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ON STOCHASTIC EVOLUTION EQUATIONS
WITH STATE-DEPENDENT DIFFUSION TERMS

JAl HEul KiM AND JUNG HoON SoONG

ABSTRACT. The integral solution for a deterministic evolution equa-
tion was introduced by Benilan. Similarly, in this paper, we de-
fine the integral solution for a stochastic evolution equation with a
state-dependent diffusion term and prove that there exists a unique
integral solution of the stochastic evolution equation under some
conditions for the coefficients. Moreover we prove that this solution
is a unique strong solution.

1. Introduction

In this paper, we consider the following stochastic evolution equation

dX: = AX;dt + ¥(t,X:)dB;, t >0
(L1) {

X() = Ty
where A is an unbounded m-dissipative operator for a real separable
Hilbert space K to itself, i.e. for all z,y € D(A), (Az— Ay,z—y)x <0
and for any A > 0, I —AA is surjective, ¥ € L?([0,0c)x K — 09(H, K)),
where o2(H, K) is the set of all Hilbert-Schmidt operator from another
Hilbert space H to K and B is a cylindrical Brownian motion on H.
The second term of the right hand side of (1.1) is It6’s integral of
U(t, X;) with respect to B;.

Stochastic evolution equations have been studied by many mathe-

maticians. Curtain and Pritchard [3}, Dawson [4] and Miyahara [6], by

the semigroup approach, defined the strong solution, mild solution and
weak solution and gave the relation between these solutions. By the

Received July 19, 1997.

1991 Mathematics Subject Classification: 60H10.

Key words and phrases: stochastic evolution equation, integral solution.

The first author was supported by NON DIRECTED: RESEARCH FUND,
Korea Research Foundation, 1994.



1020 Jai Heui Kim and Jung Hoon Song

Lion’s approach, Pardoux [7] studied the uniqueness and existence of
strong solution when A is coercive. Kim [5] intreduced a new kind of
approach. More precisely, he first defined the integral solution of (1.1)
with ¥(t, X;) = ®(¢), and studied the uniqueness and existence of inte-
gral solution and strong solution. The integral solution of deterministic
evolution equations was first introduced by Benilan|2].

In this paper, we define the integral solutior. of (1.1) with state
dependent noise and prove that a strong solution of (1.1) is an integral
solution (Theorem 3.3). And in the case that A is linear, we prove that
there is unique integral solution of (1.1) (Theorem 3.5) and that this
integral solution is the unique strong solution(Theorem 3.7). These
results are extensions of the ones in [5].

The organization of this paper is as follows. Section 2 establishes
the basic notations and results in [5]. In Section 3, we give our main
results.

2. Preliminaries

Let (2, F, P) be a probability space with reference family {F}¢>0
and K be a real separable Hilbert space with inner product (-, )x. An
K-valued function X,(w) defined on [0,00) x Q is called an K-valued
process if for any y € K, (y, X;)k is a real valued process.

DEFINITION 2.1. A mapping By(h,w) : [0,00) x H x Q@ — R! is
called a cylindrical Brownian motion on separable Hilbert space H if
it satisfies the following conditions :

(1) Bo(h,-) =0 and By(h,-) is F;-adapted.

(2) Forany he H, h# 0, B(h,-)/|| k| is R'-valued Brownian
motion.

(3) For any t € [0,00) and o, 3 € R! and h,x € H, the following
formula holds

Bi(ah + Bk) = aBith) + 8Bi(k) P — a.s.

DEFINITION 2.2. Let ¢(t) be an F;-adapted H-valued process such
that for any t > 0,

EE/O'H o(s) 1 ds] < oo,
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where F [Y] is the expectation of a random variable Y. The stochastic
integral fot < ¢(s),dB,s > of &(t) is the real valued process given by

(2.1) /0 < ¢(s),dB, >= Z/ )yen)i dBs(en),

where {e, | n = 1,2,---} is a complete orthonormal system of H and
where the integral on the right hand side of (2.1) is usual Itd’s integral
with respect to real valued Brownian motions B;(ey,).

Let 02(H, K) be the set of all Hilbert-Schmidt opertors from H to
K. It is well known that o2(H, K) is a Hilbert space when the Hilbert-
Schmidt norm || - ||, and inner product (-,-)2 are introduced on it.

DEFINITION 2.3. Let ®(¢) be an F;-adapted o-(H, K)-valued pro-
cess such that for any ¢t > 0

(2.2) E| /0 | ®(s) |I% ds] < oo

The stochastic integral fo s)dB, of ®(t) is the A-valued continuous
Fi-adapted process determlned by

(2.3) (k, /th,(s) dBy)k ,—_/0' < ®*(s)k,dB, > P —as.

for any k € K. where ®*(s) is the dual operator of ®(s) and the right
hand side of (2.3) is the stochastic integral in the sense of Definition
2.2,

Consider the following stochastic evolution equation

dZ, = AZ,dt — ®(t)dB,, t > 1)
(2.4) { ‘ ‘ (t) dBe

Zy =29

In [5], Kim defined the integral solution of (2.4) (cf.Definition 3.2 with
®(t, X;) = ®(t)) and gave the following results which is necessary to
prove our main results.
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THEOREM 2.4. Let zp € D(A) and ®(t) € oo(H, D(A)) with
¢

E [/ I @(s) ng(H,D(A» ds’ < oo for each t € [0,T].
0

If A is linear m-dissipative, then equation (2.4) has a unique integral

solution Z; such that Z; € D(A) for any t € [0,T]. Moreover, when
D(A) = K, this integral solution is strong soluticn.

