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ON THE MINIMUM PERMANENTS RELATED
WITH CERTAIN BARYCENTRIC MATRICES

SEOK-ZUN SONG, SUNG-MIN HONG, YOUNG-BAE JUN,
Hone-KEE Kim AND SEON-JEONG KM

ABSTRACT. The permanent function on certain faces of the poly-
tope of doubly stochastic matrices are studied. These faces are
shown to be barycentric, and the minimum values of the perma-
nent are determined.

1. Introduction and preliminaries

Let (2, be the polyhedron of n <« n doubly stochastic matrices, that
is, the n by n nonnegative matrices whose row and column sums are
all equal to 1. Let per(A) be the permanent of matrix A and let Jrs
denote the r x s matrix all of whose entries are 1. In 1981 Egorycev [3]

and Falikman [4] proved the van der Waerden permanent conjecture:
If A e, then

1
per(A) > per(—ﬁJn,n).

The techniques of Egorycev have been used, with some success, for
determination of minimum permanents in various faces of {,,(See (7
-[10]). The key technique is replacing rows(or columns) of a matrix
with minimum permanent by their average without altering its perma-
nent. Unfortunately, the presence of fixed zeros restricts the use of this
technique. Indeed this tool is not available at all in the case of faces
which consist of matrices with at least one fixed zero in each row and
column. In this paper we use this technique in sorne parts of proofs.
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Let D = [d;;] be an n-square nonnegative matrix, and let
Q(D) = {X = [.’L‘ij] € Qn|(l)ij = 0 whenever dij = 0}

Then Q(D) is a face of Q,,, and since it is compact, (D) contains a
minimizing matrix A such that per(A) < per(X) for all X € Q(D).

Brualdi [1] defined an n-square (0,1) matrix D to be cohesive if there
is a matrix Z in the interior of (D) for which

per(Z) = min{per(X)|X € Q(D:}.
And he defined an n-square (0,1) matrix D to be barycentric if
per(b(D)) = min{per(X)| X € Q(D)},
where the barycenter b(D) of Q(D) is given by

b(D = 5D Z P,

P<D

where the summation extends over the set of all permutation matrices
P with P < D and per(D) is their number.

Let I, denote the identity matrix of order n and 0y the k& x k zero
matrix.

A
gested determining the minimum permanents and minimizing matrices
on Q(V;, ) for m > 2, and n > 3. This face Q(V,, ) is extended one
of Q(W,,) in Theorem 5 in [1].

Brualdi [1] determined the minimum permanent and minimizing
matrix on (V) ,-1). Song determined the minirnum permanents on
Q(Ve,n) in [8] and on Q(V,, 3) in [9], respectively.

In this paper, we consider the faces Q(V3,) and Q(Us,),where

Om Jm,n
Um,n - Jn,m In
barycentric and determine the minimum permanents and minimizing
matrices on the face Q(V3 ,,) of 3., for n > 5.

Recall that an n-square nonnegative matrix is said to be fully in-
decomposable if it contains no k x (n — k) zero submatrix for k =
1,--,n—1.

We use the following well-known Lemma([5] or [6]).

In [10], Song considered a matrix Vi, ,, = [

We show that Us, is both cohesive and
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LEMMA 1.1. Let D = [d,;] be an n-square fully indecomposable
(0,1) matrix, and A = [a;] be a minimizing matrix on (D). Then A
is fully indecomposable, and for (i, j) such that d;; = 1,

per(A(ilf)) = per(A)
per(A(ilj)) = per(A)

if aij > 1),

if Q5 = .

2. The cohesiveness of Uj ,,

In this section, we consider the (3 + n)-square (C, 1) matrix Us ,, and
we show that this matrix is cohesive for n > 5.

If a column j of an n x n matrix A contains exactly k nonzero entries
(2 < k < n), say in rows rq,...,rg, then the (n — 1) square matrix
GC(A) obtained from A by replacing rows ry,... ,7, with ;i—l(ﬁ +
T2 + ...+ 7t) and deleting row r; and column j is called a generalized
contraction of A.

LEMMA 2.1. If an n x n nonnegative matrix A is fully indecompos-
able, so is GC(A).

