REPRESENTATIONS OF THE BRAID GROUP B_4

WOO LEE

ABSTRACT. In this work, the irreducible complex representations of degree 4 of B_4 , the braid group on 4 strings, are classified. There are 4 families of representations: A two-parameter family of representations for which the image of P_4 , the pure braid group on 4 strings, is abelian; two families of representations which are the composition of an irreducible representation of B_3 , the braid group on 3 strings, with a certain special homomorphism $\pi: B_4 \longrightarrow B_3$; a family of representations which are the tensor product of 2 irreducible two-dimensional representations of B_4 .

1. Introduction

The braid groups were first studied systematically by E. Artin in 1925 [1], and he continued his work in 1947 [2]. Among other results, he gave generators $\sigma_1, \ldots, \sigma_{n-1}$ and defining relations $\sigma_i \sigma_j = \sigma_j \sigma_i, |i-j| \geq 2$, $\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}$, $1 \leq i \leq n-2$ for B_n , the braid group on n strings, and showed that it has a faithful representation as a group of automorphisms of a free group of rank n.

As for matrix representations of the braid groups, the first ones were given by W. Burau in 1936 [3]. For each n, the Burau representation is a homomorphism from B_n to $\mathrm{GL}_n(\mathbb{Z}[t^{\pm 1}])$, the group of invertible $n \times n$ matrices over a Laurent polynomial ring. The Burau representation is not irreducible, but it has a composition factor of degree n-1, which is called the reduced Burau representation.

The problem of completely classifying the matrix representations of B_n seems out of reach at the present time. A first step toward classifying the irreducible complex representations of B_n was taken by E. Formanek [7]. Note that if the variable t in the reduced Burau representation is

Received April 18, 1997.

¹⁹⁹¹ Mathematics Subject Classification: 20F36.

Key words and phrases: braid group representation.

specialized to a nonzero complex number, then a representation of B_n in $GL_{n-1}(\mathbb{C})$ is obtained. Moreover, except for a finite set of roots of unity, the representation so obtained is irreducible. The main result of Formanek [7] is that, with a few exceptions, any irreducible complex representation of B_n of degree n-1 or less is equivalent to the tensor product of a one-dimensional representation with a composition factor of a specialization of the reduced Burau representation.

Westbury [11] identified the set of equivalence classes of irreducible representations of $\mathbb{Z}/2\mathbb{Z}*\mathbb{Z}/3\mathbb{Z}$, which is the quotient of B_3 by the center of B_3 , as a variety and classified its components by a one-to-one correspondence between them and ordered lists of 5 non-negative integers which satisfy certain conditions. Thus B_4 is the first of the braid groups whose representation theory is an open problem. It is not known if the Burau representation of B_4 is faithful, or even if B_4 has a faithful linear representation of any degree. It is known that the Burau representation of B_n is faithful for $n \leq 3$ [9], and is not faithful for $n \geq 6$ [8], [10]. The group B_4 has particular interest because, letting Z_4 be its center, B_4/Z_4 is isomorphic to a subgroup of index 2 in $Aut(F_2)$, the automorphism group of a free group of rank 2. It was shown in [6] that $Aut(F_2)$ has a faithful linear representation if and only if B_4 has one.

The main result of this work is a classification, up to equivalence, of the irreducible complex representations of B_4 of degree 4. One consequence is that no irreducible four-dimensional complex representation of B_4 is faithful. Throughout this article, let η denote a representation of B_4 of degree 4, and let μ denote a root of $t^2 - t + 1 = 0$ and $\mathcal{V} = (\eta(\sigma_1)\eta(\sigma_2))^3$.

2. Preminaries

In this section, the fundamental results are listed.

THEOREM 2.1. [1, p. 51]. The braid group B_n is generated by σ_1 , ..., σ_{n-1} with the relations:

$$\sigma_i \sigma_j = \sigma_j \sigma_i$$
 for $|i - j| \ge 2$, $1 \le i, j \le n - 1$,
 $\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}$ for $1 \le i \le n - 2$.

EXAMPLE 2.2. (1) $B_1 = \{1\}$ is the trivial group. (2) $B_2 = \langle \sigma_1 \rangle$ is infinite cyclic.

- (3) $B_3 = \langle \sigma_1, \sigma_2 \mid \sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2 \rangle$ = $\langle \alpha, \beta \mid \alpha^3 = \beta^2 \rangle$ where $\alpha = \sigma_1 \sigma_2, \beta = \sigma_1 \sigma_2 \sigma_1$.
- (4) $B_4 = \langle \sigma_1, \sigma_2, \sigma_3 | \sigma_1 \sigma_3 = \sigma_3 \sigma_1, \sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2, \sigma_2 \sigma_3 \sigma_2 = \sigma_3 \sigma_2 \sigma_3 \rangle$.

Among the many important results, the following are essential to our analysis.

LEMMA 2.3. Let B_n be the braid group on n strings.

- (1) [4, p. 655]. Let $\theta_n = \sigma_1 \cdots \sigma_{n-1}$. Then $\theta_n \sigma_i \theta_n^{-1} = \sigma_{i+1}$ for $i = 1, \ldots, n-2$. Hence θ_n and any σ_i generate B_n .
- (2) [4, p. 656]. For $n \geq 3$, the center of B_n is infinite cyclic, with generator θ_n^n .

There is an exceptional homomorphism of B_4 onto B_3 denoted by π that sends both σ_1 and σ_3 to σ_1 . The next lemma collects the facts about this homomorphism.

LEMMA 2.4. [6, p. 406]. Let $\pi: B_4 \to B_3$ be the homomorphism defined by $\pi(\sigma_1) = \sigma_1$, $\pi(\sigma_2) = \sigma_2$, $\pi(\sigma_3) = \sigma_1$.

- (1) The kernel of π is $F_2 = \langle \sigma_1 \sigma_3^{-1}, \sigma_2 \sigma_1 \sigma_3^{-1} \tau_2^{-1} \rangle$, a free group of rank 2.
- (2) Let $p = \sigma_1 \sigma_3^{-1}$, $q = \sigma_2 \sigma_1 \sigma_3^{-1} \sigma_2^{-1}$. Then the action of B_4 on < p, q > by conjugation is given by

$$\sigma_1 p \sigma_1^{-1} = p,$$
 $\sigma_2 p \sigma_2^{-1} = q,$ $\sigma_3 p \sigma_3^{-1} = p,$ $\sigma_1 q \sigma_1^{-1} = q p^{-1},$ $\sigma_2 q \sigma_2^{-1} = q p^{-1} q,$ $\sigma_3 q \sigma_3^{-1} = p^{-1} q.$

All the irreducible representations of B_3 and B_4 of degree 1,2.3 are listed now (cf. [7]). For $y \in \mathbb{C}^*$, we define a one-dimensional representation,

$$\chi(y): B_n \to \mathbb{C}^*,$$

where $\chi(y)(\sigma_i) = y$ for $1 \le i \le n-1$.

THEOREM 2.5. [7, Theorem 3]. For $n \geq 2$, the representations $\chi(y)$: $B_n \to \mathbb{C}^*$ $(y \in \mathbb{C}^*)$ are a complete set of one-dimensional representations of B_n .

For the irreducible representations of B_3 of degree 2, the following theorem is in order.

THEOREM 2.6. [7, Theorem 11]. Let $\rho: B_3 \to \operatorname{GL}_2(\mathbb{C})$ be an irreducible representation. Then ρ is equivalent to $\chi(y) \otimes \beta_3(z)$ for some y, $z \in \mathbb{C}^*$ where z is not a root of $f_3(t) = t^2 + t + 1$,

$$eta_3(z)(\sigma_1) = \begin{pmatrix} -z & 0 \\ -1 & 1 \end{pmatrix}, \qquad eta_3(z)(\sigma_2) = \begin{pmatrix} 1 & -z \\ 0 & -z \end{pmatrix}.$$

Moreover, $\chi(y) \otimes \beta_3(z)$ is equivalent to the following representation $\rho' = \rho'(a, b)$,

$$\rho'(\sigma_1) = \begin{pmatrix} a & 1 \\ 0 & b \end{pmatrix}, \qquad \rho'(\sigma_2) = \begin{pmatrix} b & 0 \\ -ab & a \end{pmatrix}$$

for $b \neq a\mu$, where μ is a root of $t^2 - t + 1 = 0$, if we conjugate with $\begin{pmatrix} 0 & g \\ g^{-1} & 0 \end{pmatrix}$, where $-yg^2 = 1$ and a = y, b = -yz.

