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CONVERGENCE OF FINITE DIFFERENCE
METHOD FOR THE GENERALIZED
SOLUTIONS OF SOBOLEV EQUATIONS

S. K. CHuNG, A. K. Pan1 AND M. G. PARK

ABSTRACT. In this paper, finite difference method is applied to
approximate the generalized solutions of Sobolev equations. Using
the Steklov mollifier and Bramble-Hilbert Lemina. a priori error
estimates in discrete L2 as well as in discrete H! norms are derived
first for the semidiscrete methods. For the fully discrete schemes,
both backward Euler and Crank-Nicolson methods are discussed
and related error analyses are also presented.

1. Introduction

Let Q be a rectangular domain in R? with boundary 952, and T
be 0 < T < ov. We consider finite difference approximations for the
generalized solutions of differential equations of the form

(1.1a) w+ Aup + Bu= [, (x,t) € Q> (0,77,
(1.1b) w(r.0) = uglr), =€,
(1.1¢) u(r t) =0, r.t)e ot x[0,7],
where f = f(r.t), A and B are of the following forms
. L0 du
A(z)u = — IZ‘l P (ugq(.z,)—(%;).
9
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and
S, du A
Bz, t)u = —l qul prs (byg (2, f)drq + E bi(z,t) e + b{z, t)u.

We now make the following assumptions.

(1) The coefficients of A(x) and B(z,t), together with f, are smooth
and bounded as far as the ensuring analysis demands.
(2) The coeflicients a;, = ay satisfy

2
Z Clquliq = ZG[ ’ Elagl)
lg=1 =1

(3) There exists a unique generalized solution of the problem (1.1)
with smoothness corresponding to that of the generalized solu-
tion.

The problem of this type arises in the study of consolidation of clay,
heat conduction, homogeneous fluid flow in fissured material and shear
in second order fluids. For existence, uniqueness and applications of
(1.1), we refer to Ewing [5] and the extensive literatures contained
therein.

Finite element methods for (1.1 have been studied by Ewing [5],
Ford [6], Arnold et al. [1], Lin and Zhang [10] and Nakao[11]. For
the analysis of finite difference schems, Ford and Ting [7]- [8] have
obtained an order O(k + h?) of convergence for the backward Euler
method and O(k? + h?) for the Crank-Nicolson method under the as-
sumption that the exact solution u,u; € C4(2) and Q@ € R. For the
problem in several space variables, Ewing [4] has obtained L? error
estimates of order O(k? + h?) for the Crank-Nicolson method under
the assumption that u,u, € C*(Q:. In all these articles [4], [7)-[§].
traditional Taylor’s expansion is used for convergence analysis, which
imposes sever smoothness conditions on the solution.

In this paper, using Steklov mollifier and a nonclassical discrete
projection method we derive rates of convergences for the finite dif-
ference schemes and obtain orders of convergence compatible with the
smoothness of the solution. After giving preliminaries in Section 2,
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we consider the semidiscrete scheme, its stability and error analysis in
Section 3. In Section 4, we introduce a nonclussical discrete projec-
tion and obtain O(h?) convergence in the L2-norm. In Section 9, we
discuss fully discrete schemes which are optimal. We obtain an order
O(k + h?) of convergence for the backward Euler method and an oredr
O(k* + h?) for the Crank-Nicolson scheme under the assumption that
u,uy € H2(Q)).

2. Preliminaries

Without loss of generality, it is assumed that the domain  is the
unit square in R?. We select a mesh of width A = <, where M is a
positive integer, and cover ! = Q U 30 with a square grid of mesh
points x;; = (ih,jh).i,5 = 0,1, .., M. Let Q,, == {zi; + 2;; € Q) and
Oy, = {xy; : x,; € 00},

For a function w defined on Q,,, the following notations will be used:
for x € 9Q), and | = 1,2,

wt = w(r + her), w9 = w(x + hey — heg),

and

rw(s) — w(r + hey) — w(T) Trw(r) = w(r) —wlx - hel)’
h h
where €, is the I-th unit vector in. R2.
The Steklov mollifiers are defined in the following manner: S =

S?S% with 512 = Ser“,l = 1.2, where
1 0
Sto(x) = / (r + she)ds. S ¢(x) = / d(a + shey) ds.
Jo .

