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THE REPRESENTABILITY OF MODULAR
FORMS BY CERTAIN THETA SERIES

SUNGTAE JUN

ABSTRACT. With the primitive orders in quaternion algebra, theta
series associated with these orders are constructed. Here, we studied
the space of modular forms generated by these theta series.

1. Introduction

Let N be a natural number and To(N) the congruence modular

group of level N, that is, I'o(N: = {(Z 2) € SL(2,2)c=0 mod N)}.

There is a close connection between the theory of modular forms of
weight k > 2 on T'g(NV) and the arithmetical theory of a rational quater-
nion algebra. This connection was first recognized by Hecke [6]. For ex-
ample he conjectured that all cusp forms of weight 2 on Tg(p), where p
is a prime, are linear combination of certain theta series attached to the
norm form of certain quaternion algebra. Hecke’s oringinal conjecture
was proven false. However, Eichler proved slightly weakened version of
Hecke’s conjecture [4]. He generalized this results and formulated the
Basis problem in [5 . Recently, Hijikata, Pizer and Shemanske utilized,
so called, special orders in quaternion divsion algebra and solved the
Basis problem. Special orders in quaternion algebra are analogous to
the order, <J\A"ZZ é) in Ma,»(0).

In Eichler’s thesis [3], he studied primitive orciers in quaternion al-
gebras over a number fields. An order M of a quaternion algebra A
over a local field k is called primitive if it satisfies one of following con-
ditions. If A is a division algebra, M contains the full ring of integers
of a quadratic extension field of 4. If A is isomorphic to Mats.o(k),
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of a quadratic extension field of k. If A is isomorphic to Matayo(k),
then M contains a subset which is isomorphic either to O @ O where O
is the ring of integers in & or to the full ring of integers in a quadratic
extension field of k. A special kind of primitive orders, called special
orders, were studied in [8].

In [2], Brezinski studied primitive orders in quaternion algebra which
is isomorphic to 2 by 2 matrix algebra over a local field and which con-
tains the full ring of integers in a quadratic extension field of k. With
theses primitive orders, we constructed theta series attached norm form
of this quaternion algebra [10]. Here, we like to study what kind of sub-
space of modular forms are generated by these theta series.

The basic idea is to consider Brandt matrices /3(n) which occur in
the theory of quaternion algebras and analogous to the Hecke operators
T(n). In fact they both generate semisimple commutative rings and
Brandt matrices give representations of the Hecke operators on a space
generated by theta series. In [11], we defined Brandt matrices associ-
ated with the primitive orders in rational quaternion algebra and we
calculated their traces. Theorem 4 below gives a relation between the
trace of the Brandt matrices and the trace of Hecke operators. From
this, we obtain several results on the representability of modular forms
by theta series.

2. Primitive orders and Brandt matrices

In this section, we summerize the properties of quaternion algebra
and its order.

2.1 Let A be a rational quaternion algebra ramified precisely at the
odd prime g and co. That is, A, = A® Q4 and A, = A® R are
division algebras. Otherwise, A, = A® Q) is isomorphic to M 2(Qp)
for a finite prime p # g (See [11]).

Fix an odd prime p and let L be a quadratic extension field of Q.

In [10], we have proved that {( ) ‘ a,fB € L} is a quaternion
o
B

Qi Q\

algebra over @,. Let A, = {(

§=<$ )

){aﬁel}:L+§LWhere
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Hence, we can define the norm of an element in .1 as its determinant.

2.2 Let P, be the prime ideal of Oy, the ring of integers in L. In [10],
we have proved that the possibilities of an order,R, of A, containing
O, are

Ry (L) = O, + €P¢  if L is unramified
R=( R,(L)=0,+ (1 + &Py ! if L is ramified
Ro(IY - Op+ (1 -€6P;! if L is ramified

for some nonnegative integer v, where £ € A, and £ & Oy,
We now define the level of order M of A.

