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A NOTE ON E. CARTAN’S METHOD OF
EQUIVALENCE AND LOCAL INVARIANTS
FOR ISOMETRIC EMBEDDINGS
OF RIEMANNIAN MANIFOLDS

CHONG-KYU HAN AND JAE-NYUN YoO*

ABSTRACT. By using the method of equivalence of E. Cartan we
calculate the local scalar invariants for Riemannian 2-maniolds. We
define also a notion of local invariants for submanifolds in R td
n > 2, d > 1, in terms of the symmetry of the local isometric
embedding equations of Riemannian n-manifolds into R*+4. We
show that the local invariants obtained by the Cartan’s method are
the intrinsic expressions of the local invariants in our sense in the
cases of surfaces in R3.

0. Introduction

Let M be a smooth (C*) manifold with a certain geometric struc-
ture. E. Cartan’s local equivalence problem is finding a complete sys-
tem of invariants on a principal fibre bundle over M, so that there
exists a structure preserving local diffeomorphism f of M onto a man-
ifold M with a structure of the same type if and only if the invariants
of M and M agree (see [2], [7], [13], [14]). By a geometric structure
we mean a G-structure (see [5]). Then the problem can be described
as follows : Given a set of n linearly independent differential 1-forms
0*(z,dz), i = 1,--- ,n, in the coordinates z = (z!,---,z"), another
such set éz(y, dy) in the coordinates y = (y!,- - ,¥"), and given a Lie
group G C GL(n;R), the problem is determining whether there exists
a mapping f

Y = fi(a;l’... ), i=1,-- n,
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which satisfies )
ff8=ab, acgG,

where 8 = (0,--- ,0™), 8= (6,.--,60™)¢, and a is a G-valued func-
tion of M. When M and M are Riemannian manifolds, # and 6 are
orthonormal coframes over M and M respectively, and G = SO(n; R),
and the equivalence problem in this case is constructing a canonical
complete system of invariants so that there exists a Riemannian isom-
etry f: M — M if and only if those invariants of M and M agree.

In §1, we explain how to get the local scalar invariants by the method
of equivalence of E. Cartan and then in §2, we apply this method to
Riemannian 2-manifolds to get local scalar invariants.

Let x = (z!,---,z") be a coordinate system of 1 Riemannian mani-
fold (M, g) and let g;;(x) = 9(5%’ nzj ). A mapping u = (ul, - ,u"*%)
: M — R™*¢ is a local isometric ernbedding if u sztisfies

Y Gue ue

(3.1) = gij(z), foreach ¢,5=1,--- n.

ort Oz’
a=1

For the history and the major results including the existence of solu-
tions of (3.1) under various conditions, see [3], [8], [9], or [12].

In [11] the authors defined the local invariants for the submanifolds
of Euclidean spaces (Definition 3.1) in terms of the symmetry of (3.1).
This notion of invariant is valid in a wider class of systems of partial
differential equations for unknown functions u = (u!, -, u"*t%), d > 1,
of independent variables = (z!,--- ,z™) where a solution u(x) forms
a submanifold of R"*?. Actual calculation of the invariants usually
involves enormous symbolic calculations. As a simplest example, we
show in §4 that the Gaussian curvature and the higher order invariants
for surfaces u® = h(u!,u?) obtained by Cartan’s method are intrinsic
expressions of the invariants in the sense of our definition.

Throughout this paper, all the manifolds and mappings are assumed
to be ™.

1. E. Cartan’s method of equivalence

Let M be a C'* manifold of dimension n and G be a linear subgroup
of GL(n;R). A G-structure on M is reduction of coframe bundle of M
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to a subbundle with the structure group G. For instance, a Riemannian
structure on M is a SO(n)-structure and the subbundle in this case is
the orthonormal coframe bundle of M.

Now let M and M be manifolds of dimension n with G-structure.
The equivalence problem is deciding whether there exists a structure
preserving mapping f : M — M. Locally, this s a question of exis-
tence of solutions for an overdetermined system of first order partial
differential equations in cases where ( is a sufficiently small group.