The irreducible representations of B_4 of degree 2 have been classified in the following theorem.

THEOREM 2.7. [7, Theorem 12]. Let $\rho: B_4 \to \operatorname{GL}_2(\mathbb{C})$ be an irreducible representation. Then ρ is equivalent to one of the following, for some $y, z \in \mathbb{C}^*$.

(1) $\chi(y) \otimes \widehat{\beta}_4(z)$ where z is either $\pm i$ or -1,

$$\widehat{\beta}_4(z)(\sigma_1) = \begin{pmatrix} -z & 0 \\ -1 & 1 \end{pmatrix}, \quad \widehat{\beta}_4(z)(\sigma_2) = \begin{pmatrix} 1 & -z \\ 0 & -z \end{pmatrix},$$

$$\widehat{eta}_4(z)(\sigma_3) = \begin{pmatrix} 1 & 0 \\ -z^2 & -z \end{pmatrix}.$$

(2) $(\chi(y) \otimes \beta_3(z)) \pi$ where z is not a root of $f_3(t) = t^2 + t + 1$ and $\pi: B_4 \to B_3$ is the special homomorphism, i.e.

$$\beta_3(z)\pi(\sigma_1) = \begin{pmatrix} -z & 0 \\ -1 & 1 \end{pmatrix} = \beta_3(z)\pi(\sigma_3), \qquad \beta_3(z)(\sigma_2) = \begin{pmatrix} 1 & -z \\ 0 & -z \end{pmatrix}.$$

Representations in (1) are not equivalent to representations in (2) except $\chi(y) \otimes \widehat{\beta}_4(-1) = (\chi(y) \otimes \beta_3(-1)) \pi$.

For the representations of B_3 , B_4 of degree 3, we have the following theorems. Let \mathbb{C}^3 , \mathbb{C}^3 denote the sets of three-dimensional column and row vectors respectively.

THEOREM 2.8. [7, Theorems 24, 25]. Let $B_{\mathbb{C}} = \langle \alpha, \beta \rangle$ where $\alpha = \sigma_1 \sigma_2$, $\beta = \sigma_1 \sigma_2 \sigma_1$. Let $y \in \mathbb{C}^*$, let $A = (a_1, a_2, a_3)^t \in \mathbb{C}^3$, and let $B = (1, 1, 1) \in \overline{\mathbb{C}}^3$ where $a_1 + a_2 + a_3 = 2$.

- (1) $\tau(\alpha) = y^2 \operatorname{diag}(1, \omega, \omega^2), \ \tau(\beta) = y^3 (I AB)$ defines a representation $\tau(y, a_1, a_2, a_3)$ of B_3 .
- (2) The representation $\tau(y, a_1, a_2, a_3)$ is irreducible if and only if $a_1a_2a_3 \neq 0$.
- (3) Every irreducible representation $\tau: B_3 \to \operatorname{GL}_3(\mathbb{C})$ is equivalent to some $\tau(y, a_1, a_2, a_3)$.

Then $\tau(y, a_1, a_2, a_3)$, $\tau(y\omega, a_2, a_3, a_1)$ and $\tau(y\omega^2, a_3, a_1, a_2)$ are equivalent and these are the only equivalences among $\tau(y, a_1, a_2, a_3)$.

THEOREM 2.9. [7, Theorem 13]. Let $\rho: B_4 \to \operatorname{GL}_3(\mathbb{C})$ be an irreducible representation. Then ρ is equivalent to one of the following, for some $y, z \in \mathbb{C}^*$.

(1) $\chi(y) \otimes \beta_4(z)$ where z is not a root of $f_4(t) := t^3 + t^2 + t + 1$,

$$\beta_4(z)(\sigma_1) = \begin{pmatrix} -z & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \qquad \beta_4(z)(\sigma_2) = \begin{pmatrix} 1 & -z & 0 \\ 0 & -z & 0 \\ 0 & -1 & 1 \end{pmatrix},$$

$$\beta_4(z)(\sigma_3) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -z \\ 0 & 0 & -z \end{pmatrix}.$$

- (2) $\tau \pi$ where $\tau : B_3 \to \operatorname{GL}_3(\mathbb{C})$ is an irreducible representation and $\pi : B_4 \to B_3$ is the special homomorphism.
- (3) $\chi(y) \otimes \mathcal{E}(z)$ where $\mathcal{E}(z) : B_4 \to \mathrm{GL}_3(\mathbb{C})$ is defined by

$$\mathcal{E}(z)(\sigma_1) = \begin{pmatrix} 0 & 1 & 0 \\ z & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \ \mathcal{E}(z)(\sigma_2) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & z & 0 \end{pmatrix},$$

$$\mathcal{E}(z)(\sigma_3) = \begin{pmatrix} 0 & -1 & 0 \\ -z & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

The eigenvalues of $\chi(y) \otimes \mathcal{E}(z)$ are y, $\pm y\sqrt{z}$, so distinct parameters y, z give inequivalent representations. Representations in (1), (2) and

(3) are mutually inequivalent, except that $\chi(y) \otimes \beta_4(1)$ is equivalent to $\chi(y) \otimes \mathcal{E}(1)$.

3. Reduction of the classification of representations.

To classify all the irreducible representation η of B_4 in $GL_4(\mathbb{C})$, we consider the restriction of η to B_3 since it must be a representation of B_3 also. Since $(\sigma_1\sigma_2)^3$ is in the center of B_3 , the image \mathcal{V} of $(\sigma_1\sigma_2)^3$ must centralize the image of B_3 . Hence we consider the various possible Jordan canonical forms for \mathcal{V} .

Let λ be a partition of a natural number, denoted $\{1^{\lambda_1}2^{\lambda_2}\cdots s^{\lambda_s}\}$. Corresponding to λ is the nilpotent Jordan matrix $J(\lambda)$ which has λ_i elementary $i \times i$ nilpotent Jordan blocks for $i = 1, \ldots, s$. For $a \in \mathbb{C}$, set $J(a, \lambda) = aI + J(\lambda)$. Now assume the Jordan canonical form of \mathcal{V} is the direct sum of Jordan blocks $J(a_1, \lambda(a_1)), \ldots, J(a_k, \lambda(a_k))$, where a_1, \ldots, a_k are the distinct eigenvalues. The centralizer of \mathcal{V} is the direct sum of the centralizers of the distinct $J(a_i, \lambda(a_i))$. Thus one needs to find the centralizer of a block $J(a, \lambda)$, and we notice that this is the same as the centralizer of the nilpotent Jordan block $J(0, \lambda)$. In other words, the structure of the centralizer does not depend on a.

LEMMA 3.1. Let $\lambda = \{1^{\lambda_1} 2^{\lambda_2} \cdots s^{\lambda_s}\}$. The centralizer of $J(0,\lambda)$ has an invariant subspace of dimension λ_s where s is the largest part of λ . In particular, if $\lambda_s = 1$, then the centralizer of $J(0,\lambda)$ has a one-dimensional invariant subspace. Thus the centralizer of a matrix \mathcal{V} has a one-dimensional invariant subspace unless, for every Jordan block $J(a,\lambda)$ occurring in the Jordan canonical form of \mathcal{V} , the largest part of the partition λ has multiplicity two or more.

We have 14 Jordan canonical forms of the 4×4 matrix \mathcal{V} according to its partition type. Among these, there are only three for which the centralizer of \mathcal{V} does not have a one-dimensional invariant subspace, namely (A) \mathcal{V} has two distinct eigenvalues u, w, each of multiplicity two with corresponding partitions $(1^2), (1^2)$. The Jordan canonical form of \mathcal{V} is the diagonal matrix diag $(u, u, w, w), u \neq w$. (B) \mathcal{V} has one eigenvalue w with corresponding partition (2^2) . The Jordan canonical form of \mathcal{V} has two identical 2×2 blocks (w, 1, 0, w). (C) \mathcal{V} has one eigenvalue w with corresponding partition (1^4) , i.e. $\mathcal{V} = wI$.