Proof. 1t suffices to consider the case where G((A) is the general-

ized contraction of A on column 1 relative to rows 1,2,... ,k. Thus A
and GC(A) have the form
6551 (83 _ET(QAI",B'%_ -+’7)—
an 3
A= : GC(A) :
k1 Y (a+ Bt +7)
0 C 1 k-l C J

where aj; # 0 for y = 1,2,...

,k. Suppose GC(.1) is not fully inde-

composable. Then there exists an r x s zero submatrix 0, , of GC(A)
where 7 + s = n — 1. If 0, 5 is a submatrix of C, then clearly A has
an 7 x (s + 1) zero submatrix where 7 + (s + 1) = n. Hence in this
case A is not fully indecomposable. Suppose 0, , i+ not a submatrix of
C. Since a,;’s are positive while «, 3, ..., are noanegative, A has an
(r + 1) x s zero submatrix where (r + 1) + s = n. Therefore A4 is not
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fully indecomposable. This contradiction implies that GC(A) is fully
indecomposable. O

LEMMA 2.2. Suppose D € Q,, is fully indecomposable and has a
column (row) with exactly k positive entries and those k rows (columns)
have the same zero pattern. Let A be a minimizing matrix on (D).

Then there is a minimizing matrix GC(A) € Q(GC(A)) satisfying

per(4) = () per(@C(4)) > (L) per(@OTA)).

Proof. 1t suffices to consider the case where GC(A) is the general-
ized contraction of A on column 1 relative to rows 1,2,...,k. Using
the averaging method (see [3] or [4]) on the first k rows of A, 4 has
the following form

r a

z a
A_O ,

. B

where z is not zero, ais a 1 x (n—1) matrix and B is an (n—k) x (n—1)
matrix. Hence

per(A) = per(A(11))

a Fi—l(a‘f‘...‘f'a)

=per(| © )= (52205 per : )

oe
(S

= (s erota) = B va@em). o
O  Jon
Jn,2 In

and the minimum permanent on )(Us ) is An=L)(n-2)""7

nntl

LEMMA 2.3. ([7]) Forn > 3, Uy, = [ } is barycentric
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THEOREM 2.4. Forn > 5, Us,, is a cohesive matrix.

Proof. Let Bs,, be a minimizing matrix on Q(U; ). Since the first 3
columns and first 3 rows of Us ,, are the same, we can use the averaging
method on those columns and rows of Bj ,,, respectively. Thus we can
write Bj ,, as follows:

[ 0, b, by by |
bt I1 (;
(2.1) B3, = | b} Ty
0
b, o

where b;(b!) is a column (row) vector with b; as all its entries for
i=1,2,--- n.

Since the permanent value is invariant under the interchange of rows
(and columns, respectively), we may assume that

(2.2) biv1 <b; (le. ziyy > ;)

for : = 1,2,--- ,n — 1, without loss of generality. Since Us,, is fully
indecomposable, each

(2.3) b £0

for i =1,.--- ,n. Suppose x; = 0. Then the fourth row and column of

Bj ,, have exactly 3 nonzero entries. Thus we can obtain a generalized
contraction GC(Bs ) of B3 ,. Since the third row of GC(Bs,,) has
exactly 3 nonzero entries, we can obtain its generalized contraction
GC(GC(Bs3,n)), which is contained in Q(Us,_1). Using Lemmas 2.2
and 2.3, we have

per(Bs ) = (2)2per(GC(By.))

3
> (5)2{(3)%(%,7,,_1)} — (2)4 2(n w(i)inlgng)nﬂ |

(2.4)
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But per(Bs ) is less than or equal to the permanent of the barycenter
b(Ug,n). That is,

per(Bs ) < per(b(Us )

R T C N U ]
=6- (n=3)"2% (n-1)(n-2)
nn+2 .

If we divide the value in (2.5) by the value in (2.4), then we can show
that the result is less than 1 by a direct calculation for 5 < n < 15 and

from (g:fl)("T—_Ll)”“ < 1-(2=L)m+tl <1 for n > 16. Thus we have a

contradiction from the inequalities in (2.4) and (2.5). Hence z; is not
zero. By (2.2), each

(2.6) zi #0

fori=1,--.,n. Hence Us,y, is cohesive by (2.3) and (2.6). OJ

3. Minimum permanents on Q(U; )

In this section, we show that the face {2(Us,n) is barycentric for
n > b.

