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A PRACTICAL ESTIMATION METHOD
FOR GROUNDWATER LEVEL ELEVATIONS

CHooN KyuNG CHO AND SUNGKWON KANG

ABSTRACT. A practical estimation method for groundwater level
elevations is introduced. Using geostatistical techniques with drift,
averaging process and ratio, experimental variograms show signifi-
cant improved correlation compared with those from conventional
techniques. The estimation method is applied to a field experimen-
tal data set.

1. Introduction

Groundwater and groundwater contamination have been important
issues in environmental concerns. Since movement of groundwater con-
taminants follows groundwater flow direction, estimation of groundwa-
ter level elevation is one of key factors for determining the fate of the
contaminants and their spatial distributions. Often, in practice, due
to technical and economical reasons, groundwater level elevations are
measured at irregularly spaced locations. However, most groundwater
numerical simulation algorithms are developed under the assumption
that input data on uniform or regular grids are given. Also, very
often, hydrologists need information at unmeasured locations. There-
fore, based on an available data set, a systematic method for estimating
groundwater level elevations at unsampled locations is needed.

The purpose of this paper is to address a geostatistical method,
called kriging, and introduce some of new concepts such as averaging
process and ratio which produce significant improvement for obtain-
ing correlation between the geological structure of the site and the
variance of groundwater level elevations. The method produces more
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accurate continuous information than the one obtained by the conven-
tional method. As an interpolation method, kriging is one of opti-
mization techniques, and it accounts for underlying geological struc-
tures. Therefore, statistical, geological, and mathematical aspects are
involved in the development of estimation methods. Our analyses and
statements are by no means mathematically or statistically rigorous
due to uncertainties of underground geological structures and their
complex interactions with groundwater in real fields. Instead, we focus
on methodologies and main ideas arising in estimation of groundwater
level elevations so that our methods are able to apply for practical sim-
ulations. Rigorous analyses will be reported in a forthcoming paper.

Geostatistics can be considered as a collection of techniques for solv-
ing the estimation problems involving spatial variables. In recent years,
geostatistical methods have been applied to various problems in geo-
hydrology and other sciences (see, for example, [2,3,7,14,18]). Among
them, the punctual kriging and the universal kriging have been most
commonly used in soil and water sciences to estimate a spatially dis-
tributed random variable at unsampled locations. Both methods are
based on the second-order stationarity or the geostatistical intrinsic
hypothesis: the first and second moments of the random variables
or regionalized variables are stationary (see Section 2). The two es-
timation methods are “optimal” in the sense that they produce the
exactly same estimated values as the field data at measured locations
(unbiasedness) and minimize the variance of the estimated expected
values at unmeasured locations. But, since most field data do not sat-
isfy the instrinsic assumption, there are needs to account for apparent
anisotropic aspects resided in the field data.

In this paper, groundwater level elevations at unmeasured locations
are estimated based on an available field samples using a modified punc-
tual kriging method. Applying drifts and the new proposed concepts,
averaging process and ratio, the intrinsic hypothesis will be overcome.
General kriging procedure for groundwater level elevations is following.

1) Based on a given sample data set collected in a site, find an ex-
perimental semivariogram representing correlation between geological
structure of the site and the variance of data distributions. This is the
key step in kriging, and it is difficult. All available information such as
geological structure, dynamical or geophysical aspects of the site are
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incorporated. The proposed concepts such as averaging process and
ratio are considered in this step.

2) Find a mathematical model representing the continuous informa-
tion resided in the experimental semivariogram. This step requires de-
velopment of a numerical algorithm for fitting the mathematical model
to the experimental semivariogram.

3) Solve the kriging system to obtain the optimal weights on the se-
lected samples for kriging. This solution will produce the best expected
estimation groundwater level elevation at each desired location. In this
step, an efficient numerical solver for the kriging system is needed.