THEOREM 3.2. Let $\eta: B_4 \to \operatorname{GL}_4(\mathbb{C})$ be a representation, not necessarily irreducible. Then either $\eta|_{B_3}$, the restriction of η to B_3 , has a one-dimensional invariant subspace or \mathcal{V} has one of the following Jordan canonical forms

$$\begin{pmatrix} u & 0 & 0 & 0 \\ 0 & u & 0 & 0 \\ 0 & 0 & w & 0 \\ 0 & 0 & 0 & w \end{pmatrix}, \quad \begin{pmatrix} w & 1 & 0 & 0 \\ 0 & w & 0 & 0 \\ 0 & 0 & w & 1 \\ 0 & 0 & 0 & w \end{pmatrix} \quad \text{or} \quad \begin{pmatrix} w & 0 & 0 & 0 \\ 0 & w & 0 & 0 \\ 0 & 0 & w & 0 \\ 0 & 0 & 0 & w \end{pmatrix},$$

where u, w are distinct.

4. The restriction of η to B_3 has an invariant one-dimensional subspace.

Let $\eta: B_4 \to \operatorname{GL}_4(\mathbb{C})$ be an irreducible representation and assume $\eta|_{B_3}$ has an invariant one-dimensional subspace, span $\{v\}$, i.e., $\eta(\sigma_1)v = xv = \eta(\sigma_2)v$ for some $x \in \mathbb{C}^*$. Define $\theta = \sigma_1\sigma_2\sigma_3 - \sigma_0 = \theta\sigma_3\theta^{-1}$, $V_i = \operatorname{Ker} (\eta(\sigma_i) - x \cdot I)$ for $0 \le i \le 3$.

Conjugation by θ permutes σ_0 , σ_1 , σ_2 , σ_3 cyclically. Thus left multiplication by $\eta(\theta)$ permutes V_0 , V_1 , V_2 , V_3 cyclically. In particular, all the V_i , $0 \le i \le 3$, have the same dimension. Moreover, if v is an x-eigenvector for $\eta(\sigma_1)$ and $\eta(\sigma_2)$, then $\eta(\theta)v$ is an x-eigenvector for $\eta(\sigma_2)$ and $\eta(\sigma_3)$.

Proposition 4.1. dim $V_1 = 2$.

Proof. By one of the hypotheses, dim $V_1 \geq 1$, since $v \in V_1$.

If dim $V_1 = 1$, then dim $V_2 = 1$ since as noted above, $V_2 = \eta(\theta)(V_1)$. Since both v and $\eta(\theta)v$ are in V_2 , and dim $V_2 = 1$, one must be a nonzero scalar multiple of the other, i.e. $\eta(\theta)v = yv$ for some $y \in \mathbb{C}^*$. But then span $\{v\}$ is invariant under $\eta(\sigma_1)$ and $\eta(\theta)$, and hence invariant under B_4 , since σ_1 and θ generate B_4 . This contradicts the irreducibility of $\eta: B_4 \to \mathrm{GL}_4(\mathbb{C})$.

If dim $V_1 \geq 3$, then dim $(V_1 \cap V_2 \cap V_3) \geq 1$. This follows from two applications of the formula, dim $P + \dim Q = \dim (P \cap Q) + \dim (P + Q)$ for subspaces of a vector space, since V_1, V_2, V_3 are subspaces of \mathbb{C}^4 . But any element of $V_1 \cap V_2 \cap V_3$ is a common x-eigenvector for σ_1 , σ_2 , σ_3 and again the irreducibility of $\eta: B_4 \to \mathrm{GL}_4(\mathbb{C})$ is contradicted.

Finally, dim $V_1 = 2$ since this is the only remaining possibility.

Now let $W = \operatorname{span} \{ \eta(\theta^3)v, v, \eta(\theta)v, \eta(\theta^2)v \}$. If dim W were less than or equal to 3, then W would be a proper invariant subspace since W is invariant under $\eta(\sigma_1)$ and $\eta(\theta)$. Hence dim W = 4 since η is irreducible, in other words, $\{\eta(\theta^3)v, v, \eta(\theta)v, \eta(\theta^2)v\}$ forms a basis for W. Since θ^4 is in the center of B_4 and η is irreducible, $\eta(\theta^4) = z \cdot I$ for some $z \in \mathbb{C}^*$. Since the action of $\eta(\theta)$ on W sends v to $\eta(\theta)v$, $\eta(\theta)v$ to $\eta(\theta^2)v$, $\eta(\theta^2)v$ to $\eta(\theta^3)v$, and $\eta(\theta^3)v$ to $z \cdot v$, we have

$$\eta(\theta) = \begin{pmatrix} 0 & 0 & 0 & 1 \\ z & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix},$$

with respect to the ordered basis $\{\eta(\theta^3)v, v, \eta(\theta)v, \eta(\theta^2)v\}$. The action of $\eta(\sigma_1)$ on W sends $\eta(\theta^3)v$ to $x \cdot \eta(\theta^3)v$, v to $x \cdot v$ and $\eta(\sigma_1)(V_3) \subseteq V_3$ since σ_1 , σ_3 commute. Thus there are a_1 , a_2 , a_3 , $a_4 \in \mathbb{C}$ such that the matrices of $\eta(\sigma_1)$, $\eta(\sigma_2)$, $\eta(\sigma_3)$ with respect to the ordered basis $\{\eta(\theta^3)v, v, \eta(\theta)v, \eta(\theta^2)v\}$, are

$$\eta(\sigma_1) = \begin{pmatrix} x & 0 & 0 & 0 \\ 0 & x & 0 & 0 \\ 0 & 0 & a_1 & a_2 \\ 0 & 0 & a_3 & a_4 \end{pmatrix}, \ \eta(\sigma_2) = \eta(\theta\sigma_1\theta^{-1}) = \begin{pmatrix} a_4 & 0 & 0 & a_3 \\ 0 & x & 0 & 0 \\ 0 & 0 & x & 0 \\ a_2 & 0 & 0 & a_1 \end{pmatrix},$$

and

$$\eta(\sigma_3) = \eta(\theta\sigma_2\theta^{-1}) = \begin{pmatrix} a_1 & a_2z^{-1} & 0 & 0 \\ a_3z & a_4 & 0 & 0 \\ 0 & 0 & x & 0 \\ 0 & 0 & 0 & x \end{pmatrix}.$$

Now comparing $\eta(\theta)$ and $\eta(\sigma_1\sigma_2\sigma_3)$, we have $a_1 = 0$, $a_4 = 0$, and $a_3 = x^{-2}$, $z = a_2^3$. By conjugating with the diagonal matrix diag $(1, a_2^{-2}, a_2^{-2}, a_2^{-1})$, and setting $u = a_2 x^{-2}$, we get the following theorem.

THEOREM 4.2. Let $\xi: B_4 \to \operatorname{GL}_4(\mathbb{C})$ be an irreducible representation. If the restriction of ξ to B_3 has an invariant one-dimensional subspace, then ξ is equivalent to the following representation $\eta = \eta(x, u)$, for some $x, u \in \mathbb{C}^*$, $u \neq x^2$, defined by

$$\eta(\sigma_1) = \begin{pmatrix} x & 0 & 0 & 0 \\ 0 & x & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & u & 0 \end{pmatrix}, \ \eta(\sigma_2) = \begin{pmatrix} 0 & 0 & 0 & u \\ 0 & x & 0 & 0 \\ 0 & 0 & x & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}, \ \eta(\sigma_3) = \begin{pmatrix} 0 & 1 & 0 & 0 \\ u & 0 & 0 & 0 \\ 0 & 0 & x & 0 \\ 0 & 0 & 0 & x \end{pmatrix}.$$

Distinct choices of x, u give inequivalent representations.