3. Main results

DEFINITION 3.1. An Fi-adapted D(A)-valued L2-process X, is
called a strong solution of (1.1) if it satisfies the following conditions:

(1) For any ¢t > 0,
t
(3.1) B[ 1%, X,) [3ds] < o0
0
(2) For any t > 0,

t t
(3.2) Xj:am+l/l4Xgﬁ~l/ (s, X,)dB, P —as.
0 0

Using usual Picard approximation method, it is easy to prove that if
A and ¥ are Lipschitz continuous then the equation ( 1.1) has a unique
strong solution.

DEFINITION 3.2. An F;-adapted K-valued L*-process X, is called

an integral solution of (1.1) if it satisfies the following conditions: (1)
U(-, X.) € L3([0,00) x Q — 03(H, K)) i.e. for any t > 0,

4
EJHW@XQ@M<®
0
(2) For any ¢ > 0,

1 1 ‘ ‘
2 I X2 31X el + [ (s, X0~ opdr
. Ed
(3.3) - [ < X, ), s, >

1/t ;
+ —2—/ | (T, X;) |2 dr P —as.




Stochastic evolution equations 1023

THEOREM 3.3. If X, is a strong solution of (1.1), then X, is an
integral solution.

Proof. Since X; is a strong solution of (1.1), the following equality
holds. For ¢ € [0, 7]

t t
X,,:a:o%—/ AXSds+/ V(s, X;)dB, P —as.
0 0

For fixed z € D(A), deﬁneF K — Rlby F(z) =1 || z—z |%.

Then F, =z —z and F,, = 6 = I. Applying Itd’s formula to F,

e
CIX el
1 , ’
=5 I X -z lk +/ (Xr—2, AX;)kdr
t ’ 1t
+/ < U7, X;)(X; —x), dB; > +§/ | w(r, X.) |1 dr
L ‘ |
=3 | Xs —x ||% +/S (X, —x, AX, — Az)gdr
t t
+/ (X, —z, A:E)Kd7+/ <¥*(r, X;W(X; —x), dB; >

I
w5 [ ¥ X B ar

IA

1 t
31X —al+ [ (X —a, Ae)ar
t
+/ <O (1, X )(X; —2), dB; >

1 t
-+ -2-/ | ¥(r, X;) H% dr P —as.

since A is dissipative. Hence X; is an integral solution of (1.1). The
proof is complete. ad
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THEOREM 3.4. Let X, Y, be strong solutions of dX, = AX.dt +
U(t, X;)dBy, dY, = AY,dt + ®(t, Y;) dB,, respectively, with the same
initial value Xy = Yy = g, and let A be dissipative. Then the following
inequality holds :

(3.4)
1
§(|X, Y ”A<“” ~Y, %
t
+ / < (¥(r, X7) = O(7, ;) (X, - Y:), dB, >

1 f! ‘
+ 5 / H \11(7—7 ‘XT) - (I>(T, Y-r) [ié dr P — as.

Proof. Since X, and Y; are two strong solution of the above equa-
tions,

[2 t
X, -Y, = / (AXS~AYS)ds-/ (T(s, X,)— (s, Y,))dB,  P—as.
0 4]
By It&’s formula,
1, . , 1 ) ‘
o I Xe =Yellk = S I X =Yollic+ [ (X7 =Y, AX, - AV, )iedr

i
+/ <(U(1, X,) = ®(r, ;) (X, — Ys), dB, >

+5 1 X0~ e, 1) [ ar
g%;x Y, |1

/' (U(r, X;) = B(r, Y:))* X, — Y2)), dB, >

/uwm S Y.) 2dr P as.

since A is dissipative. The proof is complete. J
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REMARK. If ¥(¢, X;) = ¥(t) and ®(¢,Y;) = ®(t) in Theorem 3 .4,
then (3.4) with ¥ (¢, X;) = ¥(¢) and ®(¢,Y;) = ®(¢) holds. We will use
this inequality to prove Theorem 3.5.

THEOREM 3.5. Let A be a linear m-dissipative operator with D(A)
= K and for any F, - adapted K -valued L*-process { Z; }s+>0, ¥(-, Z.) €
L2([0,00) — 09(H, K)) and VU satisfies || ¥(t,z) - ¥(t,y) |3 < C |
x—yl|3 forall t€l0,co)and z,y € K. Then the equation (1.1) has
unique integral solution X;.