E. Cartan’s method to this problem is as follews: We fix coframes
0 = (0", 6™ of M and 6 = (0, ... f™)t of M adapted to the (-
structure, where @ and 6 are defined over an open set / of M and
an open set U of M, respectively. Then the quesrion is whether there
exists a mapping f : M — M that satisfies

(1.1) fr6% = a5 6°,

where a := [a§(z)]nxn is a G-valued function of M. In terms of local
coordinates, (1.1) is a system of first order partial differential equations
for f = (f',---, f*) and system of algebraic equations for ag(z). Thus

we consider the product U x G and define a tautological 1-form © = g¢#
on U x (7, namely

(12) Q(w,g) = g0,, Vi & U, Vge G,

where ¢ is a column vector (6,---,67)t. GG acts on U x G on the left
by the action defined by

h(l?,g) = (1"7 hg)) Vx € U, Vg,h e G

PROPOSITION 1.1. A diffeomorphism f : U — U satisfles (1.1) if
and only if there exists a diffeomorphism F : Ux G — U x G satisfying
i) FFO=6

ii) the following diagram commutes:

UxG —" Uxa
dl K
v o—'— 7

iii) F(x,gh) = gF(z,h), for cachz € U, anc g, hed.
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Proof. Suppose that f satisfies ffé = gof, where gg¢ is a G-valued
function on M. Define F : UxG — UxG by F(z,9) = (f(x), 995 ().
Then F satisfies ii) and iii). Moreover,

F*6 = F*(30) = (990" ")f*0 = (990 ")g06 = 96 = 6.

Conversely, suppose that F : U x G — U x @ satisfies 1) - iii). Define
f:U—>Uandgy:U — Gby F(z,e) = (f(z),90(z) "), where ¢ is the
identity of G. Then F(x,g) = gF(z,¢e) = (f(z),995"), and i) implies
that

90 = F*(38) = (990 ") f*0
therefore, f*6 = gob. O
Now apply d to (1.2). We get
dO = dg A 0 + gdb;
substituting § = g~'©, we obtain
(1.3) de =dgg~' A O + gdb.
We need the following

HypPoTHESIS. There exists unique 1-forms w;:, ;,j=1,---,n, such
that
(1.4) do* = —wi NG
and

[w;(m)] €G, foreach x € U,
where G is the Lie algebra of G.
This Lie algebra valued 1-form w = [w}] is called a torsion-free

connection (see [5]). Substitute dd = ~wA @ and § = ¢g~16 in (1.3), to
get

dO =dgg *ANO —gwAg 'O = (dgg! — qug ) N 6.

Let

(1.5) Q= —(dgg ' —gwg™),
then €2 is a G-valued 1-form on U x (¢ and we have
(1.6) de = QN B6.

Now it is easy to show
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PROPOSITION 1.2. Let O* and Q, i, =1,---,n, be the 1-forms
defined by (1.2) and (1.5) on U x G. Then Gi,Qzﬁ spans the cotangent

space at each point of U x G. Furthermore, if é’,fl; are the corre-
sponding 1-forms on U x G and

F:Ux(—-UxG
is the mapping as in Proposition 1.1, then
(1.7) Q= Q.

The set {©",Q%} is called a coinplete set of invariants for the equiv-
alence problem. {2 is called a torsion-free connection form on U x G.
Note that w is a 1-form on the base manifold U and that the restriction
of {2 on each fibre is the Maurer-Cartan form of . Now apply d to

(1.6), to get

0= —-dQANEO+QANdO
substitute (1.6) for dé&
= —(dQ+QAQ) NGO

The curvature 2-form on U x (7 is defined by
(1.8) R=dQ+OnQ
Then R is a G-valued 2-form such that
(1.9) RAO = 0.
Similarly, from (1.4) we get

0=—(dw +wAw)Ab.
The curvature 2-form on U is defined as

(1.10) R=duv+wAw.
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Then we have
RAB=0.

Now apply d to (1.5). Then computation shows that
(1.11) A= —Qr Q+gRg™ L.

By (1.8) and (1.11) we have

(1.12) R=gRg™?

For the problem of existence of f satisfying (1.1), or equivalently,
the existence of F' as in Proposition 1.1, we consider V := U x G,
V :=U x G, and 1-forms ¢ on V x V defined by

Y=60"-6 j=1,---.n
Then the problem is finding an integral manifold of the Pfaffian system
¢j:07 “]':1,"',TL.

