J. Korean Math. Soc. 34 (1997), No. 4, pp. 895-909

IDENTIFICATION PROBLEM FOR DAMPING
PARAMETERS IN LINEAR DAMPED SECOND ORDER
SYSTEMS

JONG-YEOUL PArRk*, JUN-HonGg HA AND Hyo-KEUN HAN
y

ABSTRACT. We state the necessary conditions on optimizing the
parameters which the damping differential operators contain in ab-
stract linear damped second order evolution equation on the Gelfand
five fold.

1. Introduction

A widely used approach to the identification problem for any system
is to estimate the unknown parameters appear in the system by min-
imizing a quadratic function of the difference between observed value
and desired value, so-called output least-square identification problem
(OLSIP). We consider the system given by linear damped second order
evolution equations, which we refer to Dautray and Lions[5] as a model,
of the forms

d*y dy .
(11) W+A2(Q7t)E+Al(qat)y:f m (OaT)
with the initial values, and the cost functional given by the quadratic
form

(1.2) J(g) = ICy — zalla;
where A;(t, q), As2(t, q) are differential operators containing unknown pa-
rameter ¢ € () which are given by some bilinear forms on Hilbert spaces,

C is an observation operator defined on an observation space M, z; is a
desired value. The OLSIP suject to (1.1) with (1.2) is to find an element
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g €  such that infep J(g) = J(§) and to give a characterization of
such . In this paper we will study the OLSIP to the system (1.1) with
(1.2). It is not easy to find the elements § belonging to an admissible set
Q of parameters subject to (1.1) with (1.2). That is, we have no general
answer for it. Hence we will show the existence of such g when ) is a
compact subset of a topological space, and then we are going to concen-
trate on giving a characterization of such §. Recently, inspired by the
optimal control theoretical studies of Euler-Bernoulli Beam Equations
with Kelvin-Voigt Damping, and Love-Kirchoff plate equations with var-
ious damping terms, there appeared numerous papers studying optimal
control theory and identification problem for the autonomous case of
(1.1) on the Gelfand triple spaces.

In Banks, Ito and Wang [3], Banks and Kunisch[4 , they treated the ex-
istence of the optimal controls (or minimizing parameters) by using the
method of approximations, but they didn’t deal with the necessary con-
ditions (or characterizations) on them. When A, (¢, q) = vAx(t,q),y >0
in (1.1}, the identification problem estimating g via OLSIP is studied by
Ahmed(1, 2] based on the transposition method.

The aim of this paper is to study the identification problems through
the method of OLSIP to (1.1) on the Gelfand five fold which will be
stated in preliminary. As using the Gelfand five fold structure we may
have some advantages that the operators A,(t,¢' and Ay(t,g) can be
defined with free differential orders in spatial sense. This paper is com-
posed of the parts of preliminaries as section 2, necessary conditions as
section 3 and applications to partial differential equations as section 4.

2. Preliminaries

First we explain the notations used in this paper. Let X be a Hilbert
space. (-,-)x and || - ||x denote the inner product and the induced norm
on X. X' denotes the dual space of X and (-,-)x/ x denotes the dual
pairing between X’ and X. Let us introduce underlying Hilbert spaces
to describe damped second order evolution equations. Let H be a real
pivot Hilbert space, its norm | - || is denoted simply by | - |#. For
2 =1,2, let V; be a real separable Hilbert space. Assume that each pair
(Vi, H) is a Gelfand triple space with the notation, V; < H = H’ < V.
From now on, we write V;, = V for notational convenience. We shall give
an exact description of damped second order evolution equations. We
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suppose that () is algebraically contained in a linear topological vector
space with topology 7 and @, = (@, 7) is closed. Let T' > 0 be fixed.
In order to define two main differential operators, diffusion and damp-

ing, we introduce two bilinear forms a;(t,q; ¢, ¢),i = 1,2,q € Q,.,t €

[0,T] on V; x V; satisfying

(2.1) aft,:¢,9) = ai(t, g;¢,9) forall ¢,p €V, and t€(0,T),
there exists ¢;; > 0 such that

(2.2) lai(t,q:¢,9) < callélvllelly; forall ¢,4 € V; and ¢ € [0,T]
and there exist «; > 0 and A\; € R such that

(2.3) ai(t,q;0,9) + Ai|@l5 > aul|o|}, forall g€V, and te[0,7T),
the function t — a,(t,q; ¢, ) is continuously differentiable
in [0,7]and there exists ¢;; >0 such that

