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PERFORMANCE ANALYSIS OF A FLEXIBLE
RESTARTED FOM(k) ALGORITHM

JAE HEON YUN

ABSTRACT. This paper contains a convergence analysis of a flexi-
ble restarted FOM(k)(FFOM(k)), and its performance is compared
with FGMRES(k). Performances of these two algorithms with vari-
able preconditioners are also compared with those of preconditioned
FOM(k) and GMRES(k). Numerical experiments show that FFOM(k)
performs as well as, or better than for some problems, FGMRES(k).

1. Introduction

Many iterative methods based on the Krylov subspace techniques for
solving large sparse nonsymmetric linear systems have been proposed in
the last decades. Although iterative methods lack the robustness of direct
methods, they are effective for the large class of problems arising from the
elliptic partial differential equations. For the robustness and acceleration
of convergence of iterative methods, preconditioning techniques such as
incomplete factorization preconditioners have been presented in the mid-
seventies [1, 3].

In order to be able to enhance robustness of iterative methods, we
should be able to change preconditioner if a given preconditioner is not
suitable for the problem at hand. To this end, Saad [5] proposed the
flezible GMRES(FGMRES) which allows changes in the preconditioning
at every step. An important property of FGMRES is that it satisfies
the residual norm minimization property over the preconditioned Krylov
subspace just as in the standard GMRES algorithm [6].
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Saad [4] also proposes the Full Orthogonalization Method( FOM) which
uses the Galerkin property rather than the residual norm minimization
property of GMRES. In this paper, we introduce a flerible restarted
FOM(k )(FFOM(k)) which can be derived from the right-preconditioned
FOM(k) in the similar way as was done in the restarted F GMRES(k)
(5]. It is well-known that GMRES(k) can not break down unless it has
already converged, while FGMRES(k) and FOM(k) may break down
without convergence. To this end, we analyze convergence and break-
down properties of FFOM(k), and then numerical results of FFOM(k)
with a certain criterion are compared with those of FGMRES(k).

Throughout the paper, we consider a linear system Az = b, where
A € R™" is a large sparse nonsymmetric nonsingular matrix, r € R",
and b € R". Given a set of vectors {py,p1,... ,p}, let {(po,pi,... s Pk)
denote the subspace spanned by {pg,p1, ..., pi}. For a given vector ¢,
let the m-th Krylov subspace K,,(A, ¢y) denote the subspace (¢, Acy, . . . |
A" Yeg). (+,-) denotes the Euclidean inner product on R™ x R", and
I - || denotes the Euclidean vector norm on R" as well as matrix norm
associated with the Euclidean vector norm.

2. A flexible restarted FOM(k) algorithm(FFOM(k))

The FOM algorithm introduced in [4] for solving a linear system
Az = b uses the Galerkin condition on the Krylov subspace to gen-
erate a sequence of approximate solutions. The right preconditioning
technique is to apply a Krylov subspace method to a modified linear
system AM ~'(Mz) = b, where M is a right preconditioner that approx-
imates A and can be easily inverted. The restarted FOM(k) algorithm
with a fixed right preconditioner M is obtained by applying FOM(k) to
AM 'y = b, where y = Mz. As was done in FGMRES(k) [5], a flexible
FOM(k )(FFOM(k)) algorithm which uses a variable preconditioner M;
at the j-th step can be easily derived from FOM(k) algorithm with a
fixed right preconditioner M:

ALGORITHM 2.1 : FFOM(k) algorithm
1. Choose zy and compute 7y = b — Az,
Compute vy — 7o/ || ro || and set § = |y |
2. for j=1,2,... k
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Compute z; = M, 'v;
Compute ;41 = Az;
fori=1,2,...,3
hfij = ('aj+lyvi)
Djp1 = Vi1 — hyyv;
Compute hj1; = || 6511 || and vjpy = G541/l
3. Form the approximate solution:
Compute z = o + Zpyk, Where y, = H; 'Bey,
Zr = |21, 29,. .. , 2| is the n x k matrix, Hy is the upper
k x k Hessenberg matrix whose entries are the scalars
h,']', and €1 = [1,0, cee ,O}T € Rk
4. Restart:
Compute 7 = b — Azi. If || rie || / || 70 || < (tolerance),
stop. Otherwise, set o = x and vy =7/ || 7% ||, and
then go to 2

