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REPRESENTATIONS OF THE BRAID GROUP B,

Woo LEE

ABSTRACT. In this work, the irreducible complex representations of
degree 4 of By, the braid group on 4 strings, are classified. There are
4 families of representations: A two-parameter family of representa-
tions for which the image of Py, the pure braid group on 4 strings,
is abelian; two families of representations which are the composition
of an irreducible representation of Bs, the braid group on 3 strings,
with a certain special homomorphism 7 : By — By; a family of
representations which are the tensor product of 2 irreducible two-
dimensional representations of /3,.

1. Introduction

The braid groups were first studied systematically by E. Artin in 1925
[1]. and he continued his work in 1947 [2]. Among other results, he gave
generators oy, ..., 0,7 and defining relations oi0; = 0;0;, |t — j| > 2,
0i0i410; = 0,410;0,.1, 1 < 1 < n — 2 for B, the braid group on n
strings, and showed that it has a faithful representation as a group of
automorphisms of a free group of rank n.

As for matrix representations of the braid groups, the first ones were
given by W. Burau in 1936 [3]. For each n, the Burau representation is
a homomorphism from B, to GL,(Z[t*!]), the group of invertible n x n
matrices over a Laurent polynomial ring. The Burau representation is
not irreducible, but it has a composition factor of degree n — 1, which is
called the reduced Burau representation.

The problem of completely classifying the matrix representations of
B, seems out of reach at the present time. A first siep toward classifying
the irreducible complex representations of B, was taken by E. Formanek
[7]. Note that if the variable ¢ in the reduced Burau representation is
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specialized to a nonzero complex number, then a representation of B,
in GL,-;(C) is obtained. Moreover, except for a rinite set of roots of
unity, the representation so obtained is irreducible. The main result of
Formanek [7] is that, with a few exceptions, any irreducible complex
representation of B, of degree n — 1 or less is equivalent to the tensor
product of a one-dimensional representation with o composition factor
of a specialization of the reduced Buran representation.

Westbury [11] identified the set of equivalence classes of irreducible
representations of Z/2Z xZ /3Z, which is the quotient of By by the center
of B;, as a variety and classified its components by a one-to-one corre-
spondence between them and ordered lists of 5 non-negative integers
which satisfy certain conditions. Thus By is the first of the braid groups
whose representation theory is an open problem. It is not known if the
Burau representation of By is faithful, or even if B, has a faithful linear
representation of any degree. It is known that the DBurau representation
of B, is faithful for n < 3 [9], and is not faithful for n > 6 [§]. [10]. The
group 5, has particular interest becanse, letting 7, be its center. B,/Z,
Is 1somorphic to a subgroup of index 2 in Ant(£%), the antomorphism
group of a free group of rank 2. It was shown in [6 that Aut(F}) has a
faithful linear representation if and ounly if B, has cne.

The main result of this work is « classification, 1p to equivalence, of
the irreducible complex representations of By of degree 4. One conse-
quence is that no irreducible four-dimensional coniplex representation
of By is faithful. Throughout this article, let 7 denote a representa-
tion of By of degree 4, and let ;i denote a root of ¥ —+ 4+ 1 = 0 and

e

V= (o) )n(e))’.

2. Preminaries

In this section, the fundamental results are listed.

THEOREM 2.1. [1, p. 51]. The braid group B, Is generated by o,.
., 0,_1 with the relations:

0,0, = 0,0, for |i—j|>2, l<.ij<mn-—1,

0,010, = 0, 100, for 1</<n =2,

ExaMpPLE 2.2. (1) By = {1} 15 the trivial group.
{2) By = < o > is infinite cvelic,
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(3) By = < 0y, 09 | 01090 = 790,09 >
=<a, §|a*=75> where a =0,0,, 8= 0,090.
(4) By = < a1, oy, 03 | 0103 = 030, 01020 = 020109, 02030y =
T3T009 > .

Among the many important results, the following are essential to our
analysis.

LEMMA 2.3, Let B, be the braid group on n strings.

(D) [4. p. 635]. Let 8, = o,---0,_,. Then (),,(f,(},”,'l = g, lfor
i=1,...,n—2. Hence8, and anv o; generate B,,.

(2) [4. p. 636]. Forn > 3. the center of B, is infinite cyclic, with
generator ).

There is an exceptional homomorphism of By onto By denoted by =
that sends both oy and a3 to o;. The next lemma ollects the facts about
this homomorphism.

LEMMA 2.4, [6, p. 406]. Let # : By — By be the homomorphism
defined by w(o\) = a1, w(0y) = 0., 7(a3) = 7).
(1) The kernel of 7 is Fy = < oy, 090105 75" >, a free group of
rank 2.
(2) Let p = a0y, ¢ = owoyry oyt Then the action of By on <
D, ¢ > by conjugation is given hy

(rl]ml‘l =, opay f = q, a;;[)(r‘;(l =P,

agay = qp . :

02(102] = qp lq. o340, = p‘lq.