The contents of this paper are following. In Section 2, regionalized
variables, random functions, theoretical and experimental variograms,
and mathematical models needed in kriging procedure are explained.
To account for spatial anisotropic aspects of the geological structure,
a drift and two new proposed concepts, averaging process and ratio,
are also introduced. The punctual kriging is described in Section 3.
In Section 4, the 26 water level elevation samples collected at an ex-
perimantal site are chosen for kriging. The semivariograms obtained
by considering averaging and ratio show significant improvement com-
pared to those by conventional methods.

2. Regionalized variables and Semivariogram
2.1. Regionalized variables and semivariogram

A regionalized variable is a numerical function with a spatial distri-
bution which varies from one place to another with apparent continuity,
but the changes of which cannot be represented by any workable func-
tion [3]. It contains two apparently contradictory characteristics: (i)
a local, random, erratic aspect which calls to mind the notion of ran-
dom variable and (ii) a general (or average) structured aspect which
requires a certain functional representation.

Typical regionalized variables are functions describing natural phe-
nomena, that have geographic distributions such as the elevation of the
ground surface, the amount of precipitation in an area, porosity in a
reservoir, ore content in a mineralized body, etc. Some of characteris-
tics of regionalized variables are localization, anisotropy and continuity.
Localization is associated with geometric features such as specific size,
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shape, and orientation of the sample. Since we are interested in esti-
mating groundwater level elevations, localization will be restricted to
point supports in this paper. Changes in values of an anisotropic re-
gionalized variable are gradual in one direction and rapid or irregular
in another. The spatial variation of a regionalized variable may be
extremely large to very small, depending on the phenomenon. Despite
the complexity of the fluctuations, an average continuity is generally
present [18]. A proper formulation must take this double aspect of
randomness and structure into account in such a way as to provide a
simple representation of the spatial variability and lead to a consis-
tent and operational approach of the solution of problems. One such
formulation is the probabilistic interpretation as provided by random
functions.

A random wvarieble Z(x) is a variable which takes a certain num-
ber of numerical values according to a certain probability distribution
defined in a certain spatial domain €2, and the regionalized variable
z(x) can be considered as a particular realization of the set of random
variables {Z(x) : x € Q}. This set of random variables is called a
random function and will be written Z(x). Thus, a random function
Z(x) expresses the random and structured aspects of the regionalized
variable z(x): (i) locally, at a point x;, Z(x;) is a random variable,
and (ii) Z(x) is also a random function in the sense that for each pair
of points x; and x; + h, the corresponding random variables Z(x1)
and Z(x; + h) are not, in general, independent but are related by a
correlation expressing the spatial structure of the initial regionalized
variable 2(x). The probabilistic interpretation of a regionalized vari-
able z(x) as a particular realization of a certain random function Z(x)
has an operative sense only when it is possible to infer all or part of
the probability law which defined this random function in its entirety.
Obviously, it is not rigorously possible to infer the probability law of a
random function Z(x) from a single realization z(x) which is, in addi-
tion, limited to a finite number of sample points x;. Many realizations
21(x),- -, zx(x) of the random function Z(x) are required in order to
infer the probability law of Z(x). Since, in practice, we shall be lim-
ited to a single realization {z(x;)} of Z(x) at the positions x;, certain
assumptions are necessary. These assumptions involve various degrees
of spatial homogeneity and are introduced under the general heading
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of the stationary hypothesis. In practice, even if only over a certain
region, the phenomenon under study can very often be considered as
homogeneous, the regionalized variable repeating itself in space. This
homogeneity or repetition provides the equivalent of many realizations
of the same random function Z(x) and permits a certain amount of sta-
tistical inference. Two experimental values z(xg) and z(xg + h) at two
different points xg and xo + h can, thus, be considered as two different
realizations of the same random variable Z(xp). This type of approach
is not peculiar to geostatistics, it is used to infer the distribution law
of the random variable Z(x) from a histogram of data values {z(x;)},
or more simply, to infer the mathematical expectation E{Z(x)} from
the arithmetic mean of the data.

