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QUADRATURE FORMULAS FOR WAVELET
COEFFICIENTS

SooN-GEoL KwoON

ABSTRACT. We derive quadrature formulas for approximating wavelet
coeflicients for smooth functions from equally spaced point values
with arbitrarily high degree of accuracy. We also estimate the error
of quadrature formulas.

1. Introduction

Let n be a fixed positive integer. Assume f € C"(R), the set of
n times continuously differentiable functions on R. Let ¢ be a scaling
function with M vanishing moments for the corresponding wavelet .
Let 7 be an integer translate and h = 27%, where k € Z is a level
number.

We denote the scaled translates of ¢ by
(1) ¢(z) = 22¢(2"z — 7).

The continuous moments of the scaling function ¢ is defined by

(2) M, = /_00 zPP(z) dz.

for any nonnegative integer p.
We also define the shifted continuous moments of ¢ by
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We would like to find a highly accurate numerical approximation for
the wavelet coefficients of f,

e [ " f@)eh() de.

Applications for wavelet coefficients are:

e wavelet approximations

e ¢}

fl) = (f ék)dk(z) + O(RM),

F=—00

e solutions of differential equations using wavelet-Galerkin methods,
and
e wavelet series expansion of a multiplication of two functions.

Now, by substitution,
() (18 = [ fhia+ )te) de

Consider the level £ = 0 and the integer translate 7 = 0. Consider
¢ as a weight function with support [0, L]. Finally, consider n point
quadrature formulas of type

(5) /_ - f(z)o(z) de ~ Zwi f(zs),

where z; are specially chosen abscissae and w; are undetermined weights.
We can choose the number of abscissae n arbitrarily high to obtain the
desired degree of accuracy.

Given equally spaced z;, we find weights w; so that the formula (5) is
exact for all polynomials of degree up to n—1. We are allowed to choose
some of the abscissae z; from outside of the [0, L] if » is sufficiently large.

Our ultimate purpose is to find n point quadrature formulas which
are applicable in [7]. There, we require the abscissae to be of fixed step
size for all n > 2.

The multiple point formulas in 8] are not appropriate because of
the inconsistent distance between two adjacent abscissae for different n.
Hence we derive new n point quadrature formulas with fixed step size h
(h=1for k = 0) for all n > 2.
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2. Algorithm for finding weights w; and abscissae z;

Consider first for the shift 7 = 0. We follow & standard approach
from numerical analysis.

THEOREM 2.1. Let the level number k € Z and translate j € Z be
fixed. Let h = 27%. If we choose equally spaced abscissae :an = h(j+1),
then there exist weights wf. i = 0,1,... ,n — 1 such that for f(z) =

77
2, p=0,1,... ,n—1
00 n-1
(6) [ @@ do = 1m Yk f(at,)
-0 i=0
Moreover, for any j, k € Z, wfj = wgo, 1=01,...,n— 1L

Proof. (6) leads to a system of n linear equations for w},

n—1
(1) BN Wk (G = M, forp=0,1,...,m—1.

i=0

Matrix form of (7) is

(8) AW = b,
where
1 1 1 1
J 7+1 j+2 j+n—1
A = FG+YE (G2 e (GHn-17 |
AR VR A N (R S
w = (w&j,w’fd,w;j,...,wﬁ_w)T,
g = (MO,j,Ml,j;MZ,j)"' ,.f‘\/ln_llj)T.

For the existence of weights wf 5»4=0,1,...,n—1, it suffices to show

that det A # 0. By performing elementary row operatios on .A we obtain

—

(9) Vi = d,
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where
1 1 ) i
0 1 2 .- n-1
S I T
d 1"‘_1 2”._1 (n-—ll)"_1
W o= (wg'j,w’f'j,wéj,... ,wfz_l’j)T7

-

d = (Mo, M1, Ma, ... ,Myi).

Note that the transpose matrix V’ of V is the Vandermonde matrix with

n-1
0,1,...,n—1anddetV =[]0 ([1]).
i=1
Since the determinant of a matrix does not change by elementary row
operations,

n—1

(10) det A=detV = []i! #0
i=1
This completes the existence of weights wf_]-,i =0,1,... ,n— 1

Since (9) is the case j = 0 and k£ = 0 in (8), we obtain
wfj :w?,m 1=0,1,... ,n— L

This completes the proof. g
Consider the case with the shift 7.