We are concerned in this paper with finding local geometric invari-
ants. Let F': U x G — U x G be as in Proposition 1.1. Then by (1.7)
and (1.8) we have

(1.13) F*R=R,

where R = d0 ~ QA Q.
Thus R is an invariant 2-form on U x G. Substituting (1.12) and the
same expression with tilde in (1.13), we obtain

F*(§RG ') = gRg™"
Since g = ggal, this implies that
(1.14) f*R=goRgy".

To get the scalar invariants, we shall express the invariant 2-form R
in terms of the invariant 1-form & and §2. Set
) TV YA A 7,17 A
R, = JMQ“/\Q"—FbJA“@ ANOH 4+ OFAQ,
(summation convention in A, p,p,v = 1,--- ,n).
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1y i i, . .
Then a 7 an are all zero by (1.9), bj e and €, au @re uniquely determined

if we require b;’/\” = —b% ,»- Thus we get for eachz,5=1,--- ,n,

R =binu(2.9)0% A 4 e (2,9)9% A QL

(1.15) ‘ o |
(summation convention in A, p. =1, , M)

3 ions b ) S ) all o i 3 23
These functions b5 2. (Z,9) and €5 (T,g) are al scalar invariants in

the following sense :
a(F(z,9)) = a(f(z),99 ') = a(z,9), Vx =U, VYgeq.

By differentiating the scalar invariants repeatedly, we get further
scalar invariants, for instance, if ¢ is a scalar invariant we set

da =dy 6 + ¢ Q2

©wr

(summation convention in A, =1,--- ,n),

then dy(x,g) and ef(z,g) are scalar invariants. Since ® = (R) and
Q= (QE-) are G-valued 2-form and 1-form, respectively, they satisfy a

system of linear equations

IR =
(1.16) C
¢/ =0 (summation convention in +,j = 1,--- ,n),

where cf are the structural constants of G. (1.15) «nd (1.16) give linear
equations in bj 2 (75 9) and c;-’,';\ul‘ z,g). If we can eliminate the vari-
ables g using these linear equations and get an irvariant expressed in
variables z only, this is a local geometric invariant of the base manifold
M. We shall see an example of such cases in the aext section.

2. Local invariants for Riemannian 2-Manifolds

In this section we apply the method in §1 to ge: the local invariants
of a Riemannian 2-manifold.
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Let M be a Riemannian 2-manifold with a local coordinate system
(z,y) and metric g;;(x,y), 4,7 = 1,2. Using the Gram-Schmidt or-
thonormalization process, we choose orthonormal coframes ! and 62
on M as follows :

6t =Tldz +TI'ldy,
(2.1) . 2
0° =T dy,
where g
1-\1 — , 1—\1 — 12 ,
1 = V411 2 \/QT
and

2 — 911922 — (912)2

Vai

Taking the exterior differentiation d of (2.1), we have

df' = dTi Adz + dT3 1 dy = {(T3). — (T']), }dx A dy,

(2.2) 5
df? = dT'% A dy = (T'%),dz A dy.

Take the wedge product of 8! and 62 in (2.1), to get

1
(2.3) dz ANdy = S— NS
g11922 — (912)2

By substituting (2.3) for dz A dy 1n (2.2), we have

AT
(2.4) ) G
2 — 2 -730] A 92

do en ,

where G = \/g11922 — (g12)?. Define wl and w? by

(Fi)y}w A 02.

rl rt %),
(25) u,d; e —u_)% — ___( ) G( )y 91 (—G,LQQ.
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Then (2.4) becomes

do* = —wl A6

2.6 .
(26) 6% = —u? A O,

wl is the unique 1-form which satisfies (1.4).
In order to apply the method in §1, we consider differential 1-forms
6! and 62 on M x SO(2) defined by

O = cos 10! —sinT 62,
(2.7)

©? =sin 76! + cosT 62,
where 7 is a parameter of SO(2) (cf. (1.2)). Apply d to (2.7), to get

dO' = —sinTdr AO' —cosTdr A6+ cosTdft — sianHZ,

2.8
(28) dO? = cosTdr A B! —sinTdr A 6% + sin df® + cos T dh?.
Substitute (2.6) for df' and df? in (2.8), and define 1-forms