For a matrix A, let A(¢,j,--- ,k|l,m, - ,n) denote the submatrix
obtained from A by deleting rows ¢, j,--- ,k, and columns I,m, - - - ,n.
In particular, we simplify the notation A(i, j,--- , kl, 7, - -, k) to A(z, 3,

-, k).

THEOREM 3.1. Forn > 5, the minimum permanent on QUs ) is

(n—=3)"3 (n-1)-(n-2)

(3.1) 6- e ,

which occurs at the barycenter.

Proof. Let Bs, be a minimizing matrix on Q(Usn). Then Bs,, has
the form of Bs ,, in (2.1) as the proof of Theorem 2.4. Without loss of
generality, we also assume

(32) bi+1 S bi (1e Tiy1 Z :Ei)
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fort=1,2,... ,n—1. As the sum of b;’s is 1 and the b;’s are positive,
at most k of the b;’s are greater than or equal to % Thus b, < % for
k=12,---,n—1,and b, < % Hence we have

(3.3) Ty > (lﬂ - 3)bk

for all k with4 <k <n—1, and
(3.4) T > (0 — 3)by,.

Since by and b,, are positive, we have
(3.5)
0 = per(Bs.,,(1|7)) — per(Bs ,(1|n + 3))
= 3bg{4b2per(Bs ,(1,7,n + 3.2)) + xpper(Bs ,(1,7,n + 3))}
~ 3b, {4biper(Bs.n(1,n + 3,7,2)) + z4per(Bs n(1,n + 3,7))}
12b4bn(bn — b4)per(B37n(1, 2, 7, n+ 3))
+ 3(baz,, — bpxa)per(Bs o(1,7,n + 3))

n-—-1

= 12b4b,, (b, — b4)(z b2 T122.03T5T6 - Tn1, T4)

i=1
i£4

+ 3{b4(1 - 3bn) - bn(l - 3b~1)}

{) 22per(Bsn(1,2,7,i + 3,n + 3))}

i=1
i£4

!

n—1
= 6(b,, — b4)[2b4bn(z bg$1I2$3$5l‘6 T/ T)
=i
n—1

n—1
- Z bzz( Z b?$1$21'3335376 s o1/ (Tazg))]
1 j=1

i=
i#4 i#4,4

Since each z; is positive by Theorem 2.4, the quantity in the large
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bracket in (3.5) is less than

b%{(b4bnx2 — bg)ﬁl)gﬂ:slfe. e Tp-—1 -+ (b4bniL‘3 — bg)l‘zxsﬂtﬁ e $n~1}

+ bg{(b4bn.'lf1 - b%)$3.’135l’6 Tyt (b4bn$3 - bg)mlwsl's s l'an}
n—1

+ E b2{(bsbpzi — b zozszsTe - - Tpo1/ T
i=3
i£4

-+ (b4bnl‘2 — bg)l‘lxg.’lfswg Ty 1/1‘1'},
which is negative because

b4bn$i - b12 < bibi -1 - bz2 ={)

for £ = 1,2 and 3, where the inequality comes from (3.2) and the fact
that z; < 1. Hence we have by = by, from (3.5). Using (3.2), we have
that

(3.6) bi = by (and hence z; = z,)

for all 7 with 4 <1 < n.
Suppose to the contrary that

(3.7) ( b1 > by.

n—23

Since x1 and z4 are positive, we have
(3.8)
0 = per(Bs,»(4]4)) — per(Bs (7|7))

= (3bs)’per(B(4,7,1)) + z4per(B(4, 7))

— {(3b1)?per(B(7,4,1)) + x1per(B(7,4))}
= 9(b3 — b7 )per(B(1,4,7)) + {(1 — 3bs) — (1 - 3b;) }per(B(4,7))
= 3(ba ~ b1){3(b1 + ba)per(B(1,4,7)) — per(B(4,7))}.