Consider a random function Z(x) defined on a certain spatial domain
0 ¢ R™. For every set of k points, x;,--- ,xx € Q, called support
points, there corresponds a k-component vectorial random variable

{Z(Xl)’Z(X2)7' T 7Z(Xk)}'

This vectorial random variable is characterized by the k-variable dis-
tribution function

Frisoxi (21,22, -y z0) = Prob{Z(x;) < z1,- - - s (Xk) < 2k}

The set of all these distribution functions, for all positive integers
and for every possible choice of support points in €2, constitutes the
“spatial law” of the random function Z(x).

A random function Z(x) defined on  is stationary, in the strict
sense, if its spatial law is invariant under translation. More precisely,
any two k-component vectorial random variables {Z(x;), -+, Z(x;)}
and {Z(x; + h),---,Z(xx + h)} are identical in law (have the same
k-variable distribution law) regardless of the translation vector h for
all k =1,2,3,---. However, in linear geostatistics, as we are only in-
terested in the first two moments, it will be enough to assume first that
these moments exist, and then to limit the stationarity assumptions to
them.

A random function Z(x) defined on Q is stationary of order 2 if (i)
the mathematical expectation E{Z(x)} exists and does not depend on
the support point x, i.e., there is a constant m such that

(2.1) E{Z(x)} =m forallx e Q,
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and (ii) for each pair of random variables {Z(x), Z(x+h)} the covari-
ance C exists and depends on the separation vector h with x+h € Q,
ie.,

(2.2) C(h) = B{Z(x+h) Z(x)} — m®

for all x € (.

The stationarity of the covariance implies the stationarity of the
variance and the variogram. The following relations are immediately
evident:

Var{Z(x)} = E{[Z(x) - m]*} = C(0),
(2.3) 1 )
v(h) = SE{[Z(x+h) - Z(x)[} = C(0) — C(h)

for all x € Q, where Var is the variance of Z(x) and ~«(h) is called the
semivariogram or the intrinsic function. Thus, under the hypothesis
of second-order stationarity, the covariance and the variogram are two
equivalent tools for Z(x) separated by a vector h. We can also define
a third tool, the correlogram:

_Ch_,

(2.4) o) = Go =1 Eoy

Then the covariance C(h) satisfies [13] that

(i) C€0)=Var{Z(x)} 20,
(2.5) () C(h) = C(-h),
(i) |C(h)| < C(0) (Schwartz inequality).

On the other hand, a random function Z(z) satisfies the (geostatistical)
intrinsic hypothesis [17) if (i) the mathematical expectation exists and
does not depend on the support point x, and (ii’) for all vectors h with
x+h € Q the increment [Z(x+h) — Z(x))? has a finite variance which
does not depend on x, i.e.,

(2.6) Var{Z(x+h) — Z(x)} = B{[Z(x+h) — Z(x)]*} = 2v(h)
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for all x € Q.

Note that the second-order stationarity assumes the existence of a
covariance and, thus, of a finite a priori variance, Var{Z(x)} = C(0).
Thus, the existence of the semivariogram function ~(h) represents a
weaker hypothesis than the existence of the covariance, i.e., the second-
order stationary implies the intrinsic hypothesis but the converse is not
true. The intrinsic hypothesis can also be seen as the limitation of the
second-order stationarity to the increments of the random function
Z(x). A random function satisfying the intrinsic hypothesis has the
first and second moments of the difference Z(x+h)-- Z(x) which depend
only on the separation vector h of the two points x+h and x, and not
on their individual locations.

2.2. Drift

In intrinsic theory, we assume that random functions satisfy the
intrinsic hypothesis. But, in practice, many regionalized variables or
random variables show anisotropic behaviors due to the underlying
geological nature. To overcome this difficulty several methods have
been proposed. Among them, the most common way is to consider the
drift. For a random function Z(x) the drift M(x) is defined by

(2.7) M(x) = E{Z(x)}
and the residual Y (x) is defined by
(2.8) Y(x) = Z(x) — M(x).

Thus, the drift at a point x is the expected value of the random variable
Z at point x. Then it is easy to see that the residual Y (x) satisfies that

(2.9) E{Y(x)} = 0.