If M; = M for all j, then Algorithm 2.1 is equivalent to the FOM(k)

with a fixed right preconditioner M. It is easy to see that FFOM(k)
satisfies

(1) AZ; = Vi Hy = ViH, + D el for 1< 1<k,
where V,1 = [v1,...,v41] is the n x (I + 1) matrix with orthonormal

columns and H; is the upper (I + 1) x [ Hessenberg matrix whose only
nonzero entries are the scalars h;; generated by the FFOM(k) algorithm.
From equation (1), one can obtain

(2) VTAZ = H,.

Equation (2) shows that z; in the FFOM(k) is chosen so that r, = ro —
AZyy; is orthogonal to (vy, vy, ... ,v;). Notice that z; in FGMRES(k) is
chosen so that r; is orthogonal to (Az), A2y, ..., Az). Instead of forming
a preconditioner M; at the j-th step explicitly and then computing z; =
M vj, zj 18 chosen so that z; is an approximate solution to Az = v;. An
approx1mate solution z; to Az = v; can be obtained using any iterative
methods available, e.g., SOR, GMRES, CGNR, BiCGSTAB, etc.

If H, is nonsingular, FFOM(k) does not break down, i.e., z; = zo+Ziy1
exists. Moreover, if H; is nonsingular and h;,; = 0, then it can be easily
shown that z; in the FFOM(k) will be the exact solution to Az = b. The
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solution y; to Hyy = fe; can be solved efficiently using QR factorization
which is carried out by Givens rotations. That is, H; is factorized into
H; = QT R;, where @, is an orthogonal matrix of order ! and Ky is an
upper triangular matrix of order . For { = 1, @, = [1] and R; = (h11].
The matrix @, is formed by the product Fj_; - -- FyF}, where the matrix
Frn(1 < m < 1 —1) represents rotation matrix of order I:

1

Cm  —S8m — TOW ™
F, =
Sm Cm — rowm+ 1

0 1)

Suppose that hy; denotes the I-th diagonal element of the upper trian-
gular matrix R;. Then, ¢; and s; should be chosen as follows:

h hi
(3) €= ——— and 5 = ~~A—li——
V hlzz + h12+1,l

V ilz21 + R
Brown (2] showed that FOM algorithm satisfies
(4) i ll=ls1s2---s1] B / c.

In the similar way as was done in the FOM, it can be shown that (4) still
holds for the FFOM(k) algorithm. From (4), we can obtain

51
| m |l = 1 | 7o ||
S
(5) < ~j (K=Y
_ hy 1y
=173 Il 7o |l
il

(5) implies that to accelerate the convergence rate of the residual norm
in the FFOM(k) we should try to make Ih‘Tt,l'i‘ as small as possible.
To this end, we consider in the next section how to choose a variable
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preconditioner M; at the j-th step so that FFOM(k) converges fast to
the exact solution without breakdown and stagnation.

3. Convergence analysis of FFOM(k)

Notice that in the FFOM(k) a variable preconditioner M; is not formed
explicitly, but z;(= M. j_lvj) is directly chosen as an approximate solution
to Az = v;.

LEMMA 3.1. Suppose that || Az; —v; || = || A(]\[j_lvj) —v; || <e for
1 <3< Then, foreach1 < j <l
6 1—-¢ < hjj < 1+¢
©) lhij| <e (i#7, 1<i<j—1)

Moreover, if ¢ < ;{—1— for a positive number e, then 0 < Eﬁlﬂi < % for
17
1<j<tL

J
Proof. For each 1 < j < [, Az; = Zhijvz- + hj15v541. Since the
i=1
vectors vy, Vg, ... , V41 are orthonormal,

i1
| Az —v; |2 = b+ (hyy — 12+ B2, .
i=1

Since || Az; —v; || < g, |hy| < efori # jand 1 <4 < j+ 1, and
|h;; — 1] < e. Thus, (6) is proved. if ¢ < il- for a positive number

e, from (6) hj; > =7 > ec. Since 0 < hjyy; <5, 0< Eﬁl < % is
obtained. O

For simplicity of exposition, we define new scalars ;lij which are gen-
erated from the following algorithm:

for j=1,2,... k

hlj:hlj
for i = 2, K
for j=1i,... ,k

hij = si—1hi-1; + ¢i1hy,
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where h;;’s are scalars generated from FFOM(k) algorithm, and ¢; and s;
are scalars defined by equation (3). Then, it is easy to show that for each
1<i <k, il“ generated from the above algorithm is the i-th diagonal
element of the upper triangular matrix R; such that H; = QT R;.