Using (3.6) in the calculation for the value of the braces in (3.8), we
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have

3(by + bg)per(B(1,4,7)) -- per(B(4,7))
= 3(by + by ){4b3b3x* + 4(n — 4)b2b2azay 0
(n — 4)b2b3zexy™ 5 + 2(n — 5)(n - )643321:3:32 6
— 6(n — 4){6b2b3b3x |} ° + 3(n — B)bibjzaxy °
3(n — 5)bibizexy © + (n — 5)(n — 6)bSxozszl '}

(3.9 ‘
) = 2} T12b26325{ (b1 + ba)zs — 3(n — 4 b3}

+12(n — 4)b3b2asas {(by + ba)Ts — - (n — 5)b2}

<

+12(n — 4)b2bzoxa { (b + ba)Ta — - (n — 5)b3}

£

+ 6(n — 5)(n — 4)bjaozs{(bL + bs)xs - (n — 6)b3} .
But
(3.10)
{(by + bg)zg — 3(n — 4)b3} > {\ZLQE)IM +by}ry — 3(n — 4)b3

n-—1
2

J(n —3)bs — 3(n — 4)by}

for n > 5, where the first inequality comes from 13.7) and the second
comes from (3.4) and (3.6). Thus the four braces in (3.9) are positive
by (3.10). This implies that by = b; in (3.8), which contradicts (3.7).
Therefore we have

2

mn —

A1 b1 < by.
(3.11) 3715 0

Then the similar method as (3.5) gives

0= per(B3,n(1‘4)) - per(B3,n(1|n + 3))

3.12 vl
(312) = 6(b, — by)[2b1by, bem T/
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n—1 n—1
=D 0D Blmaas sy /(ziz)))]
i=2 =2

J#
n—1 n—1 2

- G(bn - bl)[z b?{Z(n — 3b1bn$j — b?):l,‘gl:g - ~.Z‘n_1/($iill'j)}].
=2 =2

i
But the quantity in the second parenthesis in (3.12) is negative because

2
n—23

brbuzj — b5 < babpw; — b2 < bib;1 — b2 = 0

for all j = 2,--- ,n — 1, where the first inequality comes from (3.11)
and the second comes from (3.2), (3.6) and the fact that z; < 1. Thus
the quantity in the large bracket in (3.12) is negative, which implies
that b, = b,. From (3.2), all b, and x; are the same, respectively.
Thus Bsj , with each b; = % and z; = ";3 is a minimizing matrix on
Q(Us,n), and it is the barycenter of QU3 ). Moreover, the minimum
permanent is

per(b((Us »))) = per(Ba . (1]4))
=3 2Ly oD D)
(n—=3)"3. (n~1)(n-2)
nn+2 3

—6.

as required in (3.1). O

4. Minimum permanents on Q(V3,,)

In this section, we determine the minimum permanents and mini-
mizing matrices on the faces Q(V3,) for n > 5. For our purpose, we
use the faces Q(Us ,,) in section III.

THEOREM 4.1. For n > 6, the minimum permanent on Q(Vs ) is
the value in (3.1), which occurs at the barycenter of QUs,p).
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Proof. Let
[ aJss b, by ... b,]
b! T 0
(4.1) Asn=| b} T
0
| bn Tn

be a minimizing matrix on (V3 ,,). Without loss of generality, we may
assume that

(42) bi+1 S bi (le Tit1 Z Iz)
fori=1,... ,n— 1. Then we have
(4.3) T, > (n— 3)b,

by the similar method as (3.4). Since V3, is fully indecomposable,
each b; and each x; are positive.
Suppose to the contrary that

a # 0.

Then we have
(4.4)
0 =per(Asz »(1[1)) — per(As (1|n + 3))

={2bnper(A3n(1,2|1,n + 3)) + z,per(Az n(1,n + 3|1,n + 3))}
— 3bpper(As (1,7 + 3[1,n + 3))
:(an)2per(A3,n(1, 2,n+ 3)) + (xn, — 3bn)per(As (1,7 + 3)).

Case 1) n = 6. From (4.3), we have zg > 3b.. Since (2bg)? and
per(A36(1,6)) are positive, we must have per(4;4(1,2,6)) = 0 and
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(z6 — 3bg) = 0 from (4.4). Thus g = 3bg = % But then we have a
contradiction as follows:

6
1:Zbi+3a26b6+3a:1+3a>1.
11

This contradiction implies that a = 0.