The form of the drift M (x) depends on spatial data distribution. Often
it is expressed as a linear combination of polynomials in the spatial
coordinates. Also, M(x) may be a linear combination of any functions
{fe : £ =1 to k} with the coefficients a, of which are unknown, so that
the drift M(x) = 25:1 a¢ fr(x) remains unknown.
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2.3. Averaging process and ratio

The residuals obtained by subtracting the drift from the original
data show more randomness compared with the original one. But,
still, most residuals obtained from field data do not satisfy the intrin-
sic hypothesis. Thus, the experimental semivariograms applied to the
residuals show erratic behaviors and fail to obtain correlation between
spatial structure and variation of the residual distributions. These
erratic behaviors are mainly due to the heterogeneity of the aquifer
material and the anisotropic aspects remained in the residuals. To
overcome this difficulty, we propose the concepts: averaging process
and ratio.

Averaging process is to account for heterogeneity of the aquifer ma-
terial of the given site and, thus, to obtain continuous information, in
averaged sense, from the erratic data distribution. Two kinds of av-
eraging process can be implemented: averaging over a certain size of
spatial domain and averaging with a certain fixed number of samples.
If samples are collected uniformly in space, these two methods are
equivalent. But, since most sampling networks consist of irregularly
spaced data, the averaging over a certain size of spatial domain would
be better for many cases. On the other hand, ratio is to account for
anisotropy effects due to different range of influence on each direction
in data distributions. This ratio is a realization of the advection and
dispersion or diffusion processes of groundwater in conjunction with the
aquifer materials. To obtain the ratio between, for example, two differ-
ent directions, choose the data range representing the main advection
and dispersion or diffusion profiles showed in the data distributions in
the considered region, and compare them. In Section 4, we show how
these two concepts contribute to obtaining improved semivariograms.

2.4. Experimental semivariogram, mathematical model

The semivariograms defined by (2.3) or (2.6) are theoretical ones.
Under the second order stationary assumption, (2.3) and (2.6) are
equivalent. In this case, C'(0) = limy|oy(h). But, without any
assumption on existence of the covariance C(0), i.e., under the intrin-
sic assumption, only (2.6) is well-defined. In practice, only a finite
number of samples are given from the investigation area. Thus, we
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consider a discrete version of the semivariogram, called an ezperimen-
tal semivariogram.

Suppose that we are given a set of n data values {Z (x;) ' x,€Q,1<
¢ < n}. The (classical) ezperimental semivariogram ~y(h) is defined by
the arithmetic mean of the squared difference [Z(x;) — Z(x; +h)] [1,14],
that is,

1 N(h)
(2.10) 1(h) = gy 2 1266) = Z0x + )P,

where N(h) is the number of data pairs separated by the vector h.
Note that the classical estimator (2.10) is not robust since the influ-
ence of outliers on the semivariogram increases as |Z(x) — Z(x+h)|?
increases. To treat the data with outliers many robust estimators have
been developed (see, for example, [9,11,15]).

The experimental semivariogram is known only at discrete points.
The discrete experimental semivariogram should be modelled by a con-
tinuous function, a mathematical model, that can be evaluated for any
desired vector h because the experimental variogram cannot provide
variance for every lag h. Since any anisotropic aspects of variance
distributions can be treated as drift or other concepts such as ratio in-
troduced in the previous section, most mathematical variogram models
are described as functions of variable A = |h|, the radius of h, not the
vector h itself. This implies that the mathematical variogram models
depend only on the distance between sample locations not on individual
sample location. The spherical model

co+,[3(§;'f—§3—), h <,
v(h) =
co + 3, h > a,

the ezponential model

1(h) = e+ B(1 — exp(~ )

are commonly used [8,13], where the parameters cg is the nugget effect,
co + 3 is the sill value, and « is the distance h at which variogram
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reaches the sill value. Recall that the theoretical or experimental semi-
variograms defined by (2.3), (2.6) or (2.10) satisfy that v(0) = 0. But,
in practice, most experimental semivariograms show the nugget effects
due to the complexity and heterogeneity of the field aquifer materials,
and, thus naturally, the mathematical models fitted to those semivar-
iograms have the nugget effects. However, these nugget effects do not
violated the nonsingular and symmetric nature of the corresponding
kriging system (see Section 3). The sill value comes from the sec-
ond order stationary assumption, i.e., the existence of the covariance
C(0) = limp_,o ¥(h). The polynomial model

(2.11) y(h) = aih’
=0

is also commonly used. Note that, in this model, we do not assume
that the existence of the limit limj_,o y(h). This case may satisfy
the intrinsic assumption but not the second-order stationary one. The
choice of mathematical model depends strongly on data distribution
represented by the experimental semivariogram.