All the wrreducible representations of By and By of degree 1.2.3 are
listed now (cf. [7]). For y € C*. we define a one-dimensional representa-
tion.

xly) B, —C,

where \(y)(o) =y for 1 <i<n -1

THEOREM 2.5. [7. Theorem 3|. For n > 2. the representations \(y) :
B, — C (y € C") are a complete set of one-dimensional representations

of B,,.

For the irreducible representarions of By of degree 2. the following
theorem 1s in order.
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THEOREM 2.6. [7, Theorem 11]. Let p : By — GL3(C) be an irre-

ducible representation. Then p is equivalent to x(y) ® 53(z) for some y,
z € C* where z is not a root of f3(t) =t +t+1,

-z 0 L -
s = (15 1) s = ()
Moreover, x(y) ® 33(z) is equivalent to the following representation p =

pla.b),
o)) = (g 1) ' plo2) = (—}Zz,b 2)

for b # ayu, where yi is a root of 2 —t + 1 = 0, if we conjugate with

<g91 g) where —ng =landa=y, b= —yz.

[ I

The irreducible representations of By of degree 2 have been classified
in the following theorem.

THEOREM 2.7. [7, Theorem 12]. Let p : By — GLy(C) be an irre-
ducible representation. Then p is equivalent to one of the following, for
some y. z € C".

(1) x(y) ® 34(z) where z is either +i or —1,
= —z 0 = I —z
B = (75 1) e =(p 73,

- 1 0
Bi(z)(o3) = ( 2 —z) .
(2) (x(y) ® Bs(z)) = where 2 is not a root of f3(!) = t* +t + 1 and
7w By — Bs Is the special homonmorphism, i.c.

—z 0 1 —
Representations in (1) are not equivalent to representations in (2) except

Ba(z)m (o) = <_1 1) = fy(2)m 03), Ba(2) () = <O _
x() ® Bi(—1) = (x(y) ® B(~1)) 7.

For the representations of By, By of degree 3, we have the following
theorems. Let C*. C? denote the sets of three-dimensional column and
row vectors respectively.

oW
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THEOREM 2.8. [7, Theorems 24, 25]. Let B. = < a. 3 > where
a =00y, 3 = 0090,. Let y € O, let A = (ay.as,a3) € C°. and let
B =(1,1,1) € C* where a; + as 4 ay = 2.
(1) 7(a) = y*diag(l,w,w?), 7(3) = ¢*(I — AB defines a representa-
tion 7(y, a;, ag, az) of Bs.
(2) The representationT(y, ay, ¢y, ay) is irreducible if and only if a,asa;
# 0.
(3) Every irreducible representation 7 : By — GL3(C) is equivalent
to some
Ty, ay. ay, ay).
Then 7(y,ay,as,a3), 7(yw, a, a3, a1) and 7(yw?, a3, ay, as) are equivalent
and these are the only equivalences among 7(y, ay, as, ay).

THEOREM 2.9. [7. Theorem 13]. Let p : By -» GL3(C) be an irre-
ducible representation. Then p is equivalent to ore of the following. for
some y, z € C.

(1) x{y) ® B,(z) where z is not a root of fy(t) =# 41>+ + 1,

-z 0 0 1 -z 0
Gy(z)oy)= -1 1 0], Ba(2)(o2) = |0 —2 0],
0 01 0 -1 1
1 0 0
Bulz){o3)= [0 1 —=z
00 —=z

(2) T where 7 : By — GL3(C) is an irreducil:le representation and
7w By — Bj is the special homomorphism.
(3) x(y) ® E(z) where £(z) : B, — GL3(C) is defined by

010 L 00
EzMa)=12z 0 0|, E=)Nox)=1[1) 0 1
0 01 } oz 0

/0 -1 0

Ez)oz)=1—2 0 0

Lo o 1

The eigenvalues of x(y) ® E(z) are y, +y/z. so distinct parameters
Y, z give inequivalent representations. Representations in (1), (2) and
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(3) are mutually inequivalent, except that x(y) ® 0,(1) is equivalent to
x(y) ® E(1).

3. Reduction of the classification of representations.

To classify all the irreducible representation n of By in GL{(C). we
consider the restriction of 7 to By =ince it must be a representation of
Bj also. Since (:0102)3 is in the center of Bjg, the image V of (:(710'2)3
must centralize the lmage of Bz. Hence we consider the various possible
Jordan canonical forms for V.