Q3 = +dr + ws,
Q% = —dr + Wi,

on M x SO(2) (cf. (1.5)), then (2.8) becomes

de' = —Ql A 672,
(2.9) ) ) X
de* = -Qi ANO.
Since wi = ~w?, we have
(2.10) Q) = -3,

Applying d to (2.9) and substituting (2.9) for dé" and dO?, we get

di A 6?7 =0,
(2.11)

A A0 =0.
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Then, by Cartan’s Lemma,
(2.12) dQy = dwl = KO' A 62,

for some function K on M x SO(2). Applying d to (2.12) and substi-
tuting (2.9) for dO! and dO?, we get

0=dK r 0! AO?,

so OK/OT = 0, that is, K is independent of the parameter 7. From
(2.7) it follows that ©' A ©% = 6! A 62, In (2.12) substitute (2.5) for
wj and 8 A 62 for O A 62, then by (2.3), (2.4), and (2.5) we have
(2.13)

4 K(z,y)

= (911922 — (912)*) 212((912)® — 911922) (911,40 — 291229 + 922,22

+ 911(911,y922,y — 2912,2922,y + (922,:5)2)

+ 912(911,2922,y — 911,9922,2 — 20119912,y + 49122912y — 2012.2922.2)
+ 922(011,2922.2 — 20112912,y + (G11,4)°)]-

Notice that K is the classical Gaussian curvature.
To find the further invariants of M apply d to K(x,y), to get

dK = K.dz + K,dy,

1 912 V911 2
=K, (——0' — 6%) + K, (Y2162), by (2.1
(2.14) NI Gva,, G )
K, gu Ky — 912K,
= o'+ —2 6°.
V1 Gva,,

From (2.7) we have

(2.15)

0t = cos 7O + sin 762
6%? = —sin7O! + cos TO?.

Substitute (2.15) for #' and 62 in (2.14), to get

(2.16) dK = a(z,y,7)0" + B(z,y, 7)6%,
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where
oflz,y,7) = Ha COST — guky - 912K, sin T
e \/511 ) G\/-’in ’
(2.17) K. — oK
B(z,y,7) = ——sinT + IUTy ~ 91282 ey,

\/‘al 1 G\/Er_l 1

Therefore, a and 3 are scalar invariants on M x SO(2). Notice that

g22(K )2 - 2912 K. Ky + g11(K,)?

(2.18) o? + 6% = e

is a scalar invariant which does not depend on the fibre coordinate 7
and thus a third order invariant of a Riemannian 2-manifold.

An invariant of next order can be found by differentiating (2.18):
Let H be the right hand side of (2.18), then the same procedure gives
a scalar invariant

922(Hz)? — 2912 Hy Hy + g11(H,)?
G2 )

We can continue the same procedure to get invariants of higher order.

3. Invariants for submanifolds in R**¢

In this section we define the notion of local invariant for n-dimensional
submanifolds in R**¢, n > 2, d >» 1, in terms of the symmetry of the
local isometric embedding equations. We review some background in
the theory of jets and symmetry of differential equations and then ex-
plain how we are led to Definition 3.1, which was first introduced in
[11.

First, we fix notations and definitions of jet theoretic notions. Qur
standard reference is [15]. Let X = {(z!,--- ,2™} be an open subset
of R" and U = {(u', - ,u9)} be an open subset of RY. Let U(™ be
an open subset of a Euclidean space whose coordinates represent all
the partial derivatives of smooth maps u(z) = (v’ (z), - ,u%(x)) from
X to U of all orders 0 to m. A multi-index of order r is an unordered

r-tuple of integers J = (j1,---,.4) with 1 < j, < n. The order of
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multi-index J is denoted by |J|. A typical point in U™ is denoted by
u{™ so that

w™ = (%), 1<a<gq 0<|J <m.

Then U™ is an open subset of the Euclidean space of dimension q -
("+m) The product space X x U™ is called the m-th order jet space
and is denoted by J™(X,U).

