A NONLINEAR BEAM EQUATION WITH NONLINEARITY CROSSING AN EIGENVALUE

  • 발행 : 1997.08.01

초록

We investigate the existence of solutions of the nonlinear beam equation under the Dirichlet boundary condition on the interval $-\frac{2}{\pi}, \frac{2}{\pi}$ and periodic condition on the varible t, $Lu + bu^+ -au^- = f(x, t)$, when the jumping nonlinearity crosses the first positive eigenvalue.

키워드

참고문헌

  1. Cambridge Studies in Advanced Math. A primer of nonlinear analysis A. Ambrosetti;G. Prodi
  2. Applicable Analysis v.50 The study of a nonlinear suspension bridge equation by a variational reduction method Q. H. Choi;T. S. Jung;P. J. McKenna
  3. J. Differential Equations v.117 An application of a variational reduction method to a nonlinear wave equation Q. H. Choi;T. S. Jung
  4. Hokkaido Math. J. v.24 Multiplicity of solutions of nonlinear wave equations with nonlinearities crossing eigenvalues Q. H. Choi;T. S. Jung
  5. Multiplicity of solutions and source terms in a semilinear beam equation Q. H. Choi;T. S. Jung
  6. Linear Algebra K. Hoffman;R. Kunze
  7. Introductory Functional Analysis with Applications E. Kreyszig
  8. J. Differential Equations v.72 A symmetry theorem and applications to nonlinear partial differential equations A. C. Lazer;P. J. McKenna
  9. Elementary classical analysis J. E. Marsden;M. J. Horrman
  10. Archive for Rational Mechanics and Analysis v.98 Nonlinear Oscillations in a Suspension Bridge P. J. McKenna;W. Walter
  11. Functional Analysis B. Narici
  12. Functional Analysis W. Rudin
  13. Operator Inequalities J. Schroder
  14. Mathematics to Applied to Continuum Mechanics L. A. Segel;G. H. Handelman