Let A be a partition of a natural number, denoted {142 ... s™}.
Corresponding to A is the nilpotent Jordan matrix J(A) which has A;

elementary 7 x ¢ nilpotent Jordan blocks for ¢ = 1,...,s. For a € C.
set J(a,A\) = al + J(A). Now assume the Jordan canonical form of V
is the direct sum of Jordan blocks .7(ay, A(ay)), .... J(ax, Alay)), where

ay,...,a; are the distinct eigenvalues. The centralizer of V is the direct
sum of the centralizers of the distinct J{a;, A(a;)). Thus one needs to
find the centralizer of a block J({a, A1, and we notice that this is the same
as the centralizer of the nilpotent Jordan block J(0, A). In other words,
the structure of the centralizer does not depend on a.

LEMMA 3.1. Let A = {1M2% ... s} The centralizer of J(0,\) has
an invariant subspace of dimension A, where s is the largest part of
A. In particular. if A, = 1. then the centralizer of J(0, ) has a one-
dimensional invariant subspace. Thus the centralizer of a matrix V has a
one-dimensional invariant subspace unless, for every Jordan block J(a. \)
occurring in the Jordan canonical form of V, the largest part of the
partition A\ has multiplicity two or more.

We have 14 Jordan canonical forms of the 4 x 4 matrix V according
to its partition type. Among these, there are only three for which the
centralizer of V does not have a one-dimensional invariant subspace.
namely (A) V has two distinct eigenvalues u, w, each of multiplicity two
with corresponding partitions (12}, '12). The Jordar canonical form of V
is the diagonal matrix diag(u, u, w, ), u # w. (B) V has one eigenvalue
w with corresponding partition (27). The Jordan canonical form of V
has two identical 2 x 2 blocks (w, 1. 0, w). (C') V has one eigenvalue w
with corresponding partition (1), ie. V = wl.
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THEOREM 3.2. Let 1 : By — GL4(C) be a representation, not nec-
essarily irreducible. Then either n|p,, the restriction of n to Bs, has a
one-dimensional invariant subspace or V has one of the following Jordan
canonical forms

w 0 0 0 w 1 0 0 w 0 0 0
0 u 0 0 0 w 0 0 , 0 w 0 0
00w 0l {00 w1} % 10 0w 0]
0O 0 0 w 0O 0 0 w 0O 0 0 w

where u, w are distinct.

4. The restriction of 7 to B; has an invariant one-dimensional
subspace.

Let 7 . By — GL4(C) be an ureducible representation and assume
n|p, has an invariant one-dimensional subspace, span {v}, 1.e., n{o))v =
v = n(os)v for some x € C*. Dehine 6 = gi0904 09 = o307, V, =
Ker (n(a;) — - 1) for 0 <¢ < 3.

Conjugation by € permutes o(. 0y, 09, o3 cyciically. Thus left mul-
tiplication by n(#) permutes Vg, V1, V3, V3 cyclically. In particular, all
the Vi, 00 < ¢ < 3, have the same dimension. Moreover, if v is an -
eigenvector for 7{oy) and n(o2), then 7(f)v is an .r-eigenvector for n(ay)
and n{oy).

PROPOSITION 4.1. dim V| = .

Proof. By one of the hypotheses, dim V) > 1, since © € V),

If dim V; = 1. then dim V3 = | since as noted above, V5 = n(#)(}).
Since both v and n(f#)e are in V3, and dim V, = 1, one must be a nonzero
scalar multiple of the other, i.e. 7(0)v = yv for some y € C*. But then
span {v} is invariant under 7(o; - and 7(#). and hence invariant under
By, since oy and 6 generate B;. This contradicrs the irreducibility of
1 B4 — GILI('C)

If dim V) > 3. then dim (V) Vo nVy) > 1. This follows from two
applications of the formula, dim P + dim @ = dim (P N Q) + dim
(P + Q) for subspaces of a vecto space, since Vi, Vi, V4 are subspaces
of C'. But any element of Vi NV, NV; is a common r-cigenvector for o,
os. o3 and again the irreducibility of  : By — GL4(C) is contradicted.

Finally, dim ¥} = 2 since this s the only remaming possibility. L
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Now let W = span {n(63)v, v, n(8)v, n(8*)v}. If dim W were less than
or equal to 3, then W would be a proper invariant subspace since W is
invariant under 7(o;) and n(#). Hence dim W = 4 since 7 is irreducible,
in other words, {n(8*)v, v, n(6)v, n(#?)v} forms a basis for W. Since §?
is in the center of By and n is irreducible, 7(8*) = z - I for some 2 € C*.
Since the action of 7(#) on W sends v to n(#)v, n(6iv to n(6*)v, n(6*)v
to n(6%)v, and n(#*)v to z - v, we have

000 1
o lz000
=101 0 ol

0010

with respect to the ordered basis {n(#*)v, v, n(8)v, n(6*)v}. The action
of (1) on W sends n(8*)v to 2 - n(6*)v, v to = - v and n(oy)(V3) C Vs
since oy, o3 commute. Thus there are ay, as, a3, a4 € C such that the
matrices of n(a,), n(o2), n(o3) with respect to the ordered basis {n(8%)v,
v, n(6)v, n(6?)v}, are

0 0 0 ‘ay 00 ay
10 0 0 . 1y _ O 2 00
77(01)_ 0 0 a a 577(02) - '7(9019 )_ 0O 0 = 0
0 0 a3 ay ap 0 0 q
and

Car a0 0

i - —1y a3z ay O O

nlos) =nl0e07) = "7 g 4 g

. 0 0 0 =

Now comparing n(#) and n(o,0203). we have a; = (1, ay = 0, and a3 =
272, z = a3. By conjugating with the diagonal matrix diag (1, a;?, a3,

ay'), and setting u = ayr™2, we get the following theorem.