(24) lai(t,4;6,0)| < calléllvllelly, forall ¢,4 € V; and te[0,T],

where = £. Then we can define the operator 4,(t,q) € L(V;,V/) for

t € [0, T] deduced by the relation

(25) ai(t7q; d)a 90) = <Al(ta q)¢1 @)‘/E/,V} fOI' au ¢a @ € ‘/z

We suppose that V} = V is continuously embedded in V,. Then we
see that V — V, — H = H' — V] — V' and the equalities (¢, @)y y =
(&, plvpv, for ¢ € Vi, 0 € V and (8, @)y = (d,0)y for p € Hyp € V
hold.

We often use the notations to express the time derivatives as g', g”
instead of %, &4 respectively. We define a Hilbert space, which will be

O G @y
a solution space, as

W(0,T) ={glg € L*(0,T; V), ¢’ € L*(0,T; V), ¢" € L*0,T;V")}

with an inner product
T
(91, 92)wiom) :/ {(91(t), 2(O)v + (g1(8), g5(t))v, + (g7 (2), g5 (t))v }dt
0
and the induced norm

1
. 2
lgllwor) = (Hg”%?(o,T;V) + “gI”i?(o,T;vQ) + ”.ONHiZ(O,T;v')) .

In OLSIP, many adjoint state equations have & variety of perturbed
terms as depending on observations. Hence we will treat existence,
uniqueness and regularity for the more generalized equation than (1.1),
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le., we consider the Cauchy problem for the perturbed linear damped
second order evolution equation of the form

y'+ Aot )y + Aty = Lty + f in (0,7),
(2.6) y(0) =y €V,
Y (0) = € H,

where L(-) € L>(0,T;L(V2,V3)) and f € L*(0,T;Vy). Then we can
show that there is a unique weak solution y € W(0,7) N C([0,T}; V) N
C'(|0,T}; H) to (2.6) in the sense that

'), ohvy + ax(n @y (), 0) + a1, 4 y(-), @)
= (L()y(-) + f(-), d)vwyfor all ¢ € V' in the sense of (0, T)
with the initial conditions
(g 0)=weV, y(¢:0)=y € H
Moreover, the solution y to (2.6) satisfies the energy equality for each
te 0,7

ax(t, g w(t), y() + (O + 2 / ax(0,¢: 4(0), 4/ (0))do
= a1(0,; yo, o) + sl + / &0, q:9(7), y(0))do
0

@7 42 / (L(oYy(0) + (o), 4/ (0))vsuador

For the proofs of these we refer to Ha [6], and Dautray and Lions [5]
whose treatment of equations was done on the Gelfand triple structure
by the energy methods.

3. Necessary conditions

In this paper we consider the case where all the parameters g related
to the diffusion operator A;(t,q) has already known, i.e., the damp-
ing operator A;(t,q) contains unknown parameters only. Hence letting
Ai(t,q) = Ay(t) the system (2.6) is written by

y'+ Aoty + Aty = f in (0, T),

(3.1) Y(¢:0) =y €V,
¥ (q;0) =y € H.
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Note that since there is a unique solution y to (3.1) for given q € Q,, we

can have a well-defined mapping y = y(q) of Q, into W(0,T). We often

call (3.1) the state equation and y(q) the state with respect to (3.1).
Let us consider a quadratic cost functional attached to (2.6) as

(3.2) J(g) = ICy(q) - 2dll7, g€ Qr,

where M is a Hilbert space of observations, C € L(W(0,T), M) is an
observer and z4 is a desired value belonging to M. Our aim is to find
g € @, satisfying

(3.3) J(g) = min.J(q)

9EQr

and to give a characterization of such . We call § the optimal control (or
the minimizing parameter) to the system (3.1) and (3.2). Furthermore,
we give an assumption to ay(t, ¢; ¢, ¢):

(3.4)
g — as(t,q;¢,¢) : Q; — R is continuous for all * € [0,7],¢,¢ € Va.

Note that for each g € Q);, ¢, p € V, the following equalities hold:
sup |as(t,q;¢, @)l = sup [(Aa(t,9)8, @)yl = 1 42(t, Dllyy,

llellv,=1 llelly =1

whence the assumption (3.4) and the above equality imply that || Ay(t, Q9llv;
is continuous on g¢.