All nonzero x, u define representations, and η is irreducible unless $u = x^2$. If $u = x^2$, then $(x^2, x^3, 1, x)^t$ is a common eigenvector for η .

THEOREM 4.3. The image of the pure braid group P_4 of the representation η in Theorem 4.2 consists of the diagonal matrices, and is abelian.

Proof. The pure braid group P_4 is the normal subgroup of B_4 generated by σ_i^2 for $1 \le i \le 3$ [2, Theorem 17]. Since $\eta(\sigma_i^2)$ and $\eta(\sigma_j D \sigma_j^{-1})$ are diagonal matrices for any diagonal matrix D, $1 \le i$, $j \le 3$, the image of the pure braid group P_4 under the representation η consists of diagonal matrices, and hence is abelian.

REMARK 4.1. For the representation η in Theorem 4.2, we have $\mathcal{V} = \text{diag } (x^2u^2, x^6, x^2u^2, x^2u^2)$.

- (1) If $u \neq \pm x^2$, then \mathcal{V} has eigenvalues, x^2u^2 of multiplicity 3, and x^6 of multiplicity 1.
- (2) If $u = x^2$, then the representation is reducible.
- (3) If $u = -x^2$, then \mathcal{V} is a scalar matrix.

Thus any irreducible representation of B_4 of degree 4 whose restriction to B_3 has an invariant one-dimensional subspace, has \mathcal{V} either a scalar matrix or a diagonal matrix with one eigenvalue of multiplicity 3 and another eigenvalue of multiplicity 1.

5. The Jordan canonical form of V is the diagonal matrix diag(u, u, w, w), $u \neq w$.

Let's assume \mathcal{V} is the diagonal matrix diag $(u, u, w, w), u \neq w$. Since $\eta(\sigma_1)$ and $\eta(\sigma_2)$ commute with \mathcal{V} , they have the form, $\eta(\sigma_i) = \begin{pmatrix} \rho(\sigma_i) & \mathbf{0} \\ \mathbf{0} & \tau(\sigma_i) \end{pmatrix}$, i = 1, 2, where $\rho : \tau : B_3 \to \operatorname{GL}_2(\mathbb{C})$ are representations.

If either ρ or τ is reducible, then $\eta|_{B_3}$, the restriction of η to B_3 , has an invariant one-dimensional subspace, but then \mathcal{V} can not have Jordan canonical form diag(u, w, w, w), $u \neq w$, by Remark 4.1. Therefore the representations ρ , τ are irreducible. Then, by Theorem 2.6, there exist a, b, c, d such that $b \neq a\mu$, $d \neq \epsilon\mu$ (where μ is a primitive cube root of

-1), and

$$\eta(\sigma_1) = \begin{pmatrix} a & 1 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & c & 1 \\ 0 & 0 & 0 & d \end{pmatrix}, \qquad \eta(\sigma_2) = \begin{pmatrix} b & 0 & 0 & 0 \\ -ab & a & 0 & 0 \\ 0 & 0 & d & 0 \\ 0 & 0 & -cd & c \end{pmatrix}.$$

DEFINITION 5.1. A matrix is called *non-derogatory* if it generates its own centralizer over \mathbb{C} .

If X is non-derogatory, then any matrix which centralizes X is a polynomial in X over \mathbb{C} . In particular, if $\eta(\sigma_1)$ is non-derogatory, then $\eta(\sigma_3)$ has the form,

$$\begin{pmatrix} * & * & :) & 0 \\ * & * & :) & 0 \\ 0 & 0 & * & * \\ 0 & 0 & * & * \end{pmatrix},$$

and thus η is reducible.

Remark 5.1. An $n \times n$ matrix is non-derogatory if it has only 1 Jordan block for each eigenvalue.

For n = 4, the following are the "types" of non-derogatory matrices,

$$\begin{pmatrix} s & 0 & 0 & 0 \\ 0 & t & 0 & 0 \\ 0 & 0 & u & 0 \\ 0 & 0 & 0 & w \end{pmatrix}, \qquad \begin{pmatrix} t & 0 & 0 & 0 \\ 0 & u & 0 & 0 \\ 0 & 0 & w & 1 \\ 0 & 0 & 0 & w \end{pmatrix}, \qquad \begin{pmatrix} u & 1 & 0 & 0 \\ 0 & u & 0 & 0 \\ 0 & 0 & w & 1 \\ 0 & 0 & 0 & w \end{pmatrix},$$

$$\begin{pmatrix} u & 0 & 0 & 0 \\ 0 & w & 1 & 0 \\ 0 & 0 & w & 1 \\ 0 & 0 & 0 & w \end{pmatrix}, \qquad \begin{pmatrix} w & 1 & 0 & 0 \\ 0 & w & 1 & 0 \\ 0 & 0 & w & 1 \\ 0 & 0 & 0 & u \end{pmatrix}.$$

where s, t, u, w are distinct complex numbers. Let

$$\eta(\sigma_3) = \begin{pmatrix} n_{11} & n_{12} & n_{13} & n_{14} \\ n_{21} & n_{22} & n_{23} & n_{24} \\ n_{31} & n_{32} & n_{33} & n_{34} \\ n_{41} & n_{42} & n_{43} & n_{44} \end{pmatrix}.$$

The commutativity of σ_1 and σ_3 implies

$$\eta(\sigma_1)\eta(\sigma_3) = \begin{pmatrix} an_{11} + n_{21} & an_{12} + n_{22} & an_{13} + n_{23} & an_{14} + n_{24} \\ bn_{21} & bn_{22} & bn_{23} & bn_{24} \\ cn_{31} + n_{41} & cn_{32} + n_{42} & cn_{33} + n_{43} & cn_{34} + n_{44} \\ dn_{41} & dn_{42} & dn_{43} & dn_{44} \end{pmatrix}$$
$$= \begin{pmatrix} an_{11} & n_{11} + bn_{12} & cn_{13} & n_{13} + dn_{14} \\ an_{21} & n_{21} + bn_{22} & cn_{23} & n_{23} + dn_{24} \\ an_{31} & n_{31} + bn_{32} & cn_{33} & n_{33} + dn_{34} \\ an_{41} & n_{41} + bn_{42} & cn_{43} & n_{43} + dn_{44} \end{pmatrix} = \eta(\sigma_3)\eta(\sigma_1).$$

Let's consider the following cases according to the number of distinct eigenvalues of $\eta(\sigma_1)$.

- (1) If $\eta(\sigma_1)$ has a single eigenvalue i.e. a = b = c = d, then \mathcal{V} is a scalar matrix. Contradiction to the hypotheses.
- (2) $\eta(\sigma_1)$ has 2 eigenvalues.
 - (a) $a = b = c \neq d$.

The commutativity of σ_1 and σ_3 implies $n_{21} = n_{23} = n_{24} = n_{31} = n_{41} = n_{42} = n_{43} = 0$, $n_{11} = n_{22}$, $n_{13} = (a - d)n_{14}$, and $n_{34} = \frac{n_{33} - n_{44}}{a - d}$. The equality of the (4, 1)-entries of $\eta(\sigma_2 \sigma_3 \sigma_2) = \eta(\sigma_3 \sigma_2 \sigma_3)$ forces $a^3 dn_{32} = 0$. But if n_{32} vanishes, then η is reducible.

- (b) The same reasoning as in (2a) applies when any three of a, b,c, d are equal, since the role of a, b, c, d are symmetric.
- (c) $a = b \neq c = d$. $\eta(\sigma_1)$ is non-derogatory.
- (d) $a = c \neq b = d$.

Again we have a scalar matrix for \mathcal{V} . Contradiction to the hypotheses.

- (3) $\eta(\sigma_1)$ has 3 eigenvalues.
 - (a) a = b and b, c, d are distinct. $\eta(\sigma_1)$ is non-derogatory.
 - (b) a = c and b, c, d are distinct.