THEOREM 4.2. Let £ : By — Gl,4(C) be an irreducible representa-
tion. If the restriction of £ to By has an invariant one-dimensional sub-
space, then £ is equivalent to the following representation 1 = n{x, u),
for some x, u € C*, u # 2%, defined hy

s 0 0 0 00 0 u 010 0
0+ 0 0 0 r 0 0 w 00 0
o) =19 0o o 1|72 =10 0 2 of MNW=1¢ 0 » o
00 u 0 10 0 0 00 0
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Distinct choices of x, u give inequivalent representations.

All nonzero r, u define representations, and 7 is irreducible unless
, ; . . .
u=1r? Ifu=27° then (v?,2° 1,1)" is a common eigenvector for 7.

THEOREM 4.3. The image of the pure braid group Py of the repre-
sentation 71 in Theorem 4.2 consists of the diagonal matrices, and is
abelian.

Proof. The pure braid group £’ is the normal subgroup of B, gener-
ated by o? for 1 <7 < 3 [2, Theorem 17]. Since 7(¢?) and n(o;Do;t) are
diagonal matrices for any diagonal matrix D, 1 < ¢, 7 < 3, the image of
the pure braid group Py under the representatior: 7 consists of diagonal
matrices, and hence is abelian. 1

REMARK 4.1. For the representation 7 in Theorem 4.2, we have V =

_ oy hay
diag (z%u?, 2% 2%?, 2%u?).

(1) If w 5 £2°, then V has eigenvalues, z2u? of multiplicity 3, and x®
of multiplicity 1.

(2) If u = 2, then the representation is reduc:ble.

(3) If w = —2? then V is a scalar matrix.

Thus any irreducible representation of B, of degree 4 whose restriction
to B3 has an invariant one-dimensional subspace, has V either a scalar
matrix or a diagonal matrix with one eigenvalue of multiplicity 3 and
another eigenvalue of multiplicity 1.

5. The Jordan canonical form of V is the diagonal matrix
diag(u, w, w, w), u # w.

Let’s assume V is the diagonal matrix diag u, u, w, w), u # w.
Since n(o;) and n(o,) commute with V., they have the form, n(e;) =

[)(O’,‘) 0
< 0 7(o
If either p or 7 is reducible, then 7|, the restriction of 7 to Bs, has
an invariant one-dimensional subspace, but then V can not have Jordan
canonical form diag(u, u,w,w), © # w, by Remark 4.1. Therefore the
representations p, v are irreducible. Then, by Theorem 2.6, there exist
a, b, ¢, d such that b # ap, d # cp {where p is a primitive cube root of

)>, ¢ =1, 2, where p. 7 : By — GLy(C) are representations.
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—1), and
a 100 b 0 0
(o) = 0O b 00 () = —ab ¢ 0 0
MO=4g 0 ¢ 1l YT 0 0 4 0
000 d 0 0 —cd ¢

DEFINITION 5.1. A matrix is call«d non-derogatory if it generates its
own centralizer over C.

If X is non-derogatory, then anv matrix which centralizes X is a
polynomial in X over C. In particular, if n{e;) is non-derogatory, then
n(oy) has the form,

T )
* 10
0 0 «
0 0 =

and thus 7 1s reducible.

REMARK 5.1. An n x n matrix is non-derogatory if it has only 1
Jordan block for each eigenvalue.

For n = 4, the following are the “types” of non-derogatory matrices,

s 00 0 VU w1 0 0
0+ 0 0 0w 0 0 0O « 0 0
O 0 «w 0] 0 0 « L] 0 0 w 1
00 0 w 00 0 w 00 0 w

u 0 0 0 w1 0 G

0O w 1 0 O w 1 @

O 0 w 1]° 0 0 w 1

0 0 0 w 0 0 0 u

where s, ¢, u, w are distinct comples numbers. Let

it Ty Mg

. Tty Mo Moy Ny
nog)=1_°

Nay Tga N3z Mg

Ny T Mgy Ny
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The commutativity of oy and o3 implies

n(o)n(os)

anyy + ngp an.» -+ noo  anyy + Nag  ANgy -+ Noy

. anl ,’)’T),QQ bﬂgg bﬂg4
N3l + Ny €Ny +Nyy Cngg 4+ Nyg  CNgy + Mgy
dng Ay dnys dngy

any; ny + b engs ngg 4+ dngg

any Moy + by Cnoy ngg + dnay (o5)n(on)

= = nlog)n(o).
arnsgy  Niy + b’n,;;_) Chggy T3y + dn;;4 ] 3 ] L

ang N4 +bnay cngy ngy 4 dny

Let’s consider the following cases according to the number of distinct
eigenvalues of n(oy).