3. Kriging

Kriging is an interpolation method to estimate values at unmeasured
locations. It uses information from the mathematical model fitted to
the experimental semivariogram to find an optimal set of weights. The
kriging is based on the intrinsic assumption.

Consider the problem of estimating the unknown Z(x,) at x, € Q
from a set of n data values {Z(x;) : x; € Q,1 <+ < n}. Suppose that
the estimator Z*(x,) is a function of the available data:

Z*(Xo) — f(Z‘(Xl),' .. ,Z(xn)’),

Then it must be a function such that
(i) it satisfies the non-bias condition,

E{Z(x0) - 27 (x0)} = 0;
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(ii) it is reasonably simple, so as to permit the calculation of the
estimation variance
U%‘ = E{[Z(x,) - Z*(XO)]z}
= E{(Z(x))"} + E{(Z"(%,))?} — 2B{Z(%0) 2" (x0) }.

For any function f, the calculation of the first-order moment E{Z(x,)—
Z*(x0)} and the various second-order moments of the expression of ol
requires that the n-variable distribution {Z(x1),--- , Z(x,)} be known.
However, since it is generally not possible to infer this distribution from
a unique realization of the random variable Z(x,), we will consider, in
this paper, the following form of estimator, a linear combination of the
available data,

(3.1) Z*(x0) = > wiZ(x;), w; €RT,
=1

where w;’s are called the weights on the data and R7 is the set of all
positive real numbers.

Optimization of the statistic Z*(x,) can be performed by imposing
the following two constraints

(3.2) B{Z"(x,) — Z(x,)} =0,

(3.3)  E{[Z*(x0) — Z(x,)]*} is a minimum with respect to w;.
These restrictions imply that the difference Z*(x,) — Z(x,) is unbiased

and the variance of this difference is a minimum. Using (3.1) and (3.2),
it can be written

(3.4) E{Z wi Z(x:) — Z(x,)} = 0.

Taking the expectation of each value and equating it to the mean, m,
which is assumed to be constant, yield

(3.5) > wiB{Z(x)} - E{Z(x,)} = > wim —m =0
=1 i=1
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resulting in

T
(3.6) Z w; = 1.

i=1

The punctual kriging is most commonly used in practice. It pro-

duces the estimated values which are exactly same as sample values at
measured locations, and, also, minimize the variance of the estimated
values at unmeasured locations. Specifically, it is a minimization pro-
cedure for (3.3) which is carried out over (wy, w2, - wy,) subject to
S»_ w; = 1. That is, minimize

(3.7) E{)_wiZ(x;) — Z(x,)]*} — 2 (}: w;i — 1)
=1

i=1
with respect to wy,ws, - ,w, and A (the parameter \ is a Lagrange
multiplier [10,12] that ensures > ,w; = 1). Now the condition
S, w; = 1 implies that

(3.8)

[Z_; wil () = (x|

= ZZwiwj(Z(xi) - Z(Xj)‘)2/2 + ZZwi(Z(X(,) - Z(xi))2/2.

i=1 j=1
So that (3.7) becomes

(3.9) — i i ww;y(x —x;) + 2 i wiy(Xe — X — 2A (i w; — 1) ,
i=1 =1

=1 j=1
where y(h) is the value obtained from the fitted mathematical model
function for the experimental semivariogram. By differentiating (3.9)

with respect to wi,ws, - ,wn, A, we have the following optimality
conditions

(3.10)

=23 wiv(xi — %)+ 29(%e — %) ~2A=0, i=1,2,---,n,
Fj=1

n
E w; = 1.
i=1
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Thus, the punctual kriging system is represented by the following ma-
trix form