DEFINITION 2.1. Let A be a rational quaternion algebra ramified
precisely at one finite prime g and >o. For finite odd primes, p;,po, - - -
Pa # q, an order M has level (g; L(p1),v(p1); - ; /(pa), v(pq)) if

(i) M, is the maximal order o A4,,

(ii) for a prime p # g, there exists a quadratic extension field L(p)
of ¢, and nonnegative integer v(p) ( which is even if L(p) is
unramified) such that M, == R,y (L(p)),

(iii) v(p;) > O for i =1,2---d and v(p) = 0 for p # ¢,p1-- , pa.
(i.e M is a maximal order of A, if p # p1,p2, - - - pa)-

2.3 In the rest of this paper, let A be a rational quaternion alge-
bra ramified precisely at the odd prime ¢ and oo and we will restrict
ourselves with the primitive orders R in a quaternion algebra which
has level N' = (q; L(p), v(p)) with v(p) > 1 where L(p) is the unram-
ified extension field of @,. By the definition 2.1, v(p) is always even
number. So for the notational convenience, let v(p) = 2v.

DEFINITION 2.2. Let O be an order of level N’ in A. A left @ ideal
I is a lattice on A such that I, = Opa, ( for sonie a, € AJ) for all
p < oc. Two left O ideals I and J are said to belong to the same class
if I = Ja for some a € A*. One hus the analogous definition for right

O ideals.

DEFINITION 2.3. The class number of left ideals for any order O of
level N’ is the number of distint classes of such ideals.
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DEFINITION 2.4. The norm of an ideal, denoted by N([), is the
positive rational number which generates the fractional ideal of @) gen-
erated by {N(a)|a € I}. The conjugate of an ideal I, denoted by I, is
given by I = {ala € I}. The inverse of an ideal, denoted by I, is
given by I"! = {a € A|lal C I}.

PROPOSITION 2.5. Let O be an order of level N’ in A. Let I, I, I3,
.-+, Iy be the complete set of representatives of all the distint left O
ideal classes. Let O; be the right order of I, j = 1,2,--- H. Then

I; n,-- I 5 'y is a complete set of representatives of all the distint
left O ideal classes (for j =1,2,--- ,H).
Proof. See Proposition 2.13 and 2.15 of [14]. O

Fixing a set of representatives of the (left) R-ideal classes, we de-
fine generalized Brandt matrices B(n) = B(n; N') in exactly the same
manner as Eichler (See [5], equation 15 and 15a on the page 105). Here
n is nonnegative integer. With these Brandt matrices, we constructed
a set of theta series which are modular forms of weight 2 on Tp(gp?¥)
(See [11}). In this section we will modify the Brandt matrices to study
the subspace of theta series generated by the quaternion theory.

In this section, we will explain how to construct the Brandt matrix
series and theta series briefly. For the details, see [5], [8], [11] or [14].

2.4 Let R be an order of A with level N’ and let Iy, I5,--- , Iy be a
representatives of (left) ideal classes of R, where H is the class number.
Then let e; be the number of unit elements in I ‘(,_111-. Now, we define

bij(n) = % the number of elements in Ij_lli with norm nN(I;)/N(I;)
forn > 1. If n =0, b;;(0) = ;1; Then B(n,N') = (b;;(n)) is called a
Brandt matrix, which is a H x H matrix. Further, let

(2—1) @(T, N’) — (eij('r)) — Z B(n, NI)€27rin7'-

n=0

Then the entries of ©(7, N'), 6,;(7), are modular forms of weight 2 on
I'o(N) where N = gp?” (See Theorem 3.4 [11]).

To study the theta series constructed by primitive orders, we need
to modify the Brandt matrices analogously as in [14].
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PROPOSITION 2.6. Let B(n) == B(n, L(p),2v). Then the entries of
the matrix series Y, B(n)ezp(2mint) are modular forms of weight
2onTo(N), N = qp?”.

Proof. See Theorem 3.4 [11]. O

LEMMA 2.7. Let M be an order of level N’ and let I,J be left M
ideals. Let ©; = > exp(TN(a)/N(I)) be the theta series attached

to I and similarly for J. Then ©; — O is a cusp form of weight 2 on
[o(N), N = qp?*.