(1) If n{oy) has a single eigenvalue ie. @ = b= ¢ =d, then Vis a
scalar matrix. Contradiction to the hypotleses.
(2) n(oy) has 2 eigenvalues.

(a)

(3) n(o

(a)
(b)

a=b=c#d

The commutativity of o, and o3 imples ng = ngg = ngy =
Ny = My = Ngo = Ngy = 0, 1] = Mo, Nyz = (a — d)nyy, and
ngy = "= The equality of the (4, 1)-entries of n{oy030,) =
n(o30003) forces a*dng, = 0. But if rg, vanishes, then 7 is
reducible.

The same reasoning as in (2a) applies when any three of a, b.
c. d are equal, since the role of a, b, ¢, d are symmetric.
a="b+#c=d.

n{oy) is non-derogator:-.

a=c+#b=d

Again we have a scalar matrix for V. Contradiction to the
hypotheses.

1) has 3 eigenvalues.

a=band b, ¢, d are distinct,

n(oy) is non-derogatory.

a = cand b, ¢, d are distinct.

The commutativity of o, and o3 implies ny; = nogy = 19y =

’ e I e ; o ny Ny — 714 ., o n:
nyg = ng = ngg = 0, nyg = LR 9y = S ngy = S
and ngy = "8=8t - Comparing (2,4)-entries of 7(0y0302) =

n(o3o903), we have abigz(ng —a) = 0. If nyy is equal to 0,
then the representation is reducible. Thus ney = . From the
equality of the (4, 2)-entries of n(o90309) = n(030203), we have
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abngi (nyy —a) = 0. Thus ny = a, for if ny, vanishes, then the
corresponding representation becomes reducible. Then the
equality of the (2, 3)-entries of n(os0309) = n(asoy03) forces
abniz(o® —ad+d?) = 0. So a®—ad+d? = 0. Thusd = au = ey,
where yz is a root of #? =+ + 1 = 0, and ~ : By — GL,(C) is
reducible (c¢f. Theorem 2.6). Contradiction to the hypotheses.
(4) All eigenvalues of n(o) are distinct to each other. Then n(o,) is
non-derogatory again.

Thus we have shown

THEOREM 5.2. Let n : By — GlL4(C) be an irreducible representa-
tion. Then the Jordan canonical form of V = (n(o;)n(cs))® is not a
diagonal matrix diag(u, v, w,w) where u # w.

6. The Jordan canonical form of V has two identical 2 x 2
blocks (w, 1,0, w).

When V has two identical 2 x 2 blocks (w, 1,0, w), we first conjugate
. . w-I w- T .
the representations so that V is equal to < 0 w. ] where [ is the

2 x 2 identity matrix. The centralizer C' of V in My(C) is the set of

block matrices where A. B € My(C). Since n(o;) and n(o»)

A B
0 A
commute with V, the image n(B;) < €. Moreover. the map v : C —

M»(C) that sends <A B to A is a C-algebra hcmomorphism. For

0 A
the representation p = 7|5, of B; mto C N GL4(C), we consider the
composition & = yp : By — GLy(C). If ¢ is reducible, n(o1) and (o)
have a one-dimensional invariant subspace, and then V can not have
Jordan canonical form with two identical 2 x 2 blocks (w, 1,0,w) by the
Remark 4.1. Thus § is irreducible. Then by Theorera 2.6,

a 1 x p b 6 x  x

10 b x q oy | mab e % %
M =10 00 1| "= g ¢ 5 o
000 0 ¢ —ab «a
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where b # ap (where o is a primitive cube rcot of —1), a,b € C*,

N

p.q € C, and each “x" denotes an element of C. By conjugating with

1 G 0 0

01 —¢p

00 1 0

0 ¢ 0 1

we may assuie
al ¢ O b 0 g h
{0 bdo )_—abakl
M) =19 0 q 1 N =10 o0 b of

000 b 0 0 —ab a

where b # ay, a,b € C*. The braid relation 0,00, = 090,05 and V as
in the hypotheses implies

a
d=blc— <),
polbzag-d

ab ’
k=abh —bc= (b—a)g—d— be,
[ =c—g.