LEMMA 3.1. Let us assume that (2.1)-(2.4) and (3.4) hold. Then y(q)
is strongly continuous on g, i.e., y(q) € C(Q., W(0,T)).

Proof. Let us suppose that g, — ¢ in Q- and let y,, = y(¢.), y = y(q)
be the solutions corresponding to g,, ¢, respectively. Then by letting
z, = Yn — Y We obtain the equation

(3.5) 2 + Aa(t, o)z, + Ai(t)2, = [Aa(t,q) — Aalt, q0)]y"
Since [Aa(t, q) — As(t, ¢a)ly’ € L*(0,T;V3), we can apply (3.5) to (2.7).
Hence we have from z,(0) = 2,,(0) =0
t
(36) ot ult) 20) 4 OF +2 [ 0alo i 54(0), 2, (7)o
0
t

- /0a’l(a;zn(a),zn(a))da-F*?'/(;[az(mq;y’(f’),z;z(a))

"GQ(Ua Qn; y’(O’), z;(a))jda
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Denote A; = |A;], 2 = 1, 2 for simplicity. If we estimate the above equality
by using (2.3) and (2.4), then we have

t
BT il + AR + 20 / 1 (o), do
t t
< Mlza(O)l + 22 / |24 (o) ado + e, / lza(o)f2do
0 4}

+2 [ lior0) = Aslo, ) @)l

2 ()|l do.

Noting that |2,(t)|% < Tfot |21,(c)|}do and using Cauchy-Schwarz in-
equality it follows from (3.7) that

B8 s + 0 o [ (o)

'{’32(10
t . ¢ )

< (AT +2Xy) / |2 (0)[frdo + era / 12n(e)I[¥-dor
0 ]

1 t
to- [ N4s(0,0) = Ao, anly/ @)l
(09} 0
Put @ = min{1, @), @2} > 0 and § = o' max{\;T + 2Xy, ci19, 5!} and

on(t) = Nz} + |20 ()5
It follows from (3.8) and Bellman-Gronwall’s lemraa that

T
39wl < (| I142(0,0) = Aol () [y ) 5

Using the continuity of ay(t,q;¢,4) on g, the right hand side of (3.9)
goes to zero, and so, we have y,(t) — 0 for all ¢t € [0,7]. Applying
this fact to (3.8) we conclude that y, — y in C([0,T},V), ¥, — ¥ in
C([0,T],H) and y, — ¥ in L2(0,T;V,). In particular, we also have
yn — y in W(0,T) if estimating (3.5). O

LEMMA 3.2. Let us assume that (2.1)-(2.4) and (3.4) hold. There is
at least one optimal control § if (), is compact.

Proof. 1t is clear from Lemma 3.1 and continuity of norm. a

Now we present the necessary condition (the minimizing condition) for
the optimal controls § € @, to the system (3.1) with the cost functional
J(p) given by (3.2). If J(p) is Gateaux differentiable at G in the direction
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q — ¢, the necessary condition on § is characterized by the following
inequality

(3.10) 0J(@)(g—79) >0 forall g€ (,

where 6J(g)(q — ) denotes the Gateaux derivative at § in the direction
q — . Note that since J(q) is composed of the term y(q), the Gateaux
differentiability of J(q) follows from that of y(q). Hence to obtain that
of y(gq) we assume that a,(¢, ¢; ¢, ¢) satisfies the following condition:

(3.11)
q — Ax(t,q) is weakly Gateaux differentiable for all ¢
and 0Ax(t, q)(p) = 0Ax(t, ¢;p) € L*(0,T; L(V, V) for all pe Q,,

where § Ay(t, ¢; p) denotes the Gateaux derivative at ¢ in the direction of
p.

LEMMA 3.3. Let us assume that (2.1)-(2.4), (3.4) and (3.11) are sat-
isfled. Then y(q) is weakly Gateaux differentiable at G in the direction

q — @, denote the Gateaux derivative of y(q) by z = 6y(t,; ¢ —q), which
satisfies the following Cauchy problem:

(3.12) {(OJ; Al D2+ M)z = 04T~ D@ i O.7)

Proof. For A € (0,1) let yy = y(¢,) and ¥ = y(g) be weak solutions to
(3.1) for given parameters ¢, = g -+ A(q — g) and §, respectively. Then
zy = (yr — §)/ X satisfies the following equation

(3.13)

{ zy + Ao(t, qa) 2, + Ai(t) 2y
25(0) = 24(0) = 0.