(3.11) AW = b,
where
Cy(x1 —x1) (X1 —x2) -+ (x1—%p) 17
Y(x2 —x1) Y(x2—%2) - Y(x2—x%x,) 1
A= ,
(3.12) Y = %1) A =%2) e y(xn —%a) 1
L 1 1 1 0.
T
W: {w17w27""w’n3)‘] y

b= [A/(Xo " X]),'}’(Xo - X2)7' o 7'7(Xo - Xn)yl]T

Note that A is an (n+ 1) x (n+ 1) nonsingular symmetric matrix. The
optimal weights wy,ws, -+ ,w, can be obtained from W = A~!b. The
resulting estimation variance of punctual kriging hecomes

(3.13) ol = Z wiY(Xo — Xi) + A — ¥(Xo — Xo)-
i=1

4. Application

In this section, we apply the kriging method to a sample data set
collected during a field experiment [5,16]. All computations were per-
formed on a SUN SPARC Station 20 and the algorithms needed for
our analyses were developed under the MATLAB environment. The
data set selected for our analyses consists of 26 groundwater level el-
evations measured in the deep level of the test site aquifer. Since
the size of data set was not large, we did not try to develop effi-
cient numerical algorithms needed in optimization procedures and solv-
ing kriging system. Instead, we developed the numerical codes based
on well-known algorithms such as the Conjugate Gradient Method or
Levenberg-Marquardt method [10,12].
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The aquifer at the test site consists of a shallow alluvial terrace de-
posit averaging approximately 11m in thickness. The aquifer is com-
posed of poorly-sorted to well-sorted sandy gravel and gravelly sand
with minor amounts of silt and clay. Sediments are generally uncon-
solidated, and occur as irregular horizontal or nearly horizontal lenses
and layers. Marine sediments belong to the Eutaw Formation and con-
sisting of clays, silts, and fine-grained sands form an aquitard beneath
this alluvial aquifer. More details on the test site and other related
previous experiments, see [1,4,6,19].

Table 1 shows the 26 samples with locations and water level eleva-
tions in meter scale. The spatial ranges of the samples were —86.10m <
z < 101.69m and —49.01m < y < 263.96m. The averaged screening
depths of the wells were ranged from 55.51m to 57.93m above the mean
sea level. The screening depths of the wells W6, W11 and W15 (see
Table 1) were not reported, but they were assumed to be within the
similar ranges as other wells since the wells were installed to measure
water level elevations of the deep area of the same aquifer. The water
level elevation values were ranged from 63.58m to 65.03m above the
mean sea level. The mean and variance of the water levels were 64.5858
and 0.1040, respectively (see Table 2).

First, we need to analyze whether the 26 samples satisfy the geo-
statistical intrinsic assumption described in Section 2 before applying
kriging. Figure 1 shows the water level distributions along each direc-
tion. It is easy to observe from Figure 1 that the water level elevations
have apparent correlation between x and y coordinates and the heights:
approximately linear relation in both directions. Thus, the samples do
not satisfy geostatistical assumption and, hence, we cannot apply punc-
tual kriging directly to our samples. Based on the observation of water
level distribution profiles in Figure 1, the linear polynomial a + bz + cy
was chosen for estimating the drift. The parameters a, b, ¢ in the linear
drift were estimated by solving the following minimization problem :

26

Minimize, p . Z [a, +br; + cy; — Z(xi)]2
i=1

using the Conjugate Gradient Method (see, for example, [10,12]), where
each Z(x;) is the measured water level elevation at the location x; =
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(x:,y:). The estimated parameters were a = 64.7993, b = 0.0013 and
¢ = —0.0025.

The residuals were obtained by subtracting the drift from the orig-
inal data. Figure 2 shows the field data (+) the estimated drift(o) in
each direction. We observed that the estimated drifts were affected by
the two samples, W9 and W15 (see Table 1), whose values are much
lower than others. Figure 3 shows the distribution of the residuals at
measured locations. It is easy to see that randomness of the residual
distributions has increased significantly compared with that showed in
the original data (compare with Figure 1). More precisely, the mean
and variance of the residuals were 0 and 0.0565, respectively. Thus, by
considering the drift, the variance of the residuals was reduced approx-
imately 46% compared to that of the original data.