LEMMA 3.2. Let «a and e be positive numbers. Suppose that s%+ ¢? =
1, where 0 < s < \/1—11? and ¢ > 0. Then, s + ac has a maximum value

{ V1+a? ifa>e

\}% ifa<e
Proof. Let f(s) = s+ ac= s+ a1 —3s2, where 0 < s < \/H—ef By
simple calculus, the lemma can be easily shown. O

THEOREM 3.3. Let e be a given number such that 1 < e < 2, d =

e3
26°+e+1, 8= \/1—1@, andf(e):m‘ If|| Azj —v; || < ¢

for 1< j<lande< f(e), then0 < %12 < 1 for 1 < j <1, ie, H;’s
37
are nonsingular for 1 < j <|.

Proof. Forl =1, hyy = hyy. Since € < fle) < 1+e’ by Lemma 3.1

0< ;21 < . Suppose that the theorem holds for [ = m. Then, we must

show that the theorem holds for I = m+ 1. By induction hypothesis, one
obtains

hji1

\/ h2 + h2+1 WJ

Applying Givens rotations to the upper Hessenberg matrix H,,,; of order
m+1,

|s;] = <pPandef < || <lforl1<j<m.

hm+1,m-+1 = Smhm,m+1 + thm+1,m+l
- 5m(3m~1hm—l,m+1 + Cm-lhm,m+1) + cmnm+1,m+l

= smsm—lhm—l,m+1 + Smcm—lhm,m+l + Cr hm+l,m+1

= Sm 82510 i1+ Sm - - SeC1Ramyt + S - 83¢ph3 my1 +

e Smsmwlcm—2hm—1,m+l + Smcm—lhm,m+l + thm+1,m+1-

672



Performance analysis of a flexible FOM(k) algorithm
Since |h; 1| < € for ¢ < m,

|ilm+1,m+l _cmhm+1,m+l|
<€ l8m| (1Sm—1--- 5251 + [Sm=1 - 8201 + ... + [Sme1Cmes| + |em-1])
€
=3 S| ([Sm—1 81|+ |81+ -+ 82| (Is1] + le1] ) + [Smet -+ 53] (Jer] -

s + feal ) + oo+ [Smet] (lemsllsm-a| + lcm 2| ) + (lcm-2l|$m-1]
+2(Cm—ll))

< g [$ml| (18m-1- - s1] 4 [Sm—1 -+ s2| ([s1] + lea]) + [smoi - s3] (]52]
+leal) 4+ o A smat| ([smez| + |em—z| ) + (Jsmo1] + 2lem-1]) ).
Using Lemma 3.2 and [s;] < 3 for 1 < j <m,
i 1m 41 = CnPangrme| < Eﬂ(ﬁm_l + ﬁm*)(l +e) +
(7) + 8 (1+e)+v5)
<%,@(1_ (1+e)+\/5).

ilm+1m+1>cm m+1m+1 ﬂ( (1+€ +\/—>
>fFe(l—¢)— = ( 5)
I3
( ( L+ e+1;5—>).

Ife < f(e), thenﬁ(e—s(lﬁgﬁ—;—+e 325) ) > ee. Since 0 < hpyi9me1

7 hm m -
< &, homyim+1 > €hpgomey and so 0 < % < i Therefore, the
: m+1,m+1 -

proof is complete. [

Using (7) and Lemma 3.1,

THEOREM 3.4. Let e be a given number such that e > 2, d = 2¢° +
33+ e2+e+1,8=I+e, and fe) = 22YEe If|| Az —v; || < ¢

eS+(1+8)d
for 1 <j<lande< f(e), then0< 22 <1 for1<j<l.
37
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Proof. For | = 1, hy; = hy;. Since £ < fle) <« ﬁe—, by Lemma 3.1
0< %ﬁ < % Suppose that the theorem holds for | = m. Then, we must
show that the theorem holds for [ = m + 1. In the similar way as was

done in Theorem 3.3, one obtains the following inequality

~ 13 - T~ .
|hm+1’7”,+1 - C’thrL-}--l,m+1| S :2‘ /6 (ﬁm 1 —+ BHL l(]. - e) + ...