The operators Sli commute and the following relationships hold:

d¢ ol

2.1 SF— =V, 5§

(2.1) L om 19 Lo

We now introduce the discrete L? space, denoted by L%(Qh), with
an inner product and the norm given by:

== @/@

(w,v) = h? Z w(z)v(x) and leelly ), = (w,w)fi , for vow e Li(Qy).
relly,
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Further, let H} = H}(Q5) denote the discrete analogue of H'-Sobolev
space with norm

2
2 2 2
lwlly = llwllg. + E :Hvlwnoﬁ
=1

We also introduce a discrete H?-Sobolev space with the following norm

2
2 2 v :
lwlls, = lwllyn+ Y IViVawllg

lg=1
and denote it by H? = H?(2x). Whenever there is no confusion, we
write |lw|| and [lwl],, in place of |lw|lo,, and [lwl|;». Throughout the

paper, || - ||z2 and || - || gz will denote the norm in L? and the Sobolev
space H™ (1), respectively. Further, let |-|yym.»(q) denote the seminorm
in W™P(Q).

For functions v and w defined on y, the follewing identity is an
easy consequence of summation

(2.2) (Vivow) =—{(v.Viwy, =12

Along with the usual Bramble-Hilbert Lemma [2], the following bi-
linear version of it will be needed for our convergence analysis. For a
proof, we refer the reader to Ciarlet[3].

LEMMA 2.1. Let Pybe the set of all polynomials of degree < [r],
where [r] denotes the largest integer less than r > 1. If 1) is a bounded
linear functional on W™P(Q) x W29(Q), with a, 8 € (0,oc) and p,q €
[1,00] such that

n(U.v) =0, YU € P, (), YoeW?(Q),
N, V) =0, YueW*r(Q), vV e PglQ),
then there exists a positive constant C such that
In(u, )] < Clufyyanoylvlwoaq,. Vo€ WeP(0),VV € Py(Q).

In the proofs below. the inequality
. 1.
(2.3) ab < ea® + 4—b2. a,be R, e>0.
€

will be used frequently and C' will denote a generic positive constant
whose dependence can be easily established from the proofs.
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3. Semidiscrete schemes

Let Ay and By, be defined for (x,1) € Q, x [0.7] as

2
. 1 = _
AV = —3 E (Y, (a, (2)VaV) + ¥, la (T)V V)] .

Lg=1

and

1< _ _
BV = — 5 Z [V[ (blq(:r,f)VqV) + V) (byy(x, t)VqV)]

Lg=1

1 - ‘
+ =Y bz ) [VIV £V V] 4 S (b(a 1) V.
2 1==1
Now, the semidiscrete approximation wy, of (1.1) is determined as a
solution of
(3.]3) ty t + A},"ll,h,, + Buup = Sf, (;‘If,f) € 0y % [()T]
(3.1b) up(x,0) = uo(x), =€ Qp.
(3.1¢) up(a,t) =0, (. t) € I, x (0,7).
Let Hy, = {v € H} :v=00ndQ,}. From the assumptions on A(r)
and B(x,t), the following lemma can be easily verified using summation
by parts.
LEMMA 3.1, Forv,w € Hé’ »- there exist constants C' such that
(1) the discrete Poincaré inequality : ||v|* < C Z?:; ¥ 0))?,
(2) <A}J,'UVI"‘> 2 C'“?’H‘zﬂ
(3) (Bpv,w) < Clfolhfjw]),.

For subsequent error estimat»s, we derive stability results for the
modified semidiscrete version of (3.1); namely,

9
(3.2) tha + Apg + Buuy = Sf+Y VF,

=1

where Fis a function defined on € x [0, 7] whicl: vanishes on 9, and
F(0)=0.
The stability result for (3.2) i+ stated in the following theorem.
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THEOREM 3.1. Let up be a solution of (3.2). Then there exists a
constant C such that

lun(®)lh < C{llua (0}l + (/0/ ISFis)I*ds)t/? + (j 1F(s)][2ds) "/}

Proof. Forming the inner product between (3.2) and uy,, we obtain

d, . |
lhunll3 < CQunll2 + 1SN unll + 1F Nl -

Integrating with respect to ¢, we find that

lun ()1 <C{llun(0)I + /0 lun () ]I ds

t & 2 S t S 2 S
+/0 155 ()% +/0 |F(s)|ds}.

An application of Gronwall’s Lemma now completes the proof. O
Using the above stability result, we shall derive the following error
estimate.

THEOREM 3.2. Let u and wup be the solution of (1.1) and (3.1),
respectively. Let u,u; € H*(Q),1 < a < 3, and for t € (0,T]. Then
there exists a constant C such that for the error e(t1 = u(t) —uy(t) the
following estimate

le(®)l < Clu, TR

holds.
Proof. From (1.1) and (3.1), we obtain

er + Aper + Bre = (uy — Suy) + (Apur — SAu) + (Bpu — SBu)
= Ii(t) + I(t) + I3(t).