The commutativity of σ_1 and σ_3 implies $n_{21}=n_{23}=n_{24}=n_{41}=n_{42}=n_{43}=0,\ n_{12}=\frac{n_{11}-n_{22}}{a-b},\ n_{14}=\frac{n_{13}}{a-d},\ n_{32}=\frac{n_{31}}{a-b},$ and $n_{34}=\frac{n_{33}-n_{44}}{a-d}$. Comparing (2,4)-entries of $\eta(\sigma_2\sigma_3\sigma_2)=\eta(\sigma_3\sigma_2\sigma_3)$, we have $abn_{13}(n_{22}-a)=0$. If n_{13} is equal to 0, then the representation is reducible. Thus $n_{22}=a$. From the equality of the (4,2)-entries of $\eta(\sigma_2\sigma_3\sigma_2)=\eta(\sigma_3\sigma_2\sigma_3)$, we have

 $abn_{31}(n_{44}-a)=0$. Thus $n_{44}=a$, for if n_{31} vanishes, then the corresponding representation becomes reducible. Then the equality of the (2,3)-entries of $\eta(\sigma_2\sigma_3\sigma_2)=\eta(\sigma_3\sigma_2\sigma_3)$ forces $abn_{13}(a^2-ad+d^2)=0$. So $a^2-ad+d^2=0$. Thus $d=a\mu=c\mu$, where μ is a root of $t^2-t+1=0$, and $\sigma:B_3\to \mathrm{GL}_2(\mathbb{C})$ is reducible (cf. Theorem 2.6). Contradiction to the hypotheses.

(4) All eigenvalues of $\eta(\sigma_1)$ are distinct to each other. Then $\eta(\sigma_1)$ is non-derogatory again.

Thus we have shown

THEOREM 5.2. Let $\eta: B_4 \to \operatorname{GL}_4(\mathbb{C})$ be an irreducible representation. Then the Jordan canonical form of $\mathcal{V} = (\eta(\sigma_1)\eta(\sigma_2))^3$ is not a diagonal matrix $\operatorname{diag}(u, u, w, w)$ where $u \neq w$.

6. The Jordan canonical form of V has two identical 2×2 blocks (w, 1, 0, w).

When $\mathcal V$ has two identical 2×2 blocks (w,1,0,w), we first conjugate the representations so that $\mathcal V$ is equal to $\begin{pmatrix} w\cdot I & w\cdot I \\ 0 & w\cdot I \end{pmatrix}$ where I is the 2×2 identity matrix. The centralizer C of $\mathcal V$ in $\mathrm{M}_4(\mathbb C)$ is the set of block matrices $\begin{pmatrix} A & B \\ 0 & A \end{pmatrix}$ where $A,B\in\mathrm{M}_2(\mathbb C)$. Since $\eta(\sigma_1)$ and $\eta(\sigma_2)$ commute with $\mathcal V$, the image $\eta(B_3)\subseteq C$. Moreover, the map $\gamma:C\to\mathrm{M}_2(\mathbb C)$ that sends $\begin{pmatrix} A & B \\ 0 & A \end{pmatrix}$ to A is a $\mathbb C$ -algebra homomorphism. For the representation $\rho=\eta|_{B_3}$ of B_3 into $C\cap\mathrm{GL}_4(\mathbb C)$, we consider the composition $\delta=\gamma\rho:B_3\to\mathrm{GL}_2(\mathbb C)$. If δ is reducible, $\eta(\sigma_1)$ and $\eta(\sigma_2)$ have a one-dimensional invariant subspace, and then $\mathcal V$ can not have Jordan canonical form with two identical 2×2 blocks (w,1,0,w) by the Remark 4.1. Thus δ is irreducible. Then by Theorem 2.6,

$$\eta(\sigma_1) = \begin{pmatrix} a & 1 & * & p \\ 0 & b & * & q \\ 0 & 0 & a & 1 \\ 0 & 0 & 0 & b \end{pmatrix}, \qquad \eta(\sigma_2) = \begin{pmatrix} b & 0 & * & * \\ -ab & a & * & * \\ 0 & 0 & b & 0 \\ 0 & 0 & -ab & a \end{pmatrix},$$

where $b \neq a\mu$ (where μ is a primitive cube root of -1), $a, b \in \mathbb{C}^*$, $p, q \in \mathbb{C}$, and each "*" denotes an element of \mathbb{C} . By conjugating with

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & -q & p \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$

we may assume

$$\eta(\sigma_1) = \begin{pmatrix} a & 1 & c & 0 \\ 0 & b & d & 0 \\ 0 & 0 & a & 1 \\ 0 & 0 & 0 & b \end{pmatrix}, \qquad \eta(\sigma_2) = \begin{pmatrix} b & 0 & g & h \\ -ab & a & k & l \\ 0 & 0 & b & 0 \\ 0 & 0 & -ab & a \end{pmatrix},$$

where $b \neq a\mu$, $a, b \in \mathbb{C}^*$. The braid relation $\sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2$ and \mathcal{V} as in the hypotheses implies

$$\begin{split} d &= b(c - \frac{a}{3}), \\ h &= \frac{(b-a)g-d}{ab}, \\ k &= abh - bc = (b-a)g - d - bc, \\ l &= c - g. \end{split}$$

To determine $\eta(\sigma_3)$, let

$$\eta(\sigma_3) = \begin{pmatrix} n_{11} & n_{12} & n_{13} & n_{14} \\ n_{21} & n_{22} & n_{23} & n_{24} \\ n_{31} & n_{32} & n_{33} & n_{34} \\ n_{41} & n_{42} & n_{43} & n_{44} \end{pmatrix}.$$

Then we have

$$\eta(\sigma_1)\eta(\sigma_3) = \begin{pmatrix} D & E \\ F & G \end{pmatrix},$$

where

$$\begin{split} D &= \begin{pmatrix} an_{11} + n_{21} + cn_{31} & an_{12} + n_{22} + cn_{32} \\ bn_{21} + bcn_{31} - \frac{ab}{3}n_{31} & bn_{22} + bcn_{32} - \frac{ab}{3}n_{32} \end{pmatrix}. \\ E &= \begin{pmatrix} an_{13} + n_{23} + cn_{33} & an_{14} + n_{24} + cn_{34} \\ bn_{23} + bcn_{33} - \frac{ab}{3}n_{35} & bn_{24} + bcn_{34} - \frac{ab}{3}n_{34} \end{pmatrix}, \\ F &= \begin{pmatrix} an_{31} + n_{41} & an_{32} + n_{42} \\ bn_{41} & bn_{42} \end{pmatrix}, \\ G &= \begin{pmatrix} an_{33} + n_{43} & an_{34} + n_{44} \\ bn_{43} & bn_{44} \end{pmatrix}. \end{split}$$

And

$$\eta(\sigma_3)\eta(\sigma_1) = \begin{pmatrix} an_{11} & n_{11} + bn_{12} & cn_{11} + bcn_{12} - \frac{ab}{3}n_{12} + an_{13} & n_{13} + bn_{14} \\ an_{21} & n_{21} + bn_{22} & cn_{21} + bcn_{22} - \frac{ab}{3}n_{22} + an_{23} & n_{23} + bn_{24} \\ an_{31} & n_{31} + bn_{32} & cn_{31} + bcn_{32} - \frac{ab}{3}n_{32} + an_{33} & n_{33} + bn_{34} \\ an_{41} & n_{41} + bn_{42} & cn_{41} + bcn_{42} - \frac{ab}{3}n_{42} + an_{43} & n_{43} + bn_{44} \end{pmatrix}.$$

Comparing (3,1)- and (4,4)-entries of $\eta(\sigma_1)\eta(\sigma_3)$ and $\eta(\sigma_3)\eta(\sigma_1)$, we have

$$(1) n_{41} = n_{43} = 0.$$

With the equality of (1, 1)- and (2, 2)-entries of $\eta(\sigma_1) \cdot \eta(\sigma_3)$ and $\eta(\sigma_3) \eta(\sigma_1)$, we have

$$(2) n_{21} = -cn_{31},$$

and

(3)
$$n_{21} = bn_{32}(c - \frac{a}{3}).$$

Then with the equality of (2,1)-entries of $\eta(\sigma_1)\eta(\sigma_3)$ and $\eta(\sigma_3)\eta(\sigma_1)$, we have

$$0 = (b - a)n_{21} + bn_{31}(c - \frac{a}{3})$$

$$= (b - a)(-cn_{31}) + bn_{31}(c - \frac{a}{3})$$

$$= n_{31}(-bc + ac + bc - \frac{ab}{3})$$

$$= an_{31}(c - \frac{b}{3}).$$

(1) $c - \frac{b}{3} \neq 0$. Then $n_{31} = 0$ implies $n_{21} = 0$ and $bn_{32}(c - \frac{a}{3}) = 0$ by Eq (2) and Eq (3). (a) $n_{32} = 0$.