Proof. For a finite prime [, let I; = M;a and J; = M;b for some
a,b e Aj. There exists u € Z; such that

uN(a)/N(I1 = N(b)/N(J).

Since M; is an order containing the ring of integers of unramified qua-
dratic extension field of @);, there exists a unit v € M, such that
N(v) = u (See [13] page 188). So quadratic forms N(z)/N(I) for
z € I and N(z)/N(J) for £ € J are locally equivalent for a finite
prime [. If [ = oo, then it is clear. Thus ©; and ©; have same genus.
It is classical result that the difference, ©; — ©; is a cusp form [17].00

COROLLARY 2.8. The difference of two theta series appearing in
the same column of the matrix series >~ o B(n)exp(2minT) is a cusp
form.

Proof. This is immediate from Proposition 2.¢ and Lemma 2.7. [J

REMARK. Recall that b;;(n) is that é times the number of ele-

ments, a,in Ij”lli with N(a) = nN(I;)/N(I;) and e; is the number of
elements of norm 1 in Ij_lfj.

LEMMA 2.9. Let B(n) = (b;;(n)) where1 <: < H and1 < j < H.
Then we have
(a) e;bij(n) = e;bji(n) for all 4,5,1 <4i,j < H and alln > 0

(b) ZJH:l b;j(n) = b(n) are independent of .

Proof. See lemma 2.18 in [15]. O
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LEMMA 2.10. Let the notation be as above. Let B(n) = B(n, L(p),
2v) = (b;;(n)). Consider the matrix

1 6162_1 ele;[jl
1 -1 0
A= .
: . 0
1 0 o
that is, A = (a;;) where a;1 =1 fori = 1,--- | H; ay; = elej-“1 for

J=1,--,H, a;=~1fori=2,---,H and all other a;; = 0(i #
1,j#1,i# j). Then AB(n)A™!- B'( ) for all . > 0 where B'(n) =
(bi;(n)) and by, (n) = b(n) = ZJH 1 ( )(independent of i by Lemma
2.5); byi(n) = bj1(n) = 0 fori = 2,--- , H and bj;(n) = b;;(n) — b1;(n)
for2<i,7<H.

Proof. See the proof of Lemma 2.19 in [15]. O

2.5 We are now able to consider the case of cusp forms of weight 2.

(22)  ABm)A~'= (b(é’ ) B/(n,L%o),zv,))

where B'(n, L(p),2v) is a H — 1 < H — 1 matrix. From now we will
denote B’(n) for AB(n)A~!.

THEOREM 2.10. Let B'(n, L(p),2v) and B'(n. be as above. Then
the entries of modified Brandt matrices

(r,N") = Z B'(n, L(p), 2v)exp(2minT)

are cusp forms of weight 2 on I'o(N) where N = ¢p?

Proof. Each entry of @'(1,N') is _>° /(b;;(n) — b1j(n))e? 7. By
Corollary 2.8, this is a cusp form of weight 2 on T'o(N). O

PROPOSITION 2.11. Fix p, ¢ and N’ = (L(p),2v) as above. Then
the B(n) with (n,qp®”) = 1 generates a commutative semi simple ring.
Similary, the B'(n, L(p),2v) with (n,qp*) = 1 generates a commuta-
tive semi simple ring.
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Proof. By the Theorem 2 on page 106 of Eichler[5], the B(n) = B(n,
N’) with (n,qp?) = 1 generates a commutative ring. Thus it follows
from the above that B(n) with (n, N) = 1 generates a commutative
ring and clearly, so does the B’(n) with (n, gp*”) = 1. d

REMARK. By Proposition 2.11, there exists &« H x H matrix E
such that EB(n)E~! is simultaneously diagonal matrix for all n with
(n,gp®) = 1. Similarly, there exists a H — 1 x H — 1 matrix E’ such
that £'B'(n, L(p), 2v)E’ s simultaneously diagonal matrix for all n
with (n,qp?) = 1.

3. Traces formular

Let trnTs(n) be the trace of Hecke operator T(n) acting on the
space of cusp forms S>(/N). Hijikata has computed tryT2(n), which is
given by (7.