To determine 7(o3), let

nip Mg N3 7’114\
Tlg1 T22 TNaz Moy 2
N3 MN3g N33 T34 ’
May T4z M43 Ny

n(os) =

Then we have

n(o)n(os: = (? g) :
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where
D= anyy + nop + cnyy anqs + Nos + Ny
a (bngl + beng, — %1371,3; bnog + bengy — '—‘3—67732> ‘
E— < anys + 193 + cngs anyy + noy + cngy ) ‘
brys + benss — %’377,3;‘ briay + bengy — ‘—’3971,34
F ansy + Ny anse + '742)
o ( bny brg
/(1,77,33 + 143 angy + ')44\
G = .
( bnys; brigy )
And
anyy Ny +bnp cnyy +benpg — £ng 4 anygy g + g
Hos)(on) =

ans mn31 -+ 1/!132 1) -+ b('n32 —
ang N4 + bngy  ong + beng —

n3y + anzg  ma3 + bngy

ab
%
angy  mol + bngy  onuy + bengy — Fnoa + angy nes + bny
ab
&
Fng + ongg Ny + bny

Comparing (3,1)- and (4, 4)-entries of n(oy)n(os) and n(os)n(e). we
have

(1) ng =143 = 0.

With the equality of (1,1)- and (2, 2 -entries of n(o))(o3) and n(o3)n(oy ).
we have

(2) Noy = —Chiyy,
and

. a
(3) Noy = b’”,;;g(‘(: - g)

Then with the equality of (2, 1)-entiies of n(o1)n(os. and n(os)n(er). we
have
a

0= (b — (1,)71,21 + b77’31(¢ - 3)
a.
= (b—a)(—cny) + bng{c— 3
¢
b 71,31("‘[)0 + ar: + b(: b %{)
b )
= (17731((«' - 3)

(1) ¢ — % #£0.
Then ny = 0 implies 1y = 0 and bngy(c - §) = 0 by Eq (2)
and Eq (3).
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(a) ngp = 0.
If n3; = nygp = 0, ther (a — b)ngy — nyy + nyp = 0 from the
equality of (3, 2)-entries of (o)n(o3) and n(o3)n(o;) implies
14 = 0. Therefore n(o;)has the form.,

X< ok %
0 0 % %
0 0 % %

and the corresponding representation is reducible.

(b) ¢ =5 =0.
In the equality of (3,2 -entries of (e 7(oy) and n{o3)n(a;).
we have nyy = (b — a)ngy. Now the equality of (4.1)-entries
of n(oao303) = n(0o30203) implies abng(a® — (a — b)ny,) = 0.
If n3; vanishes, then the representation is reducible by the

N 2
previous casc. So assume nge # 0, then ny; = . In the
equality of (3,1)-entries of n(oyo30;) = n(oz0903), we have

abnga(—b+ny1) =0. Thusb =ny, = 17 Hence a? —ab+b* =

-

0. Contradiction to ow initial assumption b # aju.
(2) c—t=0.
The equality of (4. 3)-ent-ies of n(o))y(oy and n(os)n(e)) forces
blb — a)ngp = 0.
(&) rgo = 0.
If we compare the (3.2 -entries of n(oy n{os) and nlosy)y(o))

/

we get ng; = (a — b)ny,. In the equality of (4, 1)-entries of
N(oao302) = 1n{o30203). we have abngy(b* — (b — a)ny) = 0.
Since ngo = 0 implies yeducibility, assiane ny, = thTI Then

in the equality of (4, 2)-entries of n(oyc300) = 7(o30004). we

have abngy(—a + nyy) = 0. Therefore ¢ = ny, = hﬁ? implies
b* — ab + a® = 0. Coitradiction to cur initial assumption
b # ap again,

(b) b=a.
In Eq (3). we have nyy == bngy(c — %) = imgo(c — %’) = (. From

Eq (2), we have ny = () since ¢ = g # 0. In the equality of
(3. 2)-entries of (o )n(o3) and n(o3)n(cy), nale —b) + ngy —
ny = 0 forces nypy = 0 and the vanishing of ny makes this
case belong to the previous case.

Hence we have shown
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THEOREM 6.1. Let 1 : By — GL4(C) be an irreducible representa-
tion. Then the Jordan canonical form of V = (n(cy)n(03))* is not equal
to

w 1 0 0
0O w 0 O
0 0 w 1
0 0 0 w

7. The Jordan canonical form of V is a scalar matrix.

Since scalar matrices are central in GL4(C), all commutators [(o102)%,
w] = (0102)* W (0102)7® w™! will lie in the kernel of the representation
for any word w in By, so it will really be a representation 7 of B;/N,
where N is the normal subgroup of By generated by all such commuta-
tors.