(8) + 82 (1+¢€) + B(1+2e))
3 1+e
— 2 .
<2,3 (1~ﬂ+(,>.
Using (8) and Lemma 3.1,
- € 1+e
hm+—l,m+l > ﬁe(l - 5) - §d2 <1 _ ,6 + 6)

o 8 l1+e p
_ﬂ<e 5(1_’/3 5 +2e+e>>

Ife < f(e), then 8 (e —€ (%%—9 +
< g, the proof is complete.

W

e+ e) ) >eeg. Since 0 < o myt

By a routine calculus, it can be shown that f(e) is a decreasing func-
tion for e > 2. Table 1 shows the values of f(e) for e > 1 which is defined
in Theorems 3.3 and 3.4. The larger e is, the faster FFOM(k) converges
to the exact solution. So, the estimation f(e) for = should be larger for
smaller number of e. From this point of view, it can be said that f(e) is
not a good estimation for ¢ when e < 1.8.

c [ 7@ [ e[ J@

1.0 1 0.1909 | 2.0 | 0.2459
1.5 10.2425 | 3.0 | 0.2160
1.7 10.2473 |1 4.0 | 0.1837
1.7510.2476 { 5.0 1 0.1576
1.8 10.247716.0(0.1374
1.8510.2476 | 7.0 | 0.1214
1.9 10.2472 | 8.0 0.1086
2.0 10.2459 9.0 | 0.0982

TABLE 1: Values of f(e) for e >- 1
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From Table 1, it can be seen that the maximum of f (e) for e > 1 is about
0.2477 when e is equal to about 1.8. Hence, the following corollary can
be obtained from (5).

COROLLARY 3.5. Suppose that | Az; —v; || < ¢ for1 < j < k. If

€ < f(1.8) ~ 0.2477, then FFOM(k) converges to the exact solution

without breakdown and stagnation, and % < Tl_g for1 < j<k.
- .

4. Numerical results

We report some numerical experiments comparing performances of
FFOM(20) with those of FGMRES(20). These algorithms using variable
preconditioners are also compared with standard ILU(0) right-preconditi-
oned FOM(20) and GMRES(20) which are called PFOM(20) and PGM-
RES(20), respectively. The tests were performed using 64-bit arith-
metics. In all cases, the iteration was started with 5 = 0 and the

iterations were terminated when H < 1078,

The preconditioned vectors z; = M j—l’uj were computed using m itera-
tion steps of the right-preconditioned BICGSTAB|7] with minimal resid-
ual smoothing technique which is called PBSTABMR. PBSTABMR was
also started with zero initial vector. Minimal residual smoothing tech-
nique is used to avoid an irregular convergence behavior of BICGSTAB.
An advantage of using BICGSTAB to compute preconditioned vectors
z; is that it uses less storages than other GMRES-type methods. It
was shown in Corollary 3.5 that ¢ set to f(1.8) ~ 0.2477 guarantees
the convergence of FFOM(k) to the exact solution. For most problems
PBSTABMR yields z; satisfying || v; — Az; ||< € within a few iteration
steps, but for some problems it converges too slow, so that its execution
is limited to m iteration steps for efficient performance, where m is a
fixed number. Performance of FFOM(k) varies depending upon m, and
an optimal number of m depends upon problems to be considered. Nu-
merical experiments show that the optimal number of 7n ranges from 2 to
5. Matriz-vector products(SPMV) for computing Ay and preconditioner
solves(SPSV) for computing M~y are counted for performance evalua-
tion of each algorithm. Vector updates and inner products are neglected
since their execution time is relatively small compared with SPMV and
SPSV.
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EXAMPLE 4.1. In the first example, we consider a block tridiagonal
matrix A of the form

D B
¢ D B 8 4 «
A= and D=
¢ D B
C D

where a = —=1+6, 3=-1—-6, B=(-1+8)I, C =(-1-46)I. We
consider two cases of § = 0.2 and § = 0.5. The right-hand side vector b
is chosen so that b= A[1,1,... ,1]. m =5 is chosen for computation of
preconditioned vectors z;.