THEOREM 3.1.

tryTa(n) = zak Zb NI, fp)

pIN

+ 5(\/5)’“1;1 N[+ 2) + s(kdegTa(n),

pIN

1 ifn is a perfect square
0 otherwise '

where 8(y/n) = {

REMARK. The meaning of s, at s), f and b(s, f) are as follows. Let
s run over all integers such that s” — 4n has one of followings.

0
42
?’m O>m=1 mod4
t?4m 0>m=2,3 mod 4.
Let ¢(X) = X2 —sX +n and let x,y be roots of ¢(X) in C. Then
lz| - (4N)"! ifs2—4n =0
a(s) = ¢ min(|zl,|y])/(|z —y|) if s®--4n =¢?

§° —4dn =

% otherwise
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For each fixed s, a(s) is corresponding to its clascification.
Let f run over the following set.

f_{1,2,---,N if s2 —dn =0

all positive divisors of t otherwise

and

1 ifs?—4n=0
b(s,f) =< 3o(VsZ—4n)/f) if s? —dn = ¢2
h((s* — 4n)/ f2) Jw((s? — 4n)/ f?) otherwis.e

where ¢ is Euler ¢-function, h(d) (resp. w(d)) denotes the class number
of locally principal ideals (resp. —21- the cardinality of the unit group) of

the order Q(v/d) with discriminant d.
Proof. See [7]. O

THEOREM 3.2. The trace of the Brandt matrix is given by

tr B(n, L(p), gp®” va H cis, f,0)

llqp?v

-5 mg@ ~ ) -

1 ifn is a perfect squ
WhereuZland(S(\/ﬁ):{ 1IN Is a pertect sq are.

0 otherwise

REMARK. The meaning of s, fb(s, f) and (s f,1) are as follows.
Let s run over all integers such that s2 — 4n is negative. Hence with
some positive integer ¢ and square free integer m, we can classify s?—~4n
by

9 t?2m m=1 mod 4
s —dn = 9 ,
t“dm m =2,3 mod 4.

For each s, let f run over all positive divisors of t. Let L = Q] z]/(Vy(x))
where ¥ (z) = 2® — sz + n and € is the canonical image of  in L.
Then L is an imaginary quadratic number field and € generates the
order Z + Z¢ of L. For each f, there is uniquely determined order @ ¥
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containing Z + Z¢ as a submodule of index f. Let A(Of) = s —4n/f2.
Let R(A(Oyf))( resp. w(A(Oy))) denote the number of locally principal
O ideals( resp. 1|[U(O;)]). Then b(s, f) = Z%%%

Let M be an order of level N’ of A. Then c¢(s, f.1) is the number of
M = (M®2Z;)* equivalence classes of optimal embeddings of O;® Z;
into M ® Z;. In other words, let Z + Za be the maximal order of L,
then Oy ® Z) = Z;+ Zil™a and (s* — 4n)/f? = 1™ A(a) mod (Z°)2.
So it is easy to calculate c(s, f,1), the number of M = R7(L(D)

(See Definition 2.1) equivalent classes of optimal embeddings of ™«
(= Zi+ Zl™a) into M; = R, )(L(1)), in Theorem 3.3 in [2], if 5, f and

7. are given.
Proof. See the proof of Theoren: 3.8 [10]. O

THEOREM 3.3. For all positive integer n with (n,qp) = 1 and for
all v > 2 we have

(3-1)
trB(n, L(p), qp™) —~ trB(n, L(p), p™ %)
= trgpnT(n) — 2trpa T(n) — 2(trgpee—1T(n) - 2tr,an—1T(n))
+ AT gper -2 T(n) — QtT‘T,w-'zT(TL).