Now assume 7 : By — GL4(C) is an irreducible representation and V is
a scalar matrix. There is a short exact sequence 1 —- fy —— By — B;
- 1, where the map between B, and Bj is the special homomorphism 7
which sends o, o3 to o) and fixes ¢y, and Fy = < 010'3_1, 02016510;1 > is
a free group of rank 2 [6, p. 406]. For any word w € By, n(w) € B and
(o104)* is in the center of By. Hence 7(N) = 1 implies N C F,. Factoring
out N gives rise to an exact sequence | — K = Fy3/N — By/N —
By — 1. To figure out Fy/N, set p = 0,03, q = 090105 '0;'. Then
[(0109)%. 03] = qpg~'p € N and o2iqpg'p)o,' = ¢p~'qp € N. Hence
F;/N is isomorphic to the quaternion group of order 8. There are 5
irreducible representations of the quaternion group, four of them, ¢; .
1 <4 < 4, are of degree 1 and one of them, 1), is of degree 2. They are
as follows, o1(p) = 1. ¢1(q) = 1, ¢a(p) = 1. dalq) = =1, ¢3(p) = —1,
arla) = L o) = L owlg) = 1 and p(p) = (). wle) =

(_01 é) For any irreducible representation n @ B/N — GL4(C), the
restriction of 77 to K, 0|k is the direct sum of irreducible representations
of the same degree, which are conjugates, with the same multiplicity,
by Clifford’s theorem [5, (49.2) Theorem, (49.7) Theorem], since K is
a normal subgroup of By/N. And the conjugacy classes of irreducible
representations of K are {¢}, {da. 3, 01}, {¢}.
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LEMMA 7.1. Let  : By — GL4(C) be an irreducible representation
and n|k Is the direct sum of irreducible representations. Then one of the
following occurs.

(A k=000 @0 ® ).
(B) nlk =v ® .

First of all, we consider the case, in which 7|k is the direct sum of 4
one-dimensional representations.

PROPOSITION 7.2. Let 7 : By - GL4(C) be an irreducible represen-
tation and |y is the direct sum of 4 one-dimensional representations.
Then n = 7w where m : By — 33 is the special homomorphism and
7 By — GL4(C) is an irreducible representation of Bz of degree 4.

Proof. By Lemma 7.1, nlx = ¢ ® ¢1 & ¢1 B ¢1. Since n(p) =
n(o105") = I, we have (o)) = n{o3). Hence j = 77 where 7 : B, —
Bs is the special homomorphism. and 7 : By -+ GL4(C) is an irre-
ducible representation. Since Bj has a presentation < a, 3| a® = 3% >,
7(a®) = 7(8%) = z - I for some 2 = C*. Thus 7(a) and 7(8) are diago-
nalizable. For some a, b € C*, the eigenvalues of 7(a) belong to the set
{a, aw, aw?} where w = ~1+2\/—“37 a cube root of uaity and the eigenval-
ues of 7(3) belong to the set {b, --b}. But o® = £? implies a® = b2, Set
y = a~'b. If 7(0) has only one eigenvalue, then it s a scalar matrix and
this would imply that 7 is reducible. So we may suppose that 7(/3) is
conjugate to either diag (b,6,b, —t) or diag (b, b, - b, —b). But if 7(3) is
conjugate to diag (b,b,b, —b), then 7(a) and 7(3) have a common eigen-
vector since 7(a) has an eigenvalue of multiplicit 2 by comparing the
dimensions of the null spaces of exch eigenvalues. If 7(«) has an eigen-
value of multiplicity 3. then 7(«) and 7(8) have a common eigenvector
again contradicting to the irreducibility of 7. Hence 7(a) is conjugate to
a diagonal matrix with either one eigenvalue of multiplicity 2 and two
of multiplicity 1 or two eigenvalues of multiplicity 2, i.e. we may assume
7(B) = ¢* diag (1,1,—1,-1) and (a) is conjuga e to either y*w’ diag
(1, 1, w, w?) or g2’ diag (1, 1, w, w) where 1 < i < 3. But since
y?w' = (yw?)?, they correspond to a different choize of Y.

According to [11]. the set of equivalence classes of irreducible repre-
sentations of Z/2Z x Z/3Z of dimension n is a nonempty variety and
the components of this variety are indexed by osrdered lists of non-
negative integers, (ny,n2;my,ma,n3), which satisfy the following con-
ditions, nq + no = n, my + my + mg = n and ny, 1, are greater than or
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equal to all of my, my. m3. Furthermore, if an irreducible representation
of Z2Z *xZJ3Z = < s > % < t > s given by s — S and  — T, then
for each non-zero scalar ¢, there is an irreducible rvepresentation of Bj
given by s +— 35S and t + ¢*T. Thus we have two families of represen-
tations corresponding to indices (2, 2;2, 1, 1) and (2. 2;2, 2,0), which are
the composition of an irreducible representation of B3 with the special
homomorphism = : B; — Bj. O

For the second case, we need to consider the restriction of 7 to A is
the direct sum of 2 two-dimensional representations, i.e. nly = 1) @ .