Following Jovanovié et al.[9], I3(t) is rewritten as

I3(t) = Z Vi€iq(t) +Z§l +&t),

l.g=1
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where E1g = 5(1) (2) + 6(3) +€l(:) with

Ou , o]
e R R C T BUBIENE )

dzq Tq
1 o
&2 = [SF 82 by, — Q(zqu+b;,’)}(s+53__l . ’)
1 Flyp ot Ou = 4
:g(b + b )5S 3 1%;_ (V7'“'+vq” ).

1

-(byg — b;;’)(vq u—~V,uth,

(4) _
51(] - “21

and
§ = (Sb)u — S(bu).

Further, we decompose & as £/(t) = {I(l)(t) + El(‘))(f) + El(s)(t) with

1 - Ou
(2) - 9}.{ % f’!:
C=bi(t) S5 o S ))Sa”
) 50U by 2
= Sln)S 5 = Sbit) =),

Similarly, we also rewrite I, as

2
t) = Z Vi (#),

,q=1

where 7, = 7) —f—n(z) +7)(4) +n,,1) Here 7, are the same as &1q except
that b, are replaced by a,.

Altogether, we have

(3.3) e+ Aner + Bre = I, (t) + Z & +E&+ Z Vilmg + &)

lg=1
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Setting F(t) = Zf,,,:1(7llq(t) + &4(1)) and the first term on the right
hand side of the above equation as S f, we apply Theorem 3.1 to obtain

le(llx < ClileO)ll + (/0 1Zvis)*ds) /2

t 2 t
[ ez + 3 / 160 (s) | 2ds) 2
Jo — Jo

+ Z {(/0 g (8)]12de) /2 + (/0 [€1q(8)]12 ds) /2}].

l.g=1
Since I1(t) is a bounded linear functional on H”: D) with its kernel

contained in P;(D), where D = {(s,s2) € R? : -1 S s <1,1=1,2}.
The Bramble-Hilbert Lemma, therefore, yields

(3.4) IL() < ChP hw| gy, 1< B <2
To estimate £, we first note that
& = (Sb)(uy — Suy) + (Sb)(Suz) — S(buy).

Again a use of Lemma 2.1 yields, for 1 < 8 < 2,

(3.5) /0 I€(s)] ds < C ([Ibll oo (wrs-1.00)) B A [t ()|l ads.

As in Jovanovi¢ et al. [9], we obtain an estimate for &, of the form

36 3 ([ ean < onet ([ etz

lg=1

where C' depends on max) g ||big]| ee(wo-1.0) and 1 < a < 3.
Following the estimates of &, the estimation of 7, can be easily

obtained with similar bounds. Further, the estimates of £l(i) are similar
to those of 5,(;) for i = 1,2,3. This completes the rest of the proof. U
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REMARK. Since

le]l < lle|l1, we obtain from the previous Theorem
lle(t)]] < C{u, Tyh*"1, 1< ¥<3.

In order to achieve an order O(h+) of convergencs, it is to be noted that
we need u,u, € L*(H3(12)). In contrast to papers [4]. in which Taylor’s
expansion is used to derive the convergence, the above result is a sub-
stantial improvement. However. using a discrete auxiliary projection,
we shall, in the next section, prove a similar result when u € L>(H?)
and u, € L*(H?).

4. Error estimates with reduced regularity

In this section, we shall derive the error estimate whose order of
convergence is compatible with the spatial regularity on the generalized
solution w .

Let us define i as the solution of the following auxiliary discrete
problem

(4.1a) Aptiy + Byt = S(f — ),
(4.1b) w(0) = ug(x).

Since Aj is positive definite, there exists a unique solution u of (4.1).
Let p = u — u. We can therefore rewrite (4.1) as

(4.2) Appr + Brp = (Apws — SAu) + (Bpu - SBu) = Iy + I.

Lemma 4.1, Let w,uy € HY(Q), with 1 < v < 2 and t € [0.7].
Then there exists a constant C' such that

o). lpe(till < Clu, TR,

Proof. For the estimation of | p||,. it follows from the discrete inner
product of (4.2) with p that

d A . . ‘
W”PH% < C{IPIT + 12 + I3, )1}
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On integrating with respect to time and then following (3.5)-(3.6), we
obtain using Gronwall’s Lemma

e < Cu, T)A*™, 1<a<2
Similarly, forming an inner product between (4.2) and p;, we have
o)l < CR27Y, 1< a <2 0

For error estimate in L%-norm, below we shall ciscuss the discrete
Aubin-Nitsche duality argument, see, Pani et al. [12]-[13].