If $n_{31} = n_{32} = 0$, then $(a - b)n_{32} - n_{31} + n_{42} = 0$ from the equality of (3, 2)-entries of $\eta(\sigma_1)\eta(\sigma_3)$ and $\eta(\sigma_3)\eta(\sigma_1)$ implies $n_{42} = 0$. Therefore $\eta(\sigma_3)$ has the form,

$$\begin{pmatrix} * & \times & * & * \\ * & \times & * & * \\ 0 & 0 & * & * \\ 0 & 0 & * & * \end{pmatrix},$$

and the corresponding representation is reducible.

(b) $c - \frac{a}{3} = 0$.

In the equality of (3,2)-entries of $\eta(\sigma_1)\eta(\sigma_3)$ and $\eta(\sigma_3)\eta(\sigma_1)$, we have $n_{42}=(b-a)n_{32}$. Now the equality of (4,1)-entries of $\eta(\sigma_2\sigma_3\sigma_2)=\eta(\sigma_3\sigma_2\sigma_3)$ implies $abn_{32}(a^2-(a-b)n_{11})=0$. If n_{32} vanishes, then the representation is reducible by the previous case. So assume $n_{32}\neq 0$, then $n_{11}=\frac{a^2}{a-b}$. In the equality of (3,1)-entries of $\eta(\sigma_2\sigma_3\sigma_2)=\eta(\sigma_3\sigma_2\sigma_3)$, we have $abn_{32}(-b+n_{11})=0$. Thus $b=n_{11}=\frac{a^2}{a-b}$. Hence $a^2-ab+b^2=0$. Contradiction to our initial assumption $b\neq a\mu$.

(2) $c - \frac{b}{3} = 0$.

The equality of (4, 3)-entries of $\eta(\sigma_1)\eta(\sigma_3)$ and $\eta(\sigma_3)\eta(\sigma_1)$ forces $b(b-a)n_{42}=0$.

(a) $n_{42} = 0$.

If we compare the (3,2)-entries of $\eta(\sigma_1)\eta(\sigma_3)$ and $\eta(\sigma_3)\eta(\sigma_1)$, we get $n_{31}=(a-b)n_{32}$. In the equality of (4,1)-entries of $\eta(\sigma_2\sigma_3\sigma_2)=\eta(\sigma_3\sigma_2\sigma_3)$, we have $abn_{32}(b^2-(b-a)n_{44})=0$. Since $n_{32}=0$ implies reducibility, assume $n_{44}=\frac{b^2}{b-a}$. Then in the equality of (4,2)-entries of $\eta(\sigma_2\sigma_3\sigma_2)=\eta(\sigma_3\sigma_2\sigma_3)$, we have $abn_{32}(-a+n_{44})=0$. Therefore $e=n_{44}=\frac{b^2}{b-a}$ implies $b^2-ab+a^2=0$. Contradiction to our initial assumption $b\neq a\mu$ again.

(b) b = a.

In Eq (3), we have $n_{21} = bn_{32}(c - \frac{a}{3}) = bn_{32}(c - \frac{b}{3}) = 0$. From Eq (2), we have $n_{31} = 0$ since $c = \frac{b}{3} \neq 0$. In the equality of (3, 2)-entries of $\eta(\sigma_1)\eta(\sigma_3)$ and $\eta(\sigma_3)\eta(\sigma_1)$, $n_{32}(a - b) + n_{42} - n_{31} = 0$ forces $n_{42} = 0$ and the vanishing of n_{42} makes this case belong to the previous case.

Hence we have shown

THEOREM 6.1. Let $\eta: B_4 \to \operatorname{GL}_4(\mathbb{C})$ be an irreducible representation. Then the Jordan canonical form of $\mathcal{V} = (\eta(\sigma_1)\eta(\sigma_2))^3$ is not equal to

$$\begin{pmatrix} w & 1 & 0 & 0 \\ 0 & w & 0 & 0 \\ 0 & 0 & w & 1 \\ 0 & 0 & 0 & w \end{pmatrix}.$$

7. The Jordan canonical form of V is a scalar matrix.

Since scalar matrices are central in $GL_4(\mathbb{C})$, all commutators $[(\sigma_1\sigma_2)^3, \mathbf{w}] = (\sigma_1\sigma_2)^3 \mathbf{w} (\sigma_1\sigma_2)^{-3} \mathbf{w}^{-1}$ will lie in the kernel of the representation for any word \mathbf{w} in B_4 , so it will really be a representation η of B_4/N , where N is the normal subgroup of B_4 generated by all such commutators.

Now assume $\eta: B_4 \to \mathrm{GL}_4(\mathbb{C})$ is an irreducible representation and \mathcal{V} is a scalar matrix. There is a short exact sequence $1 \longrightarrow F_2 \longrightarrow B_4 \longrightarrow B_3$ \longrightarrow 1, where the map between B_4 and B_3 is the special homomorphism π which sends σ_1 , σ_3 to σ_1 and fixes σ_2 and $F_2 = \langle \sigma_1 \sigma_3^{-1}, \sigma_2 \sigma_1 \sigma_3^{-1} \sigma_2^{-1} \rangle$ is a free group of rank 2 [6, p. 406]. For any word $\mathbf{w} \in B_4$, $\pi(\mathbf{w}) \in B_3$ and $(\sigma_1\sigma_2)^3$ is in the center of B_3 . Hence $\pi(N)=1$ implies $N\subseteq F_2$. Factoring out N gives rise to an exact sequence $1 \longrightarrow K = F_2/N \longrightarrow B_4/N \longrightarrow$ $B_3 \longrightarrow 1$. To figure out F_2/N , set $p = \sigma_1 \sigma_3^{-1}$, $q = \sigma_2 \sigma_1 \sigma_3^{-1} \sigma_2^{-1}$. Then $[(\sigma_1\sigma_2)^3, \sigma_3] = qpq^{-1}p \in N \text{ and } \sigma_2(qpq^{-1}p)\sigma_2^{-1} = qp^{-1}qp \in N. \text{ Hence}$ F_2/N is isomorphic to the quaternion group of order 8. There are 5 irreducible representations of the quaternion group, four of them, ϕ_i , 1 < i < 4, are of degree 1 and one of them, ψ , is of degree 2. They are as follows, $\phi_1(p) = 1$, $\phi_1(q) = 1$, $\phi_2(p) = 1$, $\phi_2(q) = -1$, $\phi_3(p) = -1$, $\phi_3(q) = 1$, $\phi_4(p) = -1$, $\phi_4(q) = -1$, and $\psi(p) = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$, $\psi(q) = -1$ $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. For any irreducible representation $\eta: B_4/N \to \mathrm{GL}_4(\mathbb{C})$, the restriction of η to K, $\eta|_K$ is the direct sum of irreducible representations of the same degree, which are conjugates, with the same multiplicity, by Clifford's theorem [5, (49.2) Theorem, (49.7) Theorem], since K is a normal subgroup of B_4/N . And the conjugacy classes of irreducible representations of K are $\{\phi_1\}$, $\{\phi_2, \phi_3, \phi_4\}$, $\{\psi\}$.

LEMMA 7.1. Let $\eta: B_4 \to \mathrm{GL}_4(\mathbb{C})$ be an irreducible representation and $\eta|_K$ is the direct sum of irreducible representations. Then one of the following occurs.

- (A) $\eta|_K = \phi_1 \oplus \phi_1 \oplus \phi_1 \oplus \phi_1$.
- $(B) \ \eta|_K = \psi \oplus \psi.$

First of all, we consider the case, in which $\eta|_K$ is the direct sum of 4 one-dimensional representations.