THEOREM 2.2. Let the shift T be given. Let the level number k € Z
and translate j € Z be fixed. Let h = 27%, If we choose equally spaced
abscissae zfj = h(7-+j+1), then there exist weights wf,j,i =0,1,... ,n—
1 such that for f(z) =27, p=0,1,... ,n—1

5

(11) /OO f(ac)qﬁf(a:) dz = hwni wzl-fjf(:zrf’j .
-0 i=0

: ko — 00 ;L
Moreover, for any j,k € Z, w;; = w;y, 1=0,1,...,n—1

Theorem 2.2 can be proved in the same way as Theorem 2.1.
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REMARK 2.3. One of the advantages of the above algorithm is that
finding weights once for w?,o covers wf ; for any integer translate j and

level number k.

REMARK 2.4. Above algorithm is adaptable and is easy to implement
for any positive integer n.

The matrix V becomes ill-conditioned as n increases. See Table 1 for
the condition numbers (V).

TABLE 1. The condition numbers <()).

x(V) n k(V)
1.3912e+01 || 8 | 5.2938e+07
1.5446e+02 || 9 | 2.0437e+09

2.5929e+03 || 10| 9.0078e+10
5.7689e+04 (| 11 | 4.4628e+12
1.5973e+06 || 12 | 2.4564e+14

~1 OO W3

To overcome the ill-conditioning problem, the Chebyshev polynomials
were considered in [8]. Instead of using the standard polynomials f(z) =
2P, p=0,1,... ,n— 1 in (6) and their continuous moments, they used
the Chebyshev polynomials f(z) = Tp(z), p=0,1,... ,n— 1 in (6) and
their continuous moments. The Chebyshev polynomial T,(z) of degree
of p is defined by

T()(.I‘) = 1,
Ti(z) = =z,
Ty(z) = 22T, ()~ Tp_o(z), forp > 2.
We have not pursued this aspect very far, since the numerical problems

only occur in the derivation of the weights, not in the application, and
only for higher levels of accuracy.

3. Error estimates

Fix the number of abscissae n and the level k. Let T be the shift. The
error of n point quadrature formula for the monomial z? at resolution
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h = 27F (for the integer translate j = 0) is
o n-1
ep(T) = / TP (x) do — h1/2 Z w;z
e i=0

= h'? / (heYg(z) dx — PO/ N "y (7 4 g7
¢ §e20)

n—1
= pprun) [M,, =) wi(r + z)PJ |

=0

Let
.
& (1) = kP ey(r) = My — S wi(r + i,

By (11), e=0=¢,p=0,1,... . n—1.
If f € C", then, by using the Taylor expansion,

n-1 1)

T'

for some & between jh and mh + 7h. Now

[ rwdwa — e [ sten+ jwyota) do

X))

B n—1 j(l)(Jh
- Z" T
=0

o< O { [ oo ae).

n—1

n—1
20 ST FISRRUUE S
1={

=0

) 14+(1/2) n-~{1/2)
h Ml + pnh y

where

Also

n—1

Z f h1+ 1/2) [Zw 7_ L } + O(h"Hl/?)).
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The error of the n point quadrature formula is then

00 n—1
Ef) = / F@)¢h(@) dz - h12S " wif(at )
—oo i=0

n—1 0 b n—1
= > i—#h”ﬂ/” {Ml = wy(r + i) + OO
1=20 . =0
n—1 oY
_ Z f l(ljh)hu(l/mél(T) + O
=0 ’
_ O(/’Ln+(1/2)).
If f € C™*!, we can take the Taylor series expansion one step further:
BN = [ @@ ds - 1Y wfh
o0 i::0

OTe .
f n(;7h)hn+(l/z)én(7.) + O(hn+(3/2)).

If the shift 7 is a zero of €,(r), it is a superconverging shift, with error
of O(h™3) for the quadrature formula based on zh, = h(T +1i+ 7).

It is not obvious how to find the superconverging shift 7 with &,(7),
since weights w; are functions of 7. So we follow the method introduced
in [8].