Kriging was applied for the residuals to estimate expected residual
values at unmeasured locations. Experimental semivariograms were
estimated from the residuals by using the classical estimator given by
(2.10). However, they did not show any apparent correlation between
lags h and the corresponding variogram values due to heterogeneity of
the aquifer (see Figure 4(a)). To obtain a reasonable correlation, the
concepts of averaging process and ratio introduced in Section 2 were
implemented (Figure 4(b)).

Several averaging procedures with different distances were applied
for 4(h). The averaged semivariograms were more continuous than
that of discrete one. Also, we observed that the averaged experimen-
tal variograms showed significantly improved correlation between vari-
ances and lags h compared to those of without any averaging processes.
However, there was a difficulty in fitting a matheinatical model to the
averaged experimental variogram due to the anisotropy effects on data
distributions. To account for the anisotropy effects on correlation, we
applied several different ratios and found out that theratioz : y = 3: 1
and the averaged distance d = 5m produced a reasonable correlation.
Figure 4(b) shows the improved semivariogram with the averaged dis-
tance d = 5 and the ratio z : ¥y = 3 : 1 together with the fitted
mathematical model. The linear model v(h) = ¢y + ah was chosen for
the mathematical model since the profile showed by the semivariogram
was approximately linear (see Figure 4(b)). The estimated parameters
were ¢g = 0.0337, the nugget effect, and a = 2.0369 x 10™%. The sill
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was not observed.

We estimated the residuals at the lattice points separated by 5m in
the range of —100m < z < 150m and —100m < y < 300m by kriging.
The final estimated water level elevations at those points were obtained
by summing the estimated residuals and the drifts. Also, we observed
that the estimation variances were higher in near boundary than those
inside of the domain due to boundary effects. This observation suggests
an investigation for developing estimation methods which can reduce
the boundary effects. Figures 5 and 6 show the contour and the three-
dimensional plots of the estimated water level elevations, respectively.
It is easy to see, from Figures 5 and 6, that the groundwater of the
studied area flows from right to left in z-direction and from near to
far field in y-direction. Recall that the measured groundwater level at
the sample W9 located at (z,y) = (20.84,6.80) was much lower than
nearby samples. This shows that there may be a possible sink source
around the location.

Table 1. Water level

sample z{(m) y(m) 2(m) water level

W1 -86.10 2.56 57.73 64.89
W2 -11.41 83.28 55.77 64.53
W3 1.62 56.17 55.92 64.68
W4 -30.84 10.38 56.25 64.71
W5 -85.85 190.51 55.53 64.13
W6 95.13 123.74 - 64.75
W7 101.69 6.15 55.58 64.70
W8 -20.20 -49.01 55.98 64.82
W9 20.84 6.80 56.61 63.84
W10 -24.76 66.37 57.69 64.76
W11 3.14 147.64 - 64.54
W12 34.16 -24.73 55.83 65.03
W13 6.16 70.25 55.51 64.73
w14 44.65 93.42 56.71 64.74
W15 -59.79 67.92 - 64.62
W16 50.81 49.03 55.74 64.88
W17 -5.65 -8.82 57.93 64.94
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W18 -18.59 35.34 56.01 64.72
W19 29.03 24.44 56.22 64.82
W20 -31.39 111.92 55.56 64.59
W21 30.07 125.92 55.87 64.57
W22 -67.73 140.19 55.77 64.41
W23 -24.52 178.32 55.83 64.35
W24 26.25 226.15 55.99 64.33
W25 -47.80 263.96 56.04 63.58
W26 51.93 173.77 55.98 64.57
Table 2. Mean and variance
mean (given samples) 64.5858
o? (given samples) 0.1040
mean (residuals) 0
o? (residuals) 0.0565
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Fig. 1. Distribution of water level.
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Fig. 5. Contour of the estimated water levels.
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