PROPOSITION 7.2. Let $\eta: B_4 \to \operatorname{GL}_4(\mathbb{C})$ be an irreducible representation and $\eta|_K$ is the direct sum of 4 one-dimensional representations. Then $\eta = \tau \pi$ where $\pi: B_4 \to B_3$ is the special homomorphism and $\tau: B_3 \to \operatorname{GL}_4(\mathbb{C})$ is an irreducible representation of B_3 of degree 4.

Proof. By Lemma 7.1, $\eta|_K = \phi_1 \oplus \phi_1 \oplus \phi_1 \oplus \phi_1$. Since $\eta(p) =$ $\eta(\sigma_1\sigma_3^{-1})=I$, we have $\eta(\sigma_1)=\eta(\sigma_3)$. Hence $\eta=\tau\pi$ where $\pi:B_4\to$ B_3 is the special homomorphism, and $\tau: B_3 \to \mathrm{GL}_4(\mathbb{C})$ is an irreducible representation. Since B_3 has a presentation $<\alpha$, $\beta \mid \alpha^3 = \beta^2 >$. $\tau(\alpha^3) = \tau(\beta^2) = z \cdot I$ for some $z \in \mathbb{C}^*$. Thus $\tau(\alpha)$ and $\tau(\beta)$ are diagonalizable. For some $a, b \in \mathbb{C}^*$, the eigenvalues of $\tau(\alpha)$ belong to the set $\{a, a\omega, a\omega^2\}$ where $\omega = \frac{-1+\sqrt{-3}}{2}$, a cube root of unity and the eigenvalues of $\tau(\beta)$ belong to the set $\{b, -b\}$. But $\alpha^3 = \beta^2$ implies $a^3 = b^2$. Set $y = a^{-1}b$. If $\tau(\beta)$ has only one eigenvalue, then it is a scalar matrix and this would imply that τ is reducible. So we may suppose that $\tau(\beta)$ is conjugate to either diag (b, b, b, -b) or diag (b, b, -b, -b). But if $\tau(\beta)$ is conjugate to diag (b, b, b, -b), then $\tau(\alpha)$ and $\tau(\beta)$ have a common eigenvector since $\tau(\alpha)$ has an eigenvalue of multiplicity 2 by comparing the dimensions of the null spaces of each eigenvalues. If $\tau(\alpha)$ has an eigenvalue of multiplicity 3, then $\tau(\alpha)$ and $\tau(\beta)$ have a common eigenvector again contradicting to the irreducibility of τ . Hence $\tau(\alpha)$ is conjugate to a diagonal matrix with either one eigenvalue of multiplicity 2 and two of multiplicity 1 or two eigenvalues of multiplicity 2, i.e. we may assume $\tau(\beta) = y^3 \operatorname{diag}(1,1,-1,-1)$ and $\tau(\alpha)$ is conjugate to either $y^2\omega^i$ diag $(1, 1, \omega, \omega^2)$ or $y^2\omega^i$ diag $(1, 1, \omega, \omega)$ where $1 \le i \le 3$. But since $y^2\omega^i=(y\omega^{2i})^2$, they correspond to a different choice of y.

According to [11], the set of equivalence classes of irreducible representations of $\mathbb{Z}/2\mathbb{Z} * \mathbb{Z}/3\mathbb{Z}$ of dimension n is a nonempty variety and the components of this variety are indexed by ordered lists of non-negative integers, $(n_1, n_2; m_1, m_2, m_3)$, which satisfy the following conditions, $n_1 + n_2 = n$, $m_1 + m_2 + m_3 = n$ and n_1, n_2 are greater than or

equal to all of m_1, m_2, m_3 . Furthermore, if an irreducible representation of $\mathbb{Z}/2\mathbb{Z}*\mathbb{Z}/3\mathbb{Z} = \langle s \rangle * \langle t \rangle$ is given by $s \mapsto S$ and $t \mapsto T$, then for each non-zero scalar c, there is an irreducible representation of B_3 given by $s \mapsto c^3 S$ and $t \mapsto c^2 T$. Thus we have two families of representations corresponding to indices (2, 2; 2, 1, 1) and (2, 2; 2, 2, 0), which are the composition of an irreducible representation of B_3 with the special homomorphism $\pi: B_4 \to B_3$.

For the second case, we need to consider the restriction of η to K is the direct sum of 2 two-dimensional representations, i.e. $\eta|_K = \psi \oplus \psi$.

PROPOSITION 7.3. Let $\eta: B_4 \to \operatorname{GL}_4(\mathbb{C})$ be an irreducible representation and $\eta|_K$ is the direct sum of 2 two-dimensional representations. Then η is equivalent to a representation $\rho\pi\otimes\widehat{\beta}_4(i)$, where π is the special homomorphism, $\rho: B_3 \to \operatorname{GL}_2(\mathbb{C})$ is the irreducible representation defined by $\rho(\sigma_1) = \begin{pmatrix} a & 1 \\ 0 & b \end{pmatrix}$, $\rho(\sigma_2) = \begin{pmatrix} b & 0 \\ -ab & a \end{pmatrix}$ for $a, b \in \mathbb{C}^*$, $b \neq a\mu$, and $\widehat{\beta}_4(i): B_4 \to \operatorname{GL}_2(\mathbb{C})$ is the irreducible representation defined by

$$\widehat{\beta}_4(i)(\sigma_1) = \begin{pmatrix} -i & 0 \\ -1 & 1 \end{pmatrix}, \ \widehat{\beta}_4(i)(\sigma_2) = \begin{pmatrix} 1 & -i \\ 0 & -i \end{pmatrix}, \ \widehat{\beta}_4(i)(\sigma_3) = \begin{pmatrix} 1 & 0 \\ 1 & -i \end{pmatrix}.$$

Proof. By conjugation, we may assume

$$\eta(p) = \begin{pmatrix} i & 0 & 0 & 0 \\ 0 & i & 0 & 0 \\ 0 & 0 & -i & 0 \\ 0 & 0 & 0 & -i \end{pmatrix}, \qquad \eta(q) = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix}.$$

Since $\eta(\sigma_1)$ and $\eta(\sigma_3)$ commute with $\eta(p)$, they have the form

$$\begin{pmatrix} * & * & 0 & 0 \\ * & * & 0 & 0 \\ 0 & 0 & * & * \\ 0 & 0 & * & * \end{pmatrix}.$$

Let $\eta(\sigma_1) = \begin{pmatrix} L & 0 \\ 0 & L_1 \end{pmatrix}$ where L, L_1 are the upper left and the lower right 2×2 matrices respectively. Since $\sigma_3 = p^{-1}\sigma_1$,

$$\eta(\sigma_3) = \eta(p^{-1})\eta(\sigma_1) = \begin{pmatrix} -iI & 0 \\ 0 & iI \end{pmatrix} \begin{pmatrix} L & 0 \\ 0 & L_1 \end{pmatrix} = \begin{pmatrix} -iL & 0 \\ 0 & iL_1 \end{pmatrix}.$$

In [6, p. 406], $\sigma_1 q \sigma_1^{-1} = q p^{-1} = q \sigma_3 \sigma_1^{-1}$. Then $\sigma_1 q = q \sigma_3$ implies

$$\begin{pmatrix} L & 0 \\ 0 & L_1 \end{pmatrix} \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix} = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix} \begin{pmatrix} -\tau L & 0 \\ 0 & iL_1 \end{pmatrix}.$$

Thus $L_1 = -iL$. Hence we have $\eta(\sigma_1) = \begin{pmatrix} L & 0 \\ 0 & -iL \end{pmatrix}$, $\eta(\sigma_3) = \begin{pmatrix} -iL & 0 \\ 0 & L \end{pmatrix}$.