Let the level k¥ = 0 and the integer translate j = 0. The value of the
superconverging shift 7 can be determined using the product polynomial
[I(z). This polynomial is defined as

[Te) =[e-a% = [[e-7—i = e
1=0 =0 i=0

where p;(z) is a polynomial of degree n — i. Since the degree of accu-
racy is n, the quadrature formula gives the exact result for the product
polynomial [](z). Hence

n—1

0= /30 H(x)qj(_l‘) dx — Z w; H(l‘z) = Z pi(T)M; = q(7).
= i=0 i=0
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The latter expression is a polynomial of degree n in 7. The existence of
a root 7 is guaranteed for odd n, but not for even 1. If there is no root,
an arbitrary value for 7, e.g. 7 = 0, must be chosen and one degree of
accuracy is lost. With the superconverging shift =~ and weights w,; we
obtain

n—1

(12) > wi(i+ 1) = M,

1=0

4. Numerical examples

4.1. Examples of the shift 7 and weights w;

Let the level £ = 0 and the integer translate J=0. Given 7 = 0 we
find weights w; in terms of continuous moments.

e For n = 2 we obtain
wy = 1—Mj,
w = M.
e For n = 3 we obtain
wy = 1—%M1+%M2,
w; = 2My; — M,,

1 1
Wy = '—§J\«41 + §M2
e For n = 4 we obtain

11 1
wy = 1—F./\/il-*-./\/12-—6./\/13w

) 1
wy = 3M1 - §M2 + §M37

3 1
Wy = —-2-M1 -+ ZMZ — §M3,

1 1 1
= =M;—-- - M3.
w3 3 1 2M2 + 6M3
We find the superconverging shift 7 and weights w;.
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e Forn=1:

Since no step size is involved in the one point formulas, the one
point formulas are the same as those in [8]. Hence 7 = M, and
we = 1. :

Note that the one point quadrature formula with the point zo =
M was introduced at first in [2].

If ¢ is an orthogonal scaling function with M > 2 vanishing mo-
ments for the corresponding wavelet ¥, then M, = M,* ([5, 8]).
The one point quadrature formula f(M,) for the wavelet coefhi-
cients of f has degree of accuracy 2 ([8}).

e Forn = 2:
The product function is
[[@)=@-n@E-T-1)=2"-@r+De+1(r+1).
The polynomial g(7) is
q(7) = 1%+ (=2My + )7 + (M — My)
s0 that

__ oIM; — 1+£/1+4M;? — 4M,
5 :

If ¢ is the Daubechies scaling function with one vanishing mo-
ment for the corresponding wavelet v, then M; = 1/2 and My =
1/3. The discriminant is then 1 +4M;* — 4M, = 2/3 > 0 so that
7 = +v6/6. The weights for the shift 7 = —/6/6 can be found
by solving

(‘\/15/6 1—1/6/6)(:2(1)):(/&‘1)'

This yields

(o= (A ) ()= (6%)8)

which implies that

2wy + (7 + 1) 2wy

i
Lot

|
>|S
—
w

ot !
=
~—

+

|
>|S

+

—
—
w

ol T
)
~—
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Hence equation (12) is satisfied. The weights for the shift r —
V6/6 are wy = (3 + v6)/6 and w; = (3 - 6)/6.

If ¢ is an orthogonal scaling function with M > 2 vanishing
moments for the corresponding wavelet 1, then My = M, ? ([5, 8]).
The discriminant is 1+ 4M,* — 4M; =1 > 0. Hence there always
exist two distinct real 7, and

T = Ml or M1 — 1.
The weights for the shift 7 = M, can be found by solving

(ate et ) ()= (1)

This yields

Wop - Mi+1 -1 1 - 1
wy ) -M, 1 My ) L0 )
which implies that
7'2’11)[] -+ (T + 1)2’11)1 = M121 + (M] + 1)20 = M12 — MQ.

Hence equation (12) is satisfied. The weights for the shift 7 =
M —1arewy=0and w; = 1.

Since one of the weights, w;, is zero for the shift + — My, two
point quadrature formulas become one point quadrature formulas
with degree of accuracy 2. This result is the same as that for one
point quadrature formulas.

