WEAKTYPE $L^1(R^n)$-ESTIMATE FOR CRETAIN MAXIMAL OPERATORS

  • Published : 1997.11.01

Abstract

Let ${A_t)}_{t>0}$ be a dilation group given by $A_t = exp(-P log t)$, where P is a real $n \times n$ matrix whose eigenvalues has strictly positive real part. Let $\nu$ be the trace of P and $P^*$ denote the adjoint of pp. Suppose that $K$ is a function defined on $R^n$ such that $$\mid$K(x)$\mid$ \leq k($\mid$x$\mid$_Q)$ for a bounded and decreasing function $k(t) on R_+$ satisfying $k \diamond $\mid$\cdot$\mid$_Q \in \cup_{\varepsilon >0}L^1((1 + $\mid$x$\mid$)^\varepsilon dx)$ where $Q = \int_{0}^{\infty} exp(-tP^*) exp(-tP)$ dt and the norm $$\mid$\cdot$\mid$_Q$ stands for $$\mid$x$\mid$_Q = \sqrt{}, x \in R^n$. For $f \in L^1(R^n)$, define $mf(x) = sup_{t>0}$\mid$K_t * f(x)$\mid$$ where $K_t(X) = t^{-\nu}K(A_{1/t}^* x)$. Then we show that $m$ is a bounded operator of $L^1(R^n) into L^{1, \infty}(R^n)$.

Keywords

References

  1. Ark. Mat. v.23 On maximal functions generated by Fourier multiplier H. Dappa;W. Trebels
  2. Math. J. Quasiradial Bochner-Riesz means for some nonsmooth distance functions Y.-C. Kim
  3. Acta Sci. Math.(Szeged) v.62 A note on pointwise convergence of quasiradial Riesz means Y. Kim;A. Seeger
  4. Studia Math. v.50 On Littlewood-Paley functions W. Madych
  5. Arkiv for Mat. v.9 Singular integrals amd multiplier operators N. M. Riviere
  6. Bull. Amer. Math. Soc. v.84 Problems in harmonic analysis related to curvature E. M. Stein;S. Wainger
  7. Trans. Amer. Math. Soc. v.140 On the convergence of Poisson integrals E. M. Stein;N.J. Weiss