LEMMA 4.2. Suppose that u,u; € H*(), for = < o < 2 and for
t € [0,T]. Then there is a constant C' such that

e, eIl < Ch™.
Proof. Let @ be a solution of the following second order problem

(4.3) Ap® =p, T €Qy,
b =0, wedfl,.

Because of the coercivity of Aj, ® is the unique solution of (4.3) and
it satisfies a discrete regularity

(4.4) 2]l < Cll:ll.
Forming an inner product between {4.3) and p;, we obtain
(pr.pt) = (Anpe, @) = (Iz + I3 — Bpp. ®).

The estimates for ||p:(t)|| given below can be proved easily using the
Steklov mollifier and the Bramble-Hilbert Lemma 2.1. For a complete
proof, we refer Pani et al. [12]-[13].

lee(B)II* < Ch* + o) D22,

and hence, using discrete regularity. we obtain

(4.5) Lo (D] < CH + Nlp()I)-



Convergence of Sobolev equaticns 525
Note that

W@WﬁCMMWV+/Hm@W®}
< C{lp(0)]? + 12 + /HMsu@}

It now follows from Gronwall’s LLemma that
(4.6) loIF < CLlpO)If + h} < Che.
Finally, we obtain the L*-error estimate for ||p; | from (4.5)-(4.6). O

Let 8(#) = u(t)—ii(t), then the error e(t) = u't)—un (1) = p(t)— 6(t).

THEOREM 4.1. Let u and wu;, be the solutions of (1.1) and (3.1)
respectively. Further, let w € L*(H*(Q)) and v, € L*(H*(Q))
a < 2. Then there exists a constant C such that

le(] < Cu, T)h"

’

1<

7

Proof. Since the estimate for p(¢) is given in Lemmas 4.1 and 4. 2, it
is enough to estimate 6(¢) . From (1.1), (3.1) and (4.1), it follows that

(4.7) 0t + A6y + Bt = Su; — it = —I,(t) + py.
It follows from (3.4) and Lemmas 4.1-4.2 that
1601 < CLIBO) I + bl gy}, 1< a <2

Because of the choice of u;,(0), we have 8(0) = 0. For L2-error estimate,
form the inner product between (4.7) and # and obtain

(0:.0) + (An6,,6) = (—1I, + pt.0) — (Bro,6).
Since Ay, is coercive, we obtain
||9( N2 < CULIBI + lieellliof + (16112}

It follows from the integration wirh respect to t and Gronwall’s Lemma
that

o) < (T )/C)"'llll(8)||2+llﬂf (s)]*)ds.

Hence, we obtain the required result from Lemn.a 4.2. a
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5. Fully discrete schemes

In this section, we shall consider the stability and error analysis for
the fully difference schemes ‘which are based on the Euler and Crank-
Nicolson methods. Let k = ﬁ denote the size of the time discretization
for a given positive integer N and 1, = nk, for n == 0,1,2,...,N. For
any function ¢, denote ¢ = ¢(t,) and

n o o an—1
T
The backward Euler method. The backward Euler scheme is now
defined by

(5.1&) 8_,U" =+ Ah (éfUn) + Bh[]n = an, T Qh,
(5.1b) U =0, xe€dQy,
(5.1¢) U =ugl(x). xey,.

Below, we shall prove a stability result in discrete H'- norm not for
(5.1 a) but for a modified equation

2
(5.2) U™ + Ap (OU™) + ByU™ = S+ > Vi F",
=
THEOREM 5.1. Let U™ be a solution of (5.1). Then there are posi-
tive constants C and kg such that for 0 < k < kg

J B
U< CUU N+ B3NS IR+ (kS0 IIF™ )2,
n=1 m=1

J=1,2---.N.

Proof. Form a discrete L?-inner product between (5.2) and U and
then use Lemma 3.1 with summation by parts for the last term to have

OAIU™ * + GV U2 < CLESF 1P + IFIF + U™ 13-

Summing from n = 1 to J, we obtam

J J-1
< GO+ Y NS+ IE ) + 5> IUIEY
n—1 n=1
Choose kg in such a way that (1 - Ck) > 0 for 0 < k < kg. An
application discrete Gronwall’s Lemima now completes the proof. O

(1—Ck)|U’
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LEMMA 5.1. Let w.up, uy € L?(2) for t € [0.T]. Then there exists
a constant C such that

li (Dl < €. tefo.7)

Proof. Forming an inner product between (4.1) and 7, we obtain

illy < CIS T = u)lllall + (il }
< C{IS1f — ud)l2 + a2},

«
2

Integrating with respect to t and applying Gronwall’s inequality, we
have

-t
llly < C{llao) + /D IS(f = )l[*ds}.