Case 2) n > 7. From (4.3), we have x, > (n — 3)b, > 3b,. Since
per(As n(1,n + 3)) > 0, the last term in (4.4) is positive. Then we
have a contradiction in (4.4), which implies that ¢ = 0.

Thus, for n > 6, the minimizing matrix on €}(V3,) becomes the
matrix Az, with a = 0 in (4.1). Therefore a minimizing matrix on
2(V3,,) is the barycenter b(Us ) of Q(Us ,) by Theorem 3.1, and the
minimum permanent on (V3 ,,) is the value in (3.1), as required. [J

THEOREM 4.2. The minimum permanent on (V3 5) is the value in
(3.1) with n = 5, which occurs at the barycenter of Q(Us s).

Proof. Let A3 be a minimizing matrix on ©(V35). Then Azs is
the form in (4,1) with n=5. Without loss of generality, we may assume
that

(45) bi+1 S bz' (1e Ti+1 Z l'i)
fort=1,---,4. Then we have
(4.6) x5 > 2bs

by the similar method as (3.4). Since V35 is fully indecomposable, bg
(and hence all b;) and z3 (and hence x4, z5) are positive.
Assume that a is not zero. Then we have

0 = per(As5(1[1)) — per(A35(1(8))

(4.7) = (2bs)*per( Az 5(1,2,8)) + (z5 — 3bs)per(As 5(1,8)).
Since

per(Asz5(1,8)) = (2b4)*per(As5(1,2,7,8)) + zaper(As 5(1,7,8))
= z4(4b%)b3x3 + (other terms) >- 0,
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we have a contradiction in (4.7) if z5 > 3bs.

For the case x5 = 3bs, in order to hold the equation (4.7), we must
have 1 = z3 = 0 from per(A35(1,2,8)) = 0. Then b; = by = % and
bs = —é, which implies a contradiction as follows:

1 1 1
I:sz+3a2§+§ %3-6+3a:1+3a>1.

Thus we have x5 < 3b5. From (4.5), we have
(48) T; < 3bz
for i =1,---,5. Now, consider

0 =per(Asz5(1]4)) — per(As 5(1]8))
=3(bs — b1)[4b1bs(azaT3T4 + b%$3$4 + bg;c;;lz; + bizozs)
— {2a(axozzTy + bgwgu + b§x2$4 + bZL’Q(Eg)
+ 2b3(az3zg + bizy + b2z3) + 203 (azomy + bizy + bizo)
+ 2b5(azoxs + bz + bixo)}]
=3(bs — b1)[dazox3(b1bszy — b3)
+ 4b3z4(brbs 3 — b3) + 4b3zy(bibszg — b2)

+ 4biz3(b1bszy — bg) — 2az4(azyzs + 2b3z3 + ngg)].

(4.9)

The quantity in the large bracket in (4.9) is negative because

- bs - (3b;) — b?
(bs —b;) <0

for ¢ = 2,3 and 4, where the first inequality comes from (4.8) and the
fact that by < 1. Thus we have b; = by from (4.9). That is, all b;(and
x;) are equal for i = 1,--- ,5.

Letting b = b, and ¢ = x; for ¢+ = 1,--- |5, we have 2b < z < 3b

(ie., § <b < 1) from (4.6) and (4.8), and 0 < 12 < 7 < b from
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1 = 3a + 5b. Using these facts, we have a contradiction as follows:

0 =per(As5(1|1)) — per(As;5(1(8))
={2a(az® + 5b%z*) + (5b)(2b)(az? + 4b%z>)}
— 3b{2a(az® + 26%x%) + (4b)(2b)(az® + 30%2%)}
=(2a*z® + 20ab’z* + 40b*z*) — (6a2bx* + 48ab®e® + T26°27)
=2a’z"(z — 2b) + 2abz*(b - a) + 18ab®z(z — 2b)
+ 4623 (b — 3a) + 36b*z2(z — 2b)
>0.

This contradiction implies that @ = 0. Thus the minimizing matrix on
2(V35) becomes the matrix As 5 with @ = 0 in (4.1), which is contained
in the face Q(Uss). Therefore the minimum permanent on Q(V35) is
the value in (3.1), which occurs at the barycenter b(Uss) of Q(Us5),
as required. O

(1]
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