REMARK 4.1. Let ¢ be an orthogonal scaling function with M
vanishing moments for the corresponding wavelet . If the two
point quadrature formulas have degree of accuracy 2, then M =1,

Table 2 shows the shift 7 and weights w; for some M, where ¢ is
a Daubechies scaling function with A/ vanishing moments for the
corresponding wavelet 1.

e Forn =3:

The product function is

[[@) = @—m)z-7- (z -7 —2)
= 2~ 3(7+ 1)z? — (372 + 67+ 2)z — 73 + 372 + 27).



TABLE 2. The superconverging shift 7 and weights w, for

Quadrature formulas for wavelet coefficients

n=2.

niM T Wy U
211 |-4.0825e-01 | 9.1752e-02 | 9.0825e-01
4.0825e-01 | 9.0825e-01 | 9.1752e-02
2 1 6.3397e-01 | 1.0000e+00 | 0.0000e+00
-3.6603e-01 | 0.0000e+00 | 1.0000e+00
3 | 8.1740e-01 | 1.0000e+00 | 0.0000e+00
-1.8260e-01 | 0.0000e+00 | 1.0000e+00
4 | 1.0054e-+00 | 1.0000e+00 | 0.0000e+00
5.3932e-03 | 0.0000e+00 | 1.0000e-+00
5 11.1939e+00 | 1.0000e+00 | 0.0000e+00
1.9391e-01 | 0.0000e+00 | 1.0000e-+00

The polynomial ¢(7) is

g(7) = =7° + 3(M; = )7% + (3BMy + 6M; — 2)7 + (M3 — 3My + 2M,).

Table 3 shows the shift 7 and weights w; for some M, where ¢ is
a Daubechies scaling function with A vanishing moments for the
corresponding wavelet 1.

4.2. Examples of error and convergence order

We fix the shift 7 = 0 for all the examples in this section.

EXAMPLE 4.2. In order to compare our results to those in (8], we
take ¢ and f as in (8], i.e., let ¢ be the Daubechies scaling function
with M = 3 vanishing moments for the corresponding wavelet ), and
f(x) = sin(z). Table 4 shows the weights for n = 5 and n = 10. As
we can see from Table 4, w; is always the biggest for any n, because
M= 08174 ~ 1.

Let @, be the n point quadrature formula introduced in [8]. Table 5
shows the error of the n point quadrature formulas with 7 = 0 for n = 5
and n = 10, and the error of ()5 and Qo which are in Table 2.1 of [8].

The absolute error of our formula for n = 5 is smaller than Q; for
k > 2, but greater than Qs for ¥ < 1. The absolute error for n = 10 is
greater than Q9 for 2 < k < 5. This is because some of the abscissae
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TABLE 3. The superconverging shift 7 and weights w; for

n = 3.
n|M T wy wy Wy
3| 1 |-1.3660e+00 | -1.6346e-02 | 1.6667e-01 | 8.496Re-01
-5.0000e-01 | 4.1667e-02 | 9.1667e-01 | 4.1667e-02
3.6603e-01 | 8.4968e-01 | 1.6667e-01 | -1.6346e-02
2 | -1.4229e+00 | 3.0074e-02 [ -1.1706e-01 | 1.08706=-00
9.6518e-01 | 8.9917e-01 | 1.3286e-01 | -3.2031e-02
-2.4032e-01 | 7.0753e-02 | 9.8420e-01 | -5.4951e-02
3 | -1.2296e+00 | 2.4593e-02 [ -9.6165e-02 | 1.07166+00
7.6264e-01 | 9.1936e-01 | 1.0651e-01 | -2.5879¢-02
-8.0864e-02 | 5.6043e-02 | 9.8965e-01 | -4.5693e-02
4 | -1.0452e+00 | 2.6555e-02 | -1.0367e-01 | 1.0771e+00
9.4570e-01 | 9.1224e-01 | 1.1582e-01 | -2.8064e-02
1.1564e-01 | 6.1200e-02 | 9.8785e-01 | -4.9046e-02
9 | 1.1265e+00 | 9.0110e-01 | 1.3035e-01 | -3.14500-02
-8.6208e-01 | 2.9562e-02 | -1.1511e-01 | 1.0855e+00
3.1734e-01 | 6.9337e-02 | 9.8476e-01 | -5.4100e-02

fall outside of the support of gbf for n = 10 and also because we use the

shift 7 = 0.