ProprOSITION 7.3. Let n: By — GL4(C) be an irreducible represen-
tation and n|; is the direct sum of 2 two-dimensional representations.
Then 1 is equivalent to a representation pw & [34(i). where m is the spe-

cial homomorphism, p : By — GLo(C) is the irreducible representation

, a 1 b 0 .
defined by ploy) = (0 b>’ ploa) = < b ”> fora, b € C*. b # ap,
and 31(1 ) : By — GLy(C) Is the irreducible representation defined by

—a
34@)(”1) = (;i ?) : 34@)(‘72) = ((J] :;) ) A’A‘x(’j)(az) = (ll _Ol> -

Proof. By conjugation, we may assuiie

o

P00 0 0 0 10
0+ 0 0 0 0 01
=1y 0 2 ol MNO={_1 ¢ o0
00 0 —i 0 -1 .0 0

x x 0 0
« % 0 0
0 0 % =%
0 0 = =

Let n(oy) = <6 L01> where L, L; are the upper lett and the lower right

2 x 2 matrices respectively. Since ¢y = p~loy.

‘ . —il 0 L 0 —iL 0
n(oy) = n(p~ (o) :< 6 ,j) <0 L1> ) ( (I) iLq)‘
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In [6, p. 406], o1qo7' = gp~! = qosor . Then o1¢ = qoy implies

L ON[O0 IN (0 I\N/=~L 0
0 L)\~1 0) "\=1r 0o/ 0 i)

Thus L) = —iL. Hence we have njioy) = <L 0 )577(03) _ <~1L O).

0 —il 0 L
Let 1(ay) = A,[ ‘M] where M and M;’s are 2 x 2 matrices. Since
A[Q 11[3
. o ] (M M \ o
qoy = aap. we have n(oy) = (ij ~’L']\11>' Purthermore oyqo;" =
-1 —il 0 . .
WA=\ implies
M M, 0 I\ [—i O\/M M
iM o —iM, —I 0/ \ 0 ) \iM —iM, )"
. M M
Therefore M, = iM and consequently 7(os) = M M The

braid relation 0,090, = 090,09 nplies LML = (1 4+ ¢)MLM. If we
let M" = (1+ )M, then LM'L = M'LM’. The solutions of the last

. . )
equation (up to equivalence) are L = <(1 1). M= ( b 2) for a,

0 b —ab
b€ C*. Then M:LM’:L< 20 U). We row have
. 4 T1i I+ \ —ab a ]’ '
a 1 0 0
0b 0 0 a 1 -0
n(oy) = 00 —ia —i —<() b>®<() —'Z>’
00 0 —ib
1b
02 1
—ab o b b 0 TwOIo
nog) = | 3 Iy Ly :< )®<17+' Hl>l
20 % 0] —ab a v ﬁ
b da o —ab e
1= 147 =i 1+
—w1 —i 0 0
0 —ib 0 0 a 1 —t 0
o= o o 41 ‘(0 b>®<0 1>'
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These representations are irreducible for nonzero a and b, b # ap. This
family of representations is the tensor product of 2 two-dimensional rep-
resentations of By and is equivalent to pm ® G4(2). a

8. Conclusion.

Combining Theorem 4.2, Proposition 7.2, and Proposition 7.3, we
have the main theorem.

THEOREM 8.1. Let € : By — GL4(C) be an irreducible representa-
tion. Then £ is equivalent to one of the following irreducible representa-
tions.

(1) A representation n = n(x,u), where x, u € C* u # 22, defined by

0 0 0 00 0 u 01 0 0
0O = 0 0O 0 r 0 0 v 0 0 0
=1y oo 1| -Md=1g o » ol MB=10 0 . o
0 0 u 0 00 0 0 0 0 «

(2) A representation Tm where m . By — Bj is the special homomor-
phism and 7 : By — GL4(C) is an irreducible representation of
Bs of degree 4.

(3) A representation p(a, b)7r®,z§4(11), where 7 is the special homomor-
phism, p(a,b) is the irreducible representatior of By into GLy(C)

defined by p(a,b) (o) = <Z 2) pla,b)(oy) = (—(:z,b 0) for

a

a,be C', b# an and By(i} : By — GLy(C) is the irreducible
representation defined by

B = (21 1) B = (5 ) Ao =1 °).

There are no equivalences between representations under dlstm(ft head-
ings (1), (2) and (3) except n(x, —2*) in (1) is equivalent to p(x. ri)T ®

d4()m( )

For representations in (1), the image of Py, the pure braid group on
4 strings, consists of diagonal matrices, and hence is abelian. In fact, if
z, u € C* generate a free abelian group of rank 2 under multiplication,
then the kernel of n(r, u) is exactly [Py, Py], the commutator subgroup
of Py. For representations in (2), the kernel contains F». the kernel
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of the special homomorphism = : B, — By. lor representations in
(3), the image of F, is the quaternion group Qg. and the kernel of the
representation p(a.b)w ® 3(¢) is the kernel of a specific homomorphism

Fy — Qs
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