Let A be a commutative algebra of smooth functions a(z, u{™)) de-
pending on z, u, and derivatives of u up to some finite, but unspecified
order rn. An element of A is called a differential function and denoted
by afu]. If m is the highest order of the partial derivatives that are in
the arguments, aju] is called a differential function of order m. The
subset A(™) of A consisting of the differential functions of order less
than or equal to m forms a subalgebra. Now consider a system of m-th
order differential equations

AY(z,u™) =0, 1<v<l,

for unknown functions u = (u', -+ ,u?) of n variables z = (z!,--- ,z")

€ X. Let I be the set of all differential functions of the form

S S RD,AY, Bl c A,

7150 v=1

where Dy = Dy, ... ;) = Dj o--- 0D, is a composition of total
differential operators. Then we see that [ is an ideal of A and that I
is closed under total differentiation.

Now let M be an open subset of R™ with the standard coordinates
z = (z!, .-, z") and let g be a Riemannian metric on M. A C!
mapping u = {(u', -+ ,u"*9) of M into a Euclidean space R"*9 is a

local isometric embedding if and only if u satisfies

n+d Ju® Ou”

(3.1) — O’ D7 =gi(z), 1<4j<n
where g;;(z) = g( 2” {fZ]) Foreachi,j=1,---,n, let
n+d
i Bu" Ju®
(32) A = — gij(z),

“ 8.7; Az7
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then A% is differential functions of order one defined on J*(M,R™*%).

Now we denote by script letters the jet theoretic notions associated
with (3.1). So, for instance, A the algebra of differential functions in
the arguments

1 n .1 ntd o
(x*,- -, 2" u - u ug Uy )y
where u® = 240 yo — v . and A s the subalgebra of A
4 dxt? g Jxtdxi ?

consisting of the differential functions of order less than or equal to m.
And also we denote by 7 an ideal of A consisting of all the differential
functions of the form

ZZ Ju)(DyAY),  Phlu] € A.

Jo4,5=1

Now consider an n-dimensional submanifold S .= R*™% = {(u?
u™t4)} given by

(3.3) u"TT =R (ut e u), =1, ,d.

Let J™(M,R*"%) be the m-th jet space of embeddings u : M — R™¢
and let J™(R"?, R%) be the m-th jet space of (3.3). Let Q™ be the
open subset of J™(M,R"*%) on which a submatrix {a“k }f::ll " of the

ox? M

. 0. 0 =1, . n+ted . .
Jacobian [ZL- )¢50 4 is nonsingular.

To define the invariants for submanifold S in terms of the symmetry
of (3.1), we first consider a mapping 7 from Q™ ¢ J™(M,R"*%) into
J™(R",R%) defined as follows :

For m = 1, differentiating (3.3) by chain rule we obtain

d n+r )
(3.4) 4 Z k(()i" i=1,-,n, r=1,---.,d,

and we define a mapping 7 of @' = JY(M,R"*%) into J*(R",R?) by

7 (e,u,uf ca=1,---.n+d, t=1,-- ,n)
— (u,hp ck=1,---,n, r=1,---,d).
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To define 7 : Q% — J2(R",R%), differentiate (2.4) to get

Pyt . Ouk out z
(3.5) asci@xj:k; ’“a i Z ’“a“J r=1,---.d.

Then on %, we solve (3.4) and (3.5) for Ry, s in terms of ug s U, to
define 7 : 92 — J2(R",R%) by

T (T uuf ul ca =1, ,n+d, t,3=1,--,n)
(U,hz,h;‘;i Ik},l:l,... ST 7'-:1’... ’d)

We define = : Q™ — J™(R",R?) inductively for each positive integer
m

An evolutionary vector field V,; = Z"+d Q"[ Jaga is an infinitesi-
mal symmetry of (3.1) if for each 7,5 = 1, -

prVo(AY) =20,  mod Z,
where 5
Vo = D;Q%)—.
prvg VQ+Z]( JQ )Buf;
That is, the components of @ = (Q[u],--- , Q" [u]) of Vo satisfies
(3.6)
n+d

Z{(Dan)u?+(DiQ“)7L?} =0, modZ, foreach i,j=1,---,n.

a=1

Suppose that Vi, is an infinitesimal symmetry of (3.1) and u = f(z) is
a solution of (3.1). Suppose also that a function v(z,t) : M x (—€,€) —
R™*+¢ satisfies the system of evolution equations