Proof. To prove this identity we will compare with term by term.
First, the degree term of R.H.S of (3-1) is
degT'(n)—2degT’(n)—2(degT (n)—2degT(n))+deg?'(n) —2degT'(n) = 0

and the degree terms of L.H.S do not occur.
Second, we consider mass terms. By Theorem 3.6 in [10],mass term
of L.H.S is

(@=Dp-1p* "= (g-Dp-Dp* 7 = (- D(p— D p+ 1)p* >
On the other hand, mass term of R.H.S is

(g+ D+ 1p*™ ' =2(p+ 1)p> 1 —2((g+ 1) (p+ 1)p* 2
—2(p~1)p™ ) + (g+ D(p+ Dp™ 3 = 2(p + 1)p* 3
=(g—-1)(p—1)*(p+ 1)p* %
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Finally we will check the main part of (3-1).
Suppose s? — 4n = 0 or t2 for some integer t.

Then M, is the maximal order of A, which is a division ring and
(s, f,q)q is the number of M = (M ® Z;)* equivalence classes of
optimal embeddings of O ® Z, with discriminant 0 or ¢? into M ® Z,
which is independent from s, f {See Table following Theorem 2.1 of
[12]). Since there are no optimal embeddings into the division algebra,
L.H.S is 0. On the other hand, R.H.S is split into two parts,

(3-2) tropee T'(n) — 2(trgpe. 1 T(n)) + tren—2T(n)
and
(3-3) 2(trya T(n) — 2trpee1T(n) — trpe-2T(n)).

If 2 — 4n = 0, then (3-2) is

215, 0) - €

2v
ap? &
1 qPZV—L 1 qp{,,._z
-2 (s, f,p)p2r + ———s - c' (8, fy0)p2v-2)
qp?—1 ; P qp2-2 AL_, p

—I513¢(s. £ )2~ 4+ 2) =0.

Similary (3-2) is 0.

Next, if s? — 4n = t2, then by the Remark following Theorem 3.1,
a(s) and b(s, f) are independent from level gp?”, gp®*~! and gp®*~2.
So it suffices to compare with (s, f,p). Now, (3-1) is (s, fip)p2v
2c (s, f,p)peo-1 + (s, f,p)pev—2 = 0. By the similar way, (3-2)=0.
Hence R.H.S is 0.

We now have

where (pg,d) = 1.

We now need the tables of the number of inequivalent optimal
embeddings.
Here, u is a quadratic nonresidue mod p.
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Table.
A — p2m

v<m v=m vV >m
(s, f,p)proia 2p” 2p™ +2p™ 1 2p™ 4 2pml
(s fippre P HpTH pmH2pmT 2p7 4 2pmt

A = p?™y
v<m v=m v>m
(s, f,p)pre+ 2pY 0 0
(s, f,p)p»  p*-po7t P 0

A =p?™tlg wherea = 1or a =u.

v <im V=1m v>m
CI(S, fap)2p"+1 2p3l pm 0
(s, fip)apr P +p"t pm+pml 0

Suppose that b > 2. Then ¢'(s, f,q)q = 2 and «(s, f,q), = 0. Since
b(s, f) is fixed if s and f is given,

LHS
= Z Z b(s, fe(s, f, q)qu(S, T P)p‘lv

-‘Z sumsb(s, f)e(s, @) geels, f, P)p2e—2

=D D bls,f)-0-cls, f,p),er = > ; b(s, f) - 0 - cls, f,p)p2u-2
3 f 8

=0.

R.H.S

:ZZb(S,f)C/(S,f, q)qbcl(S,f,p)pzu - QZZb(S,f)rf/(S,f,p)pzu
s f
—2(ZZb(s,f>c’(s,f,q)qbc( Fop) pov- 1~222b (5, f,P)pav—1)
+ZZ s, f,@)go ' (5, £,p), 20 - 2—225 s fyp)pav—2
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*ZZb(s )-2-d(s,£,) 2u-zzzb(s D (s, f.9) o0
Zzb $,£)-2-¢'(s, fyp)pav-1 — ZZZb(s,f)c (5, F,P)p2v—1)
+ ZZb(s £ 2-¢(s, fip)pre2 — 2Zb(s )< (s, £,P) p2v—2
=0.

Hence, we need to check cases that 74—" is p®d or p“qd.

CASE A. %4—" = p°d.