Since for each A, [(A2(t,q) — Aa(t, 92))/ AN € L*(0,T;Vy), we can apply
(3.13) to (2.7). Hence from 2,(0) = 25(0) = 0 we have

- A2(tvq) - AZ(ta qA)y/

- in (0,7),

(3.14) it 2a(t), 2x(2)) + IZS(t)171+2/0 a2(0, qx; 2)(0), Z(0))do

= [awn@n@yin 2 [lueaie.40)

'—GQ(Ua qx @I(U)a Z:\(U))EdO'
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Let us consider the last term in (3.14). From the assumption (3.11) and
the homogeneous property 6A4,(t, q; ep) = €6 A,(t, ¢; p) there is v € (0,1)
such that

(3.15) %/0 laz(0,G; 7 (0), 23(0)) — ax(o, qx; T (7), 25(0))]do

t
- / (—845(0,7+ (g — 7 g — DT 4(0))vgpdo
0

depending on 2, € L?(0,T;V). By the similar calculations to Lemma
3.1 we have the following estimation

Iz + 140 +/0 123 (013, do < C/O 123()lr + llza(0) I} }do

T
+C/0 ||5A2(G,§+)\V(q—“q);q_a)y'(o)nalda(z K),

where C' > 0 is a proper constant. Using Bellman-Gronwall’s lemma we
have

t
@Y + 125 +/ 23(0) I} do < CTKe™ - K, VA€ (0,1),
0

which implies that {z) : A € (0,1)} is bounded in L2(0,T; V) C L>(0,T;
V) and {2, : A € (0,1)} is bounded in L?(0,T; V;) N L*®(0,T; H). Since
L*0,T;V) and L%(0,T;Vs) are reflexive, we can extract subsequences
{z»,} € {2:} and find z € L*(0,T; V) such that
(3.16)

z), — z weakly in L*(0,T;V), z, — w weakly in L*(0,T;Vs).
Since 2, € C([0,T],H) and 2,,(0) = 0 in H, we have that for each
te[0,T)

()= [ %, (0o

in the H sense. Since by (3.16) f(: 2y (o)do — fot w(e)do weakly in H,

we obtain

in the weak H sense, which implies that 2/(¢) exists in H sense and
that w(t) = 2'(t) in H with 2(0) = 0. Since w € L%*(0,T;V;), we
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have also w = 2’ in L*(0,T;V,). It follows by multiplying (3.13) by
¢ = ((t)y,¢ € D(0,T) and integrating it by parts that

T
(3~17)/0 (=23, (8), &' () + aalt, 43,5 23, (1), G(1)) + a1t 2, (1), &(2)) ]t
_ T A?(ta Zj) - A?(ty q,\,.)
- / ( .
0

T

7 (1), $(t)) v wdt.
Since the assumption (3.11) induce that for all v € [0, 1]

|a2(t, g, 23, (), 6(1)) — aa(t, G; 23, (2), ¢(2))]

< [Aelg = P16 A2(0, 7+ Mg = @) — Dol 123, Iws,
we have from (3.16)
T
(3.18) / aa(t, qa,; 2y, ( ))dt —>/ as(t, 7; 2'(t), ¢(t))dt
0

as A, — 0. Hence if we take A, — 0 in (3.17) by using (3.16), (3.11)
and (3.18) then we have

T
(3.19) A [(=2'(2), &' (1)) + a2(t,G; 2/ (2), $(2)) + a1 (t; z(t), p(t))]dt

— / (—64s(t,T,q — DT (1), SO vgadt,

0
which implies

T
320) [ [0, 80y + aa(t, 520, 60)) + a1 2(0), 0) e
T
- / (~64a(t,7:4 — DT (1), H(0)) vymedt

On the other hand, it follows from taking ¢(t) = {(t)y such that ¢ €
C'0,T], ¢(T)=0in (3.19), that

T
(3.21) /0 (2"(t), Vhviy + aa(t, G 2'(8), ¥) + a1 (t; 2(), ¥)]¢(t)dt

T
= (2/(0), ¢(0))u +/0 (—042(t, 3,9 — Q)T (1), ¥yvyr,C(t)dt
forall p € V.
Substituting (3.20) into (3.21) we have 2/(0) = 0. O
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By Lemma 3.3, the cost functional J(q) is weakly Gateaux differen-
tiable at § in the direction ¢ —7, and so, the condition (3.10) is rewritten
by

(3.22)
(Cy(@) — 24,C2)m = (C"AM(CY(Q) — 23), 2Ywiorywior) =0, Vg€ Q-,

where 2 is a unique weak solution to (3.12), C* € L(M’,W(0,T)) is the
adjoint operator of C and Ay, is the canonical isomorphism of M onto
M’ in the sense that

(l) <AM¢a QS)M',/M = H¢|I3\47
(ii) [Amdllae = l|¢llm for all ¢ € M.