TABLE 4. Weights w, for n = 5 and n = 10.

weights n=2=5 n =10
wWq 9.0735e-02 | 7.1852e-02
wy 1.0230e4-00 | 1.1499e+00
Wy -1.4013e-01 | -5.2157e-01
w3 3.1030e-02 | 7.0958e-01
W,y -4.5979¢e-03 | -7.9913e-01
ws 6.3929¢-01
We -3.5404e-C1
Wy 1.2961e-01
Wy -2.8267e-02
(0 2.7845e-03

EXAMPLE 4.3. Let ¢ be the Daubechies scaling function with M van-

ishing moments for the corresponding wavelet 1. Let f (x) = cos(2mr)
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TABLE 5. Errors of the quadrature formulas for n = 5

and n = 10.

k|l n=5 (@) n=10  (Qw)

0| 3.0239e-03 (2.15e-03) -
1|3.9833e-05 (4.40e-05) | 4.4891e-07 (1.03e-08)
21 2.6513e-07 (6.51e-07) | 1.0228e-10 (1.11e-12)
3| 1.5325e-09 (9.38e-09) | 9.7172e-14 (4.21e-15)
4| 8.5614e-12 (1.38e-10) | 2.0747Te-15 (9.99e-16)
54.7431e-14 (2.09e-12) -

6| 2.6173e-16 (3.19e-14) -

71 1.5179¢-18 (1.11e-16) -

Then f(z + 1) = f(z). Fix level k = 3. Let M = 2. We test for some
n. Errors of quadrature formulas in norms [}, [, and [® are in Table 6.
As we expect, the errors become smaller as n increases.

TABLE 6. Errors of quadrature formulas with fixed level k.

kIM|n

error

ll

lZ

lOO

3

2 1.1476e-01
1.5528e-02
3.3179e-03
1.6155e-03
8.7432e-04

4.7909e-04

S UL W o~

1.2536e-01
1.7056e-02
3.7507e-03
1.7763e-03
9.5906e-04

5.3749e-04

1.7142e-01
2.3508e-02
5.2812e-03
2.4756e-03
1.3125e-03
7.6567e-04

EXAMPLE 4.4. Let ¢ be the Daubechies scaling function with M van-
ishing moments for the corresponding wavelet ¢. Let f(z) = cos(27x).
Then f(z + 1) = f(z). Fix n = 3. Let M = 2. We test for some k.
Errors and convergence orders for quadrature formulas in norms !', 12,
and [* are in Table 7. As we expect, the convergence orders for n point
quadrature formulas approach n + (1/2) as k increases.
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TABLE 7. Errors and convergence orders for quadrature
formulas with fixed n.

niM|k error convergence order
ll lz [ ll 12 JES

312 |3]3.3179¢-03 | 3.7507¢-03 | 5.28126-03
4] 3.0608e-04 | 3.4148e-04 | 4.8238¢-04 | 3.4383 | 3.4573 | 3.4526
5 | 2.7343e-05 | 3.0404e-05 | 4.2987¢-05 | 3.4847 | 3.4894 3.4882
6 | 2.4234e-06 | 2.6924e-06 | 3.8074e-06 | 3.4961 | 3.4973 3.4970

5. Summary
For the numerical calculation of the wavelet coofficients of f,
fe=i56 = [ s@s@ e,

we can choose a positive integer n arbitrarily large to obtain the desired
degree of accuracy. We then use 7 point quadrature formulas of type

/.

We choose the abscissae

n—1

fla)dh(z) da ~ h'/? Zwif(;cfj .

1=0

= hit +i+j),

in order to guarantee that the abscissae are equaily spaced with fixed
step size h = 27 for all n > 2.

The error of n point quadrature formulas with the superconverging shift
7 is O(R™*B/2). With all shifts 7 other than superconverging 7 the
error is O(R"*1/2)) Hence we achieve the same degree of accuracy and
convergence order as in [8] from our derivations for quadrature formulas.

Moreover, we obtain the same weights for any integer translate j and
level k.
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