EXAMPLE 4.2. As the second example, we consider the problems aris-
ing from the centered difference discretization of PDE problems of the
form

—Au -+ y(zugs + yuy) + Pu=f

on square regions [0, 1} x [0, 1] with zero Dirichlet boundary conditions.
‘We consider two different cases of the parameters 3 and v - 3 = —100 and
v =10, and 8 = 10 and v = 1000. The grids we have used consist of 32
and 48 internal mesh points in each direction leading to matrices of size
n = 1024 and n = 2304, respectively. Once the matrix A is constructed,
the right-hand side vector b is chosen so that b= 4[1,1,...,1/T. m =2
is chosen for computation of preconditioned vectors z;.

Tables 2 and 3 contain numerical results for lixamples 4.1 and 4.2
respectively, and they contain data of the form a + b = ¢, where a repre-
sents the number of SPMV operation, b represents the number of SPSV
operation, and ¢ represents the sum of a and b. NC in Table 3 means
that algorithm does not satisfy the termination criterion within 600 iter-
ation steps. FFOM(20) performs as well as FGMRES(20) for Example
4.1, and FFOM(20) performs better than FGMRES(20) for Example 4.2,
FFOM(20) and FGMRES(20) outperform PFOM(20) and PGMRES(20)
for the problems for which PFOM(20) and PGMRES(20) perform poorly.
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n |8 PFOM(20) FFOM(20) | PGMRES(20) | FGMRES(20)
2500 | 0.2 | B7+57=114 [62+46=108| 58+ 58 =116 | 62+ 46 = 108
0.5 25425 =50 39+ 28 =67 254 25 = 50 39 + 28 = 67
4900 | 0.2 | 101 + 101 =202 | 81 + 66 = 147 | 101 + 101 = 202 | 81 + 66 = 147
0.5 394+39=178 47+ 36 = 83 394+39=178 47 + 36 = 83
TABLE 2: Numerical results for Example 4.1
n | B~ PFOM(20) FFOM(20) PGMRES(20) | FGMRES(20)
1024 | -100 10 NC 123 + 92 = 215 NC 131 4 98 = 229
10 1000 | 209 4 209 = 418 | 595 + 470 = 1065 | 224 + 224 = 448 | 686 + 542 = 1228
2304 | -100 10 NC 157 + 118 = 275 NC 159 + 120 = 279
10 1000 | 167 + 167 = 334 | 592 + 468 = 1060 | 158 + 158 = 316 | 688 + 544 = 1232

TABLE 3: Numerical results for Example 4.2

5. Concluding Remarks

Most of the existing preconditioned iterative methods use a fixed pre-
conditioner which can be usually found using various incomplete factor-
ization techniques, see [1, 3] for details. For indefinite and/or highly non-
symmetric matrices, the performance of an iterative method with a fixed
preconditioner can be unpredictable, see the performances of PFOM(20)
and PGMRES(20) in Table 3. It was shown that FFOM(k) yields a se-
quence of approximate solutions which converges to the exact solution
by choosing a suitable preconditioner every iteration. Hence, a big ad-
vantage of FFOM(k) with a variable preconditioner is its robustness.
However, PFOM(k) can fail to yield a sequence of approximate solutions
which converges to the exact solution.

If PFOM(k) with a fixed preconditioner does not perform well, then
we need to use another preconditioner for which it performs well. Finding
a good preconditioner for PFOM(k) requires complicated computational
steps, while a good variable preconditioner for FFOM(k) can be easily
obtained by using any iterative methods available. Numerical experi-
ments show that FFOM(k) performs as well as, or better than for some
problems, FGMRES(k). Hence, it may be concluded that FFOM(k) can
be used as a good substitute for FGMRES(k).
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