to S™.

ProoF. It follows immedieately from Proposition 2 and Theorem 1.
O

2. Non-collapsing manifolds with diameter pinching

In this section we will show some sphere rigidity theorem by using
covering radius. Almost the same proof as in Proposition 2 shows the
following proposition which Rad is just replaced by diameter in non-
collapsing case.

PROPOSITION 3. For given ¢ > 0 and n > 2,v > 0, there is § =
6(¢,n,v) > 0 such that if (M,g) is a closed Riemannian n-manifold
satisfying

Ky 21, wol(M)>v and diam(M) > m — 4,

then Cov, 1M > Covpy15™ —e = w/2 — e
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PROOF. Suppose Proposition 3 is not true. Then for some €, > 0,
we can choose a sequence of Riemannian n-manifolds (A4, gi) satisfy-
ing Ky, 2 1,v0l(M) > v and diam(M;) > 7 — 1/, but Cov,y  M; <
m/2 — €,. By the Gromov’s precompactness theorem ([5]), (M, g:) sub-
converges to an Alexandrov space (X, d) with curv > 1. Since Covy i1
is continuous with respect to the Gromov-Hausdorff topology, we have

(3) Covp1 X = lim Cov, 1 M; < T €o.
1300 2

Also it is easy to see that diam(X) = 7. Thus, X is isometric to S™
again. In particular, Cov, 11X = Cov,1S™ = /2, which is a contra-
diction to (3). O

Applying Proposition 3, we can prove the following theorem which is
one of the main theorems in this note.

THEOREM 4. For given n > 2,v > 0, there exists € = e(n,v) > 0 such
that if (M, g) is a closed Riemannian n-manifold satisfying

(4) Ky 21, wol(M)>v and diam(M) > n — e,

then M is diffeomorphic to S™.

ProoF. By Proposition 3 above, (4) implies that CovpiiM > Covy, g
S™ — 6 = m/2 — ¢ for some small number 6. Then applying Theorem 1,
we get the conclusion. 0
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