31)”(:1:,15) o (n) .
(3.7) T @@y a=1lontd

v(z,0) =f(=),
where v(™) = {(8/8z1)1 - (0/02™) v ay + -+ + ap, < m}. Then

for each ¢, v(-,t) is a solution of (3.1) and thus v(z,t) gives a one-
parameter family of solutions of (3.1), i.e., a ‘bending’ of f.
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Now consider a differential function a[h] of h = (h*,--- ,h%) in (3.3)
such that
(3.8) prVg(alhlom) =0, modZ,

for any infinitesimal symmetry V¢, of (3.1). Then alh] o 7 is invariant
under any bending. (3.7) has no solution in generzl, but we can always
consider the action of Vi) on differential functions a[h]om, so that (3.8)
defines differential functions a[h] which are infinitesimally invariant
under isometries.

Now consider a differential function alh] such that a[h] o 7 is equal
to some function k(z) of M after eliminating the elements of Z, that
is,

(3.9) alhl o= k(z) + b,

for some b € Z. Then a[h] determines k(x), which .s independent of the
choice of isometric embedding u. Note that if a[h] satisfies (3.9), then
it satisfies (3.8) also and therefore, it is invariant under infinitesimal
symmetries. Thus we are led to define the invariants for submanifolds
as follows :

DEFINITION 3.1. A differentiai function alh] of h = (k',--- k%) in
(3.3) defined on J™(R™, R?) is an invariant of order m ifalh| om = k(z),
mod Z, for some function k that depends only on z.

We will call k(z) the intrinsic expression of the invariant alh].

4. Local invariants for surfaces in R3

This section is a test case for Definition 3.1. W= shall show that the
local invariants calculated in §2 by the Cartan’s method are intrinsic
expressions of some invariants in the sense of Definition 3.1. For the
symbolic calculations we used Mathematica®.

Now let S be a surface in R® given by u® = h(ul,u?). Recall that
the principal curvatures \;,¢ = 1,2, for S are the eigenvalues of the
second fundamental form (see p. 149 of [1])

L1 () h ha  (hy hm)
VD\ hihe 1+ (ha)? hia haa )’
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where D = 1+ (h1)? 4 (hs)?. They are given by

(4 1) (1 + (hg)z)hll — 2h1hohyy + (1 -+ (hl)z)hzg + \/Z
' 2(1+ (h1)? + (h2)?)3/2 ’

where
A= [(1+ (h2)*)h11 — 2h1hohis + (1 + (h1)?)hos)?
—4(1+ (h1)? + (h2)*)(h11hoa — (h12)?).

Note that A; and A\, are invariants under the infinitesimal rigid motion
in R3.

Let

hi1hoo — (hy2)*
(14 (h1)2 + (he)¥)?”

(4.2) Alh] = A1 A =

Then we have

THEOREM 4.1. A[h] is an invariant of order two in the sense of
Definition (3.1). In fact,
(4.3)
4 Alh]lom

= (911922 — (912)%) *[2((g12)% — 911922)(911,9y — 2912.0y + G22.22)

+ 911(911,4922.y — 2012,2922,4 + (922.2)%)

+ 912(911,0922,y — G11.9922.0 — 2911,y912,y + 49122912,y — 2912 2922,2)
+922(911,0922.5 — 20112912,y + (011,4)%)], mod 7.

Observe that the right hand side of (4.3) is the Gaussian curvature
K as in (2.13) and that Theorem 4.1 implies that the product of the
two principal curvatures, that is, the determinant of the Gauss map
of a surface embedded in R? is, in fact, independent of embeddings,
which is the ‘“Theorema Egregium’ of Gauss (cf. [10]).