If a = 2m and (g) = 1, then c(s, f,q)qg = 0 and (s, f,q)s = 2. So
it is clear.

If a = 2m and (g) = —1, then c(s, f,q)g =2 and ¢'(s, f,¢)q = 0. So
(3-1) becomes

203 b(s, (s, f,p)pev Zb o(s, f, P)pav-2)
s, f
= - 2Zb(3,f)c (37 fap)pz” + 4Zb s>f>cl(3’ f)p)pz“_l
s, f

s, f
— 2> b(s, ) (s, f,p)p2v-2.
s, f

Hence, to check (3-1), it suffices to compare

(3'2) C(Sa fa p)p2" - C(S’ f7 p)pz"‘2
:c’(s, I p)p2u — 20’(3, f, p)p2u-—l + C(S, 1, p)pzu—z.

In the following table, we will read p~! = p~2 = 0. For the L.H.S. of
(3-2), let g(v) = c(s, £, P)ye — cls, fop)yev-a.

C(svap)p2" C(S,f,P)p’Zu—2 g(V)
v>m+1 2pm—2pm~—t 2p™m _ 2pm-1 0
v=m+ 1 2pm — 2pm—1 pm _ 2PmA1 pm
v=m pm . 2pm-1 p'nz-«-l _pm—Q pm . 3p = pm 2
v < m pV . pu~—1 p 1 __ 2pl/—2 pu . 2pu 1 + pr/ 2
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For the R.H.S of (3-2), let t(v) = (s, f,p)pzr — 2¢'(s, f,p)pev-1 +
(s, fyp)prv—2.

CI(S,f,p)pz,/ C/(S, f)p)p2" -1 C’(syfvp)pz"‘ : t(l/)
v>m+1 0 0 0 0
v=m-+1 0 0 pm p™
v=m prn 2pm-1 pmAl 4 Pm_.‘ Pm o 3pm—-l + prn—2
v<m pu . pv—l 2pu—1 pu—-l _ pu-—2 pu _ 2pu——1 + pu~2
If a = 2m + 1, as in the above case it suffices to check (%d) =—-1.
C(slfvp)pz'/ C(sn,f»p)pz"“? g(y)
v>m+1 0 0 0
v=m+1 0 pm __pm—l _}m.+pm—~l
v =1m _pm—l pm~l __pm~2 pm __::pm~l +pm—2

1

P
v < m pu _ pu—— pu——-! - ZPV—Q pu — :2pv—-1 + pu—2

For the R.H.S of (3-2), let t(v) = (s, f,p)p2v — 2d(s, f,P)prv—1 +
(s, f,p)prv-2.

C,(S?f’p)pZV C,(Svf’p)p2lf 1 C’(svap)p?l/—2 t(V)
v>m-+ 1 0 0 0
v=m-+1 0 pm pm+pm 1 _pm_+_pm—1
v=1m pm + pm+1 2pm—l pm + pm 2 pm - 2pm—1 + pnl—Q
v<m pu . pu—l 2pu—1 pu pu 2 pu _ 2pl/Al + pu~2

CASE B. 2 ‘4” = p®qd.

Ifa=2m and (q) =1, then ¢(s, f,q) = 1 and (s, f,q) = 1. This
case becomes Case A with ¢ = 2m.

Ifa=2m+1 and (%d) =1, then ¢(s, f,q) = 0 and (s, f,q) = 2.
This is clear from Case A with a = 2m + 1. O

LEMMA 3.4.
trB(n, L(p), q) = tryT(n) — 2tr1T(n) + degT(n)

Note that the Brandt matrix B(n, L(p),q) is independent of which
quadratic extension L(p) of ), we use since in all cases the order R is
simply a maximal order of A4,.

Proof. See Lemma 6.5 in [9]. O
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4. Consequences

In the previous section, trace identity between Brandt matrix and
Hecke operators is proved. We are now in position to determine to
what subspace is generated by the set of entries in the Brandt matrix
series
(61;(7)) = Yt B'(n, L(p),qp®)e*™ 7. As in section 2, we will use
B’(n, L(p), 2v) instead of B'(n, L(p), gp?”) for the convenience.