In order to avoid the complexity of setting up observation spaces,
we consider the following two types of distributive and terminal value
observations in time sense. That is, the following cases:

(i) Wetake C; € £L(L*(0,T;Vy), M) and observer z(q) = Ciy(q);
(i) We take C; € L(H, M) and observer 2z(q) = Coy(T,q).

3.1. The case where C; € L(L*(0,T; V3), M)

In this case the cost functional is given by

J(q) = Hcly(q) - Zd“?\/tv qgc Qra

and then the necessary condition (3.22) is equivalent to

T
(3.23) / (CIA(C(t,9) — 20), 2())vpaadt 2 0, Vg € Qr.
0

Let us introduce an adjoint state p(g) satisfying

(3.24)
{ 7'(@) — A2, 7' (@) + (Ai(t) — A5(, D))n@) = CiAM(Cry(q) — 24),
(T, g =7n'(T,g) =0

Since C;Aum(Cry(@)—24) € L(0,T; V3) and Aj(-,9) = L®(0,T; L(V3, Vy)),
the equation (3.24) is well-posed and permits a unique weak solution
n(g) € W(0,T) if we consider the change of the time variable as t — T—t.
Multiplying (3.24) by z, which is a weak solution to (3.12), integrating
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it by parts after integrating it on [0, 7], we obtain
T
/ (n(t,9), 2" + As(t, D)2 + As(t)z)yydt
0

T
= /0 <77(t7§), —6A?(t16; q— q)y’(tr ?D)V,V’dt Z 0.

Here we used the inequality (3.23). Summarizing these we have the
following theorem.

THEOREM 3.1. Let us assume that (2.1)~(2.4), (3.4) and (3.11) hold.
Then the optimal control § is characterized by state and adjoint equa-
tions and inequality:

¥(@)" + A, 9y(@) + Ai(t)y(q) = f in (0,T),
3/(0,5) =Y € ‘/)
¥'(0,9) =y € H,

n"(@) — A2, 97 () + (Ar(t) — AL, 9))n(@)
=CIAM(C1Y(q) — zg) in (0,T),
n(T,9) =n'(T,q) =0,

T
/ n(t,9),04:(t, G — )/ (£, D)vvrdt <0, Vg e Q,.
0

3.2. The case where C; € L(H, M)
In this case the cost functional is given by
‘](Q) - ||Czy(T1 q) - zd“a\/b q€ Q‘)T)
and then the necessary condition (3.22) is equivalent to
(3.25) (CAMCoy(T,q) — 20). 2(T)) 20, Vg€ Q..
Let us introduce an adjoint state 7(g) satisfying
1'(@) = A6, 9)7'(7) + (Ai(8) — Ay(¢. 9))n(g) =0,
(3.26) n(T,q) =0,
1(T,q) = CAMm(Coy(T,q) — ).

It follows by the same reason as the case 3.1 that there is a unique weak
solution 7(7) € W(0,T), because C; A (Coy(T, G) — 24) € H.
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THEOREM 3.2. Let us assume that (2.1)-(2.4), (3.4) and (3.11) hold.
Then the optimal control § is characterized by state and adjoint equa-
tions and inequality:

y(@)" + At Q@) + Ai(t)y(@ = f in (0,T),

y(0,7) =y €V,
yl(O,?j) =1 € H7

1'(@) — A6, ' (@) + (Ai(t) — A3, 9))n(@ =0 in (0,T),
n(T,q) =0,

q) =
7(T,3) = C; Apm(Coy(T, ) - 2a),
T
| 864030y D)vwat 20, o€ Q.
0
Proof. We prove the optimal control only. Multiplying (3.26) by z,

which is a weak solution to (3.12), integrating it by parts after integrating
it on [0, 7], we obtain