Proof of Theorem 4.1. First, we express the left hand side of (4.3)
as a differential function on Q% ¢ J%(R? ,R®) : Since (3.4) and (3.5) in
this case are

(4.4)
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and
(4.5)
Uir = hu(ui)2 -+ 2h12u;ui +- hgz(ui)z + hl“iz -+ hguim,
uiy = hlluiu; + hlg(uiuz + uiu;) + hgguiui + hluiy + hguiy,

U,zy = hll(u;)z + 2’1121@’&3 + hgz(ug)z + hl’U!lm + hguzy.
By solving (4.4) and (4.5) for h; and h;;, i,5 = 1,2, on Q? (recall that
the matrix of coefficients in (4.4) is nonsingular on Q2), and substitut-
ing in (4.2), we get

(4.6)
dA[h)om = 4] (J3)*(ud,ul, — (ud)?)
2 .3 6,2 3 2 .3
+ J2J3(uyyum — 2ug ug, + Uz )
+ (Jg)2(uixu§y — ffuzy 2
+ N .]3(u?1/yu2gr — 2uiyu§y + uixugy)
+ Jng(u;yuiz -~ L’uiyuiy + uixufw)
+ (1) (Ugattyy — (u3,)) 1/ (1) + (J2)% + (J5)?)?,
where
Ji = uiuz - uiui, Jo = u;ug - u;ug, Jz = uiug — u;ui

On the other hand, let p;;[u], 7,7 = 1,2, be the left hand side of
(3.1) with n = 2,d = 1, namely,

pul] = (up)® + (u2)? + (ud)?,

(4.7) pr2lu] = poifu] = uiu; + uguz + uiug,

pazful = (u,lJ)2 + (ui)g + (ug)2

Since pi;[u} = g:;(x,y), mod Z, and therefore p;; ,[u] = %1, mod Z,
and so forth, where p;; . is the total derivative cf p;; with respect to
z, (2.13) implies that
(4.8)

4 K(z,y) =

(p11p2z — (p12)®) 7 2[2((p12)? — p11p22)(Pil,yy — 2P12,0y + P22.22)
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+ p11(p11,ypaz,y — 2P12,2P22,y + (2’22,x)2)
+ p12(P11,2P22,y — P11yP22,c — 2P11,yP12y + 4D12,.0P12,y — 2P12,2P22,2)
+pa2(Priape2e — 2P11aPi2,y + (P114)°)], mod .

Substitute in (4.8) the right hand side of (4.7) for p;;, and their total
derivatives for p; 2, Pij.y, Pijzxs Prjxys Pij,yy, respectively. Then com-
putations using Mathematica® show that the right hand side of (4.8)
is equal to the right hand side of (4.6), thus we have

(4.9) AlRlo7w = K(x,y), modT. O

REMARK. We have found an algorithm of subtracting differential
functions of 7 from the right hand side of (4.6) to get the right hand
side of (2.13), which also proves (4.9) (see, [16]).

Now we show that the right hand side of (2.18) is an intrinsic ex-
pression of an invariant of order three in the sense of Definition 3.1.
Apply total differential operators D, and D,, respectively, to (4.9) to
get ’

(4.10) (A[h)y o m)ul + (A[R]2 o m)u2 = K,, mod Z,
' (A[R]1 o m)ul + (A[h]z o m)ul = K, mod Z,
where ,
_ 0, huhy —(h12) .
A[h]z - 311,’{(1 + (h1)2 + (h2)2)2}, ! = 1,2

In (2.18), substitute (4.10) for K, and K,, respectively, and sub-
stitute (4.7) for g;;, then (2.18) becomes a differential function of
J3(M,R3). Now we substitute (4.4) for u2 and u$, and from the result-
ing expression we eliminate the elements of Z then all terms involving
the derivatives of u®,a = 1,2,3, cancel out and we get an invariant

of order three. In fact, if we define a differential function A’[h] on
03 C J3(R%,R) by

_ (L4 (h2)®)(@Q1)? - 2h1ho@1Q2 + (1 + (h1)*)(Q2)?

(411) A'[h}: 14 (h1)2 + (ho)? )
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where
B 4h1hn(hlz)2 + ha(h12)® = hy(h11)?hay ~ hohiihishas
Q) = PE
) hithige — 2hiohy1g - hoshin
) = ’
Q _ 4h2(h'12)2h22 + hl(h12)3 - thll(hZZ)Z — hihithigho
2 D3
_ haghiig — 2highign - hithog
) = ’
and

D = (14 (hy)? = (he)?),

then by direct calculations as in the proof of Theorem 4.1, we can prove

THEOREM 4.2. A'[hjom = H(r,y), mod Z, where H(x,y) is the

right hand side of (2.18).
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