4.1 By proposition 2.11, there exists a matrix E’ such that E'B’(n,

L(p),2v)E' ™" is a diagonal matrix for all (n,qp”) = 1. Let {61(7), -,
64(7)} be the set of forms appearing on the diagonal of the diagonal-
ized matrix series »
Yo E'B'(n, L(p), 2v)E' exp(2rinT). It is well known that two
repesentatives on commutative semi simple algebra are identical if their
traces are equal. Thus by Theorem 3.3, the Brandt matrices give the
action of the Hecke operators on the space of forms, (6;;(7)). The forms
appearing in the diagonal of Y°° o E'B’(n, L(p), 2v)E' ™ exp(2minT)
are the eigen forms for the action of Hecke operators T(n). Further,
the action of the T'(n) is given by the diagonalized Brandt matrix
B'(n, L(p), 2v).

4.2 Let S9(N) be the set of all new forms in So(N) (See [1]). An
important result from the theory of new forms is the decomposition
(4-1) S2(N) = @, n6(N/a)SI(a)

where @,y means the direct sum over all positive integers a and a|N.
Here §(s) denotes the number of positive integers dividing s and 24 =
A ® A (See Lemma 15 and Theorem 5 of [1}).

THEOREM 4.1. Let {6:1(7), - ,04(7)} be as above in 4.1 and let
< 0;(1) > denote the 1-dimensional (complex) vector space generated
by 0;(7). Then

v—1

S2(gp™) @2 Sa(qp™ ) B4 D S2(p*2) @ Salq)

s=1 s==1
v
(4-2) > <OH>B<Oh > <0>B2)  Sa(ep? )
8=1

B252(p™) @4 Sa(p** %) @ 252(1)
=1
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where the isomorphism is a module for the Hecke algebra H gener-
ated by the T'(n) with (n,N) = 1. Here 25;(gp**!) = So(qp®**!) @
So(gp***1) etc.

Proof. As H is a semi-simple ring, we need only check that the
traces of the transformations induced by T(n) ¢n both sides of (4-
2) are equal. By (2-2), trB’(n, L(p),2v) = trB(n, L(p),2v) — b(n) =
trB(n, L(p), 2v) — degT(n) for (n, qp*) = 1, wherc b(n) = degT'(n) for
(n,gp) = 1 (See p94 [5]). Hence, by theorem 3.3, trB(n, L(p), 2v) —
trB(n, L(p),0) equals

Z{trqP%T(n) —_ 2tr],2kT(n) ( T qp2k— 1T( ) - Qt'rp‘zkflT(TL))
k=1
+ trgpee—2T(n) — 2tr,2c-2T(n)}

= zuT +2ZtT 25— zT 4Zt7‘ 25— 1T(TL)+t7‘qT( )
s=1

—{2tr,2T(n) + 2 Z tropre1T(n) + 4> troe. 2T(n) + 2tr; T(n)}.

s=1 s=2

By Lemma 3.4, trB(n, L(p),0) = ir,T(n) — 2tr1T/n). Thus if {6, 0y,

,04} are the set of forms appearing on the diagonal of the diagonal-
ized matrix series, Y oo o E'B'(n, L(p),2v)E'~ ‘exp(int), then (4-2) is
given. Ol

COROLLARY 4.2. Let {6,---,8;} be as in Theorem 4.1. < 6, >
D <02>& - <0y >~ S(gp*) 9 S (gp** )@ D SY(gp?) D SY(g),
where the isomorphism is a module for the Hecke zlgebra H generated
by the T'(n) with (n,qp) = 1.

Proof. From (4-1), we have

2v 2v

Salgp™) =Y (2w —k+ 1)SPUaqp*) + 23 (20 — k + 1)S3(p")
k=0 k=0
2v

So(p™) = 2(21/ — k+1)S5(p").

k=0
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Then (4-2) can be replaced with the newforms. Thus we conclude that
<O >O<hy>D - <Oy > 320 8(qp?F). O
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