Let $\eta(\sigma_2) = \begin{pmatrix} M & M_1 \\ M_2 & M_3 \end{pmatrix}$ where M and M_i 's are 2×2 matrices. Since $q\sigma_2 = \sigma_2 p$, we have $\eta(\sigma_2) = \begin{pmatrix} M & M_1 \\ iM & -iM_1 \end{pmatrix}$. Furthermore $\sigma_2 q \sigma_2^{-1} = q p^{-1} q = \begin{pmatrix} -iI & 0 \\ 0 & iI \end{pmatrix}$ implies

$$\begin{pmatrix} M & M_1 \\ iM & -iM_1 \end{pmatrix} \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix} = \begin{pmatrix} -iI & 0 \\ 0 & iI \end{pmatrix} \begin{pmatrix} M & M_1 \\ iM & -iM_1 \end{pmatrix}.$$

Therefore $M_1 = iM$ and consequently $\eta(\sigma_2) = \begin{pmatrix} M & iM \\ iM & M \end{pmatrix}$. The braid relation $\sigma_1\sigma_2\sigma_1 = \sigma_2\sigma_1\sigma_2$ implies LML = (1+i)MLM. If we let M' = (1+i)M, then LM'L = M'LM'. The solutions of the last equation (up to equivalence) are $L = \begin{pmatrix} a & 1 \\ 0 & b \end{pmatrix}$, $M' = \begin{pmatrix} b & 0 \\ -ab & a \end{pmatrix}$ for a, $b \in \mathbb{C}^*$. Then $M = \frac{1}{1+i}M' = \frac{1}{1+i}\begin{pmatrix} b & 0 \\ -ab & a \end{pmatrix}$. We now have

$$\eta(\sigma_{1}) = \begin{pmatrix} a & 1 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & -ia & -i \\ 0 & 0 & 0 & -ib \end{pmatrix} = \begin{pmatrix} a & 1 \\ 0 & b \end{pmatrix} \otimes \begin{pmatrix} 1 & 0 \\ 0 & -i \end{pmatrix},
\eta(\sigma_{2}) = \begin{pmatrix} \frac{b}{1+i} & 0 & \frac{ib}{1+i} & 0 \\ \frac{-ab}{1+i} & \frac{a}{1+i} & \frac{-iab}{1+i} & \frac{ia}{1+i} \\ \frac{ib}{1+i} & 0 & \frac{b}{1+i} & 0 \\ \frac{-iab}{1+i} & \frac{ia}{1+i} & \frac{-ab}{1+i} & \frac{i}{1+i} \end{pmatrix} = \begin{pmatrix} b & 0 \\ -ab & a \end{pmatrix} \otimes \begin{pmatrix} \frac{1}{1+i} & \frac{i}{1+i} \\ \frac{i}{1+i} & \frac{1}{1+i} \end{pmatrix},
\eta(\sigma_{3}) = \begin{pmatrix} -ia & -i & 0 & 0 \\ 0 & -ib & 0 & 0 \\ 0 & 0 & a & 1 \\ 0 & 0 & 0 & b \end{pmatrix} = \begin{pmatrix} a & 1 \\ 0 & b \end{pmatrix} \otimes \begin{pmatrix} -i & 0 \\ 0 & 1 \end{pmatrix}.$$

These representations are irreducible for nonzero a and b, $b \neq a\mu$. This family of representations is the tensor product of 2 two-dimensional representations of B_4 and is equivalent to $\rho\pi\otimes\widehat{\beta}_4(i)$.

8. Conclusion.

Combining Theorem 4.2, Proposition 7.2, and Proposition 7.3, we have the main theorem.

THEOREM 8.1. Let $\xi: B_4 \to \mathrm{GL}_4(\mathbb{C})$ be an irreducible representation. Then ξ is equivalent to one of the following irreducible representations.

(1) A representation $\eta = \eta(x, u)$, where $x, u \in \mathbb{C}^*$ $u \neq x^2$, defined by

$$\eta(\sigma_1) = \begin{pmatrix} x & 0 & 0 & 0 \\ 0 & x & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & u & 0 \end{pmatrix}, \ \eta(\sigma_2) = \begin{pmatrix} 0 & 0 & 0 & u \\ 0 & x & 0 & 0 \\ 0 & 0 & x & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}, \ \eta(\sigma_3) = \begin{pmatrix} 0 & 1 & 0 & 0 \\ u & 0 & 0 & 0 \\ 0 & 0 & x & 0 \\ 0 & 0 & 0 & x \end{pmatrix}.$$

- (2) A representation $\tau\pi$ where $\pi: B_4 \to B_3$ is the special homomorphism and $\tau: B_3 \to \operatorname{GL}_4(\mathbb{C})$ is an irreducible representation of B_3 of degree 4.
- (3) A representation $\rho(a,b)\pi\otimes\widehat{\beta}_4(i)$, where π is the special homomorphism, $\rho(a,b)$ is the irreducible representation of B_3 into $\operatorname{GL}_2(\mathbb{C})$ defined by $\rho(a,b)$ $(\sigma_1)=\begin{pmatrix} a&1\\0&b \end{pmatrix}$, $\rho(a,b)(\sigma_2)=\begin{pmatrix} b&0\\-ab&a \end{pmatrix}$ for $a,b\in\mathbb{C}^*$, $b\neq a\mu$, and $\widehat{\beta}_4(i):B_4\to\operatorname{GL}_2(\mathbb{C})$ is the irreducible representation defined by

$$\widehat{\beta}_4(i)(\sigma_1) = \begin{pmatrix} -i & 0 \\ -1 & 1 \end{pmatrix}, \ \widehat{\beta}_4(i)(\sigma_2) = \begin{pmatrix} 1 & -i \\ 0 & -i \end{pmatrix}, \ \widehat{\beta}_4(i)(\sigma_3) = \begin{pmatrix} 1 & 0 \\ 1 & -i \end{pmatrix}.$$

There are no equivalences between representations under distinct headings (1), (2) and (3) except $\eta(x, -x^2)$ in (1) is equivalent to $\rho(x, xi)\pi \otimes \widehat{\beta}_4(i)$ in (3)

For representations in (1), the image of P_4 , the pure braid group on 4 strings, consists of diagonal matrices, and hence is abelian. In fact, if $x, u \in \mathbb{C}^*$ generate a free abelian group of rank 2 under multiplication, then the kernel of $\eta(x, u)$ is exactly $[P_4, P_4]$, the commutator subgroup of P_4 . For representations in (2), the kernel contains F_2 , the kernel

of the special homomorphism $\pi: B_4 \to B_3$. For representations in (3), the image of F_2 is the quaternion group Q_8 , and the kernel of the representation $\rho(a,b)\pi \otimes \hat{\beta}_4(i)$ is the kernel of a specific homomorphism $F_2 \to Q_8$.

References

- [1] E. Artin. Theorie der Zöpfe. Abh. Math. Sem. Univ. Hamburg 4 (1925), 47-72.
- [2] E. Artin. Theory of braids. Ann. of Math. 48 (1947), 101-126.
- [3] W. Burau. Uber Zopfgruppen und gleichsinnig verdrillte Verkettungen. Abh. Math. Sem. Univ. Hamburg 11 (1936), 179–186.
- [4] W.-L. Chow. On the algebraical braid group. Ann. of Math. 49 (1948), 654-658.
- [5] C. Curtis, I. Reiner, Representation Theory of Finite Groups and Associative Algebras, Interscience Publishers, 1962.
- [6] J. Dyer, E. Formanek, E. Grossman On the linearity of automorphism groups of free groups. Arch. Math. 38 (1982), 404-409.
- [7] E. Formanek. Braid group representations of low degree. Proc. London Math. Soc. 73 (1996), 279–322.
- [8] D. D. Long and M. Paton. The Burau representation is not faithful for n ≥ 6. Topology 32 (1993), 439-447.
- [9] W. Magnus and A. Peluso. On a theorem of V. I. Arnold. Comm. in Pure & Applied Math. XXII (1969), 683-692.
- [10] J. Moody. The faithfulness question for the Burau representation. Proc. Amer. Math. Soc. 119 (1993), 671-679.
- [11] B. Westbury On the character varieties of the modular group. University of Nottingham preprint, 1995.

GARC

Department of Mathematics Seoul National University Seoul 151-742 Korea