Proof. Consider for each n =0,1,2,- .-,
(3.5) dXT = AXPdt +¥(t, X 1)dB,, X§ = 2o

where (¢, X; ') = 0. From Theorem 2.4, the equation (3.5) has the
unique strong solution X;*, and so it holds

t t
X =xzg + / AX7ds + / P(s, X:”l) dB, P — as.
0 0

Now we prove that {X*},>¢ is a Cauchy sequence. Let T > 0 be given
and fixed. From Remark of Theorem 3.4, it holds for any t € [0, 7).

1 k13 n—
'2‘ H Xt 'Xt ! “%{
t |
< / < ((r, X2 = W(r, XP2)*(XD - X27Y),dB, >
0
1 t
o [ e X - X B P
4]
and so

(3.6)

SB[ X - Xp %)

t
< m/ < (7, X771 = W(r, X2 (X] = X771),dB; >
0

t
=SB 1 X = v, X2 | ]
0
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t
<ic / B[ Xm! — X772 |2 1r
0

N =

< 1/{(*"—1 T Bl XD - x0 2
- 4 A e % T
=2/ (n - 1)! Tk

Since X and X} are in K for any t € [0,77, there is a constant
D > 0 such that E[|| X} — X? ||%] < D. Hence

1 n n— N 1 77— t
§EH| XP = XD < §'DC 1;1_! te 0,7

By usual argument, it is easy to see that {X?}n>0 is a L2-Cauchy
sequence in K, and hence there exists an F, - adapted K - valued
process X, such that X converges to X; in mean square. Thus {X}
has a subsequence {X;**} which converges uniformly in ¢ € [0, T with
probability one. For simplicity, we use the same notation {X*} for this
subsequence. Since X[* is an integral solution, we have for each z € K

1 T 1 T ‘ T
2 I Xl 51 XE —w e+ [ (e, X7~ appar
t
(3.7) +/ <O (r, XN (X —2), dB, >

t
+%/ 1O, X2 2dr P as.

Since X — X, as. and ¥ is (Lipschitz) continuous,

(3.8) I w(t, X)) — Ot, X,) l2— 0 a.s.
And so it holds
(3.9) | ¥ (t, X]*) — " (¢, X;) |la— 0 as.
We have

1, XP X = U (b X)X, |0
(3.10) <SP, X070 o | X7 = X Ik

+ W, XPT) = X 2 | X ke
Since || U*(¢, X' !) [la< oo , the right hand side of (3.10) converges
to 0 a.s. Hence ¥*(t, X" 1) XP — U(¢, X)X, as. Letting n — oo
in (3.7) , we obtain (3.3). The uniqueness of integral solution is clear
by the following Theorem 3.6. The proof is complete. ]
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THEOREM 3.6. Let the assumptions of Theorem 3.5 hold. If X,
and Y; are integral solutions of dX; = AX,dt+¥(t, X;)dB; and dY; =
AYydt + ®(t, Y;) dBy, respectively. with the same initial value Xy =
Yy = xo, then

1 1
S I X =Y k<5 1 X =Y llk
t
(3.11) . / < (U(r, X;) — (7, Y.))* (X, ~ V), dB, >

;%/ | O(r, X,) = &(r, V2) |Zdr  P—as

for0 <s<t<T.

Proof. Let X and Y," be the strong solution of the approximation
problems as in the proof of Theorem 3.5. According to the Theorem
3.4 we can see that

1 1 T n
S I XP YR < 5 XD - Y Ik

t
312) [ < (U XPT -8 VPO (0 - YR, dB, >

1 t
3 [ Iem X e v Bar P

Since X} — X, and Y;” — Y}, from (3.12), we have (3.11). The proof
is complete. O

THEOREM 3.7. Let the assumtions of Theorem 3.5 hold. Then the
equation (1.1) has unique strong solution.

Proof. According to Theorem 3.5, (1.1) has the unique integral so-
lution X; € D(A) = K as the limit of the strong solution X]* of the
equation (3.5). Hence for any y € D(A*) = K , we have
(3.13)

(v, Xk
t

t
— (g, z0)x ~ (4 / AXT ds)k + (v, / U(s, X7V dB,)x
0 0

¢ t
— (y,20)K + / (A"y, XT)x ds + / < T (s. X7 Y)y,dB, >
0 0
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Since X — X, a.s.,
(A"y, XJ) — (A"y, X,) = (y, AX,) uniformly in ¢ € [0, 7].
By (3.9), we have
(8, Xy = ¥ (t, Xyl < 972, X7) = 8 (t, Xo)||2|lylix — O.
Hence U*(¢, X7')y converges to ¥*(t, X;)y uniformly in ¢ € [0,7] and

2

t t
/ < W*(s, X* Yy, dB, >— / < U*(s. X,)y,dB, > .
0 0

Letting n — oo in (3.13), we have for any y € K

t t
(ant)K = (y,l‘o +/ AXS ds +/ ‘P(Sa Xs)st)K
0 0

and hence
¢ ¢
Xi = xo + / AX,.ds +/ V(s, X,)dB; P —as.
0 0

Thus X, is a strong solution of (1.1). The proof is complete. O
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