T
0 = (Z(T)) U’(T, (_1))H + / <T’(taq)7 2" + Ag(t,?i)z’ + Al(t)Z>V,V'dt
0

T
(Z(T)’ nl(Ta q))H + / <7][t7§)> “(5A2(t)qv q— @)y/(a»uv'dt-
0
Hence from (3.26) and (3.25) we conclude that
(Z(T)7 CSA/VI(CQy(Tv q) — zd))H

T
- / (08,7, 6Aa(t, T ¢ — (6, T)vyedt > O,
0

4. Applications to partial differential equations

Let 2 be an open bounded subset of R with the smooth boundary
[, and let Qr = (0,7) x Q and 3 = (0,T) x ' We will give some
examples for the case where the operator A;(¢) has the second (or the
fourth) differential order and A(¢) has the second (or o-th) differential
order in the variable z € Q.
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EXAMPLE 4.1. One of the simplest example in the linear damped
second order equation is the following damped wave equation

%y Oy ,
Sz B Ay=f in Qr,
(4.1) y=0 on %,
(0) = @1(0) — o in Q
Y = Yo, It =y 1n L

Let us take V = V, = H}(Q), H == L*(Q) and y,
f € L?(Q7). Define a bilinear form o as

V,y1 € H, and let

m

42)  olg6.9) = /Q (2)Vo(x) - Vi(a)de, ¢ € HIQ),

and take a,(¢; ¢,¥) = o(1; ¢, %) and ay(q; ¢, ¥) = 0(K; ¢, 1), where x > 0
is a positive constant. It is easy to check for ¢; satisfying all conditions to
be verified. Therefore there is a unique weak solution y to (4.1), whose
solution satisfies
dy 0y 2
yVy, =, V—¢€ L*(Qr).

AR A TR (£2r)
Take M = L*(Qr) and C = I, the identity observation, and consider the
cost functional defined as

(4.3) J(K) = /Q”(y(t, T, k) — z4(t, z))?dz, k> 0.

If we take () the set of all positive constants and give a L®—norm topol-
ogy on (), then @ is compact in L®(€2). Hence there is at least one
optimal control subject to (4.1) and (4.3), say it & Denote by y(&) the
solution of the state equation (4.1). Then by Theorem 3.1 adjoint state
equation and necessary condition on ¥ are given as follows:

82 = on(r .
gt(ZK) ‘i—EA_?(.?(TKJl - An(ﬁ) = 'y(E) — Zg 1 QT,
(4.4) n(k) =0 on X,

T, K) = %U(T, K)=0 in Q

and

T _
/ / v¥E)  gnw@)dedt < 0.
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EXAMPLE 4.2. As one of the realistic system, we can give the struc-
turally damped plate equation of

82y (jy 9 .
T % (a(x)Vgg) + A%y =f in Qp,
(4.5) y=Ay=0 on 3.

13 )
y(0) = yo, 8_2;(0) =1 In §.

We take a parameter set Q = {a € L) :a<a(r)<b< oo ae re
(2} for some positive constants a and b. Let us take V — H3 (), Vs =
H(Q), H = L*(Q). Define a bilinear form a; as

(46) ar(¢,9) = /Q Ad(2)Ap(x)dr, ¢, € HE(S),

and take ay(q; ¢, v) = o(a; ¢, ), which is given Example 4.1. For y, €
Viy1 € H and f € L*(Qr), there exists a unique weak solution y to (4.5)
such that
dy , Oy 2
Ay, —, A= € L} Q).
Y, Y, 5 Mgy € L)
Take M = L?(Q) and C = I, the identity observation, and consider the
cost functional defined as

(4.7) J(a) = /Q(y(T, x,a) — 24(z))’dz, a € Q,

where z; € L*(Q). Let @ be the optimal control subject to (4.5) and
(4.7) and denote y(@) the solution of the state equation (4.5). Then by
Theorem 3.2 adjoint state equation and necessary condition on & are
given as follows:

9 = e
Bgt(za) +V- (a(m)Vf-%al) +A*n(@) =0 in Qf,
0(@) = An(@) =0 on 5

(4.8) n(T,@) =0 in Q,
27)(7“, o) =y(T,a) —z; in Q
ot

an

d
! I
/0 /Q(a(:z) - a(w))VT -Vn(@)dzdt > 0, Ya e Q.
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