For the estimate of #,, we obtain
(5.3) laelff < CLISLF = un)l)* + i3}

by taking innner product with 4, and using (2.3).
Differentiate (4.1) with respect to t and take an inner product with
¢, then as in (5.3) we obtain

eIt < CLISUe = we)ll + 1017 - T}
This completes the proof. O

[t is here that we exploit the full potential of th> Steklov mollification
and the discrete projection. Let O" = U™ — @™ and E" = " — " =
[)“ — Q.

THEOREM 5.2. Let u™ and L' be the solution of (1.1) and (5.1),
respectively. Further, let u,uy € L>(H®(Q)) and uyy € L>(L*(Q)) for
I <« < 2. Then there are positive constants C' and kg such that the
error BV = w(ty)—=U’

|
holds for 0 < k < kg.

EJ

| < Cu.T)(h* +k). J=1,2---.N
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Proof. Since the estimate for p/ can be found out from Lemma 4.1,
it is sufficient to obtain an estimate for ©7. From (4.1) and (5.1), it
follows that

(5.4)
00" + Ay, (8:0™) + BrO™
= (O™ — 0 ™) + (uf — Opu™) + (Sul — ul) + Ap(al — Ha™)
= Oip(tn) + (U} — O,™) — I + Ap (i — Bpit™).

Apply Theorem 5.1 to (5.4) to obtain

J
16712 < CHIIECl: + &k 3 (dep(ta)I? + iy — G |2

n=1
+ P + (a7 — 8’ ||9)}.
Note that

J J tn
kZ ll0tp(tn)]l < Z/ lpell ds < Ch*|Jusl| i ey, 1< a <2
n=1 n=1"tn-1

Further, using Lemma 5.1, we have

J
kY < Ch*[luell oo (1,

n=1
and
J ) J
B llap — 8y < Ck Y kit < CElige]| oo a11).
n=1 n=1
This cormpletes the rest of the proof. 0

The Crank-Nicolson scheme

For a second order accurate in time, we consider the Crank-Nicolson
scheme for (1.1). Let U"~2 = (U" + U™ 1)/2 and f—% = f(tn_%).
Define the fully discrete scheme as
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(5.5a) U™+ An0, U™ + Bh(tn_%)UW% =S gz e,
(5.5b) Ul = uglx), " x € Qy,
(5.5C) Ur=0, re oy,

Below, we shall prove a stability result in discrete H'- norm not for
(5.5a) but for a modified equation

(5.6)
QU™ + Ap (B,U™) + BylU™ 2
2
= an,__ Z Fn~—’ tn) & Qh X (O,T],

THEOREM 5.3. Let U™ be a solution of (5.5) Then there are posi-
tive constants C' and ko such that for 0 < k < ky

J J
1071 < CLITO I + (6 YIS =2 2)% + (1S | F7 2 )2) 8y

n=1

Proof. Forming the inner product between (5.6) and U”~ 2, it fol-
lows that

OU™ P+ G NU™E < CHIS 5|2 + | F* 2|2 + |U™ 32}

Summing from n =1 to J, we obtain

J
(1= CRNU I <CUUONT + & D (S 2P + [1F772|?)
n=1
J—1
+E YUY

m=0

Choosing kg appropriately so that (1 — Ck) > 0 for 0 < k < kp, we
obtain the desired result using discrete Gronwall’'s Lemma. 0

Below, we shall present an error analysis usitg discrete projection.
Let ™ and U™ be the solutions of (1.1) and (5.5), respectively. Let
E" = 4" — L/”].
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THEOREM 5.4. Let u,u; € L>®(H*(Q)) and u-y € L>®(L*(Q)) for
1 < a < 2. Then there are positive constants C and ko such that the
error BV = u(t;) - U’

IE7| < C{p* +k*. J=1.2,--- N.

Proof. Since EY = p’ — 07 and we know the estimate for p’, we
have only to estimate for ©/ = U’ — @/ due to the triangle inequality.
From (4.1) and (5.5), it follows that

(5.6)
3{6‘)“ + Ah,g)[(.—-)’”" + Bh(fmﬁ%)(_r mv% —_ (5{“/71 o 8“}71,)
m—41 = -1 m—% .m—-1 T o~
+ (] T F = O™+ (Suyt T~ )+ Ap(ay 2 — 0™

T —‘% ~ ~TN A~
= Oip(tm) + ('urn gy - I+ Ap(n, = o).

It follows that as in Theorem 5.3

J
10711 <CLIe®IF ++ |

m=1

Orp(tm)|I*

1 o mo L <
Hllug " = G P TP + la - dea™ 17}
It completes the rest of proof. O
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