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ON FREE PRODUCT IN V(ZS,)

HYUNYONG SHIN, IKSEUNG LYoU AND MARTYN R. DIXON

ABSTRACT. The group V(ZS3) of units of augmentation 1 in the
integral group ring ZS3 is characterized as the free product of Co
and S3, where C; is the cyclic group of order 2.

1. Introduction

In [2], Hughes and Pearson characterized U(ZS3), the group of units
of the integral group ring ZS;. One of the main results is :

U(ZS53) = {(Z 3) € GL(2,Z)|la+ ¢ = b+ d(mod 3)}.

From their work we can easily get the following characterization of
V(ZS3), the group of units of augmentation 1 in ZSs.

a b

V(zsg)z(;:{<c p

) €GL(2,Z)la+c=b+d=1(mod 3)}.

On the other hand, in [5] Taussky gives two nontrivial units of order 2 in

V(ZS3). Consider A = —21 (1) , one of the units given by Taussky,
B = (1) :i), and C = <(1) :}) in G. Clearly (B,C) = S3. In

this note we shall prove that
V(ZS3) = <A)B7C> = <A> * <BaC> = 02 * 53,

where C> is the cyclic group of order 2, and X * Y denotes the free
product of the groups X and Y.
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2. Theorems

First we prove that A, B and C generate G.
THEOREM 2.1. (A, B,C) = G.

Proof. Let F' = (A, B,C) and we will show that F = G. Since
A, B, C are integral matrices with determinant +1 so are A"l Bl C-1,

and hence the elements of F’ are integral matrices. If F # G then there
a b

exists X = (c d) € G\F with |a| + |c| minimal. For the moment

suppose that a # 0 and ¢ # 0. Since (BC)A = (é (1)>,

@Orx= (5 1) (5 2)= (sa've srha) P

If 2|a| < |c| then the integer 7 can be chosen so that |3ra + el < e,
and hence [3ra+c| +|a| < |a| + |c|, contradicting the choice of |a| + |e].
Hence 2[a| > |c|. So |a| < |e| < 2|al, |c| < |al, or |a| = |¢|. First suppose
that |a| < {¢| < 2|a] and a, ¢ have same sign. Then

mx=(5 S)(5 8)= ("2 1) er

But |a —c| < |a|. This gives a contradiction to the choice of la| + |e|. If
a, ¢ have different signs then

-1 0 a b —a —b
AX = ( 2 1) (c d) N <2a+c 2b+d> £ F
But |2a + ¢ < |¢|. So we also have a contradiction. Now suppose that
lc| < |a| and a,c have the same sign then

px=(5 S (2 8)= ("2 ") er

But |a — ¢[ < |a|. This contradicts the choice of @ and ¢. If g and ¢
have different signs then

(ABCH)X = (? _21) (Z Z) - <a;626 b:éd> ¢E
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But |a + 2¢| < |a|, and hence |a + 2¢| + |¢| < |a| + |¢|. This is also a
contradiction to the choice of a and ¢. Finally we suppose that |a| = |c|.
Then a and ¢ may have same or different sign. In each case, we can get a
contradiction by same arguments as above. Therefore a = 0 or ¢ = 0. If

a = 0, then since G = {(Z Z) € GL(2,Z)|a+c = b+d = 1(mod 3)},

0 1 0 -1 0 1
wehavetwocasesX—<1 d) or (1 d).IfX_<1 d) then

d = 3k for some integer k. Now

((1) 31k) = <31k 2) (? (1)) — (BCA)BC? ¢ F.

0 -1

However this is a contradiction. If X = (1 d

) then d = 3k’ + 2 for

some integer k’. Now

0 -1 0 -1
X:(1 d>_<1 3k’+2>
(1 0N[0 =1\ ok )
_(_%, 1)(1 2>_(BCA) (ABC?) e F,

01

X = ((1) —E)l) fX = <(1) l;) then b = 3k for some k € Z. So,

(0 -1\ /1 3\ [0 -1
ex=(72) (6 1)=( o)

_ (0 3k’_1 ):(BCA)’C’(ABCZ).

and this is also a contradiction. Now if ¢ = 0 then X = ( 1 b) or

1 +2

Therefore X = C?(BCA)* (ABC?) € F, a contradiction. If X =

(é _b1>thenb:3k+2forsomekEZand(ABCz)X:<(1) _21>
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(é 3kj2) B (2 31k) = (BCA*BC? Hence X = (ABC?)™!

(BCA)*BC? € F, the final contradiction which proves the theorem. [

Now any element (A, B,C) can be expressed as B*C?A4Y or B®C?
(ABaC%)-- . (AB»C®) A", where a,v,¢; = 0,1, and 8,6; = 0,1,2,
andn >1,and¢; +d; #0,i =1,...,n. Consider

[ = {(AB“C%)--. (AB*C%)|¢; = 0, 1,
and 6; = 0,1,2, and ¢; + J; £ 0, and n > 1}.

If n = 1, there are five cases :
/(0 1 o (1 -1 /-1 1
AC-(l *3),,40_(_3 2),AB_(2 _3>,
/1 0 s [0 -1
ABC_<_3 1>,ABC _(1 2).
DEFINITION. X = (a“ a1z> € GL(2,Z) is called (4, §)- cornered,
az1 Qa2
1<e,5<2,if

laij| = max {|a11], la12], laz1], lazz2]} and |ag_;3_;| = mir {|a11],|a12|, |ag1], lacz]},

and the absolute values of the sum and difference of the row and column
containing a;; is greater than or equal to those of the row and column
containing az_;3_;, respectively.

We can see that the above five matrices are (2, 1) or (2, 2)-cornered.

THEOREM 2.2. Any X = (AB'C%)...(AB*~C%) € T is one of
the following three forms :

Ty : (—1)™ (_a —/3) ,(2,1) — cornered,

v o4
m 84 _5
Ty : (—1) ( ) ,(2,2) — cornered, and

T3 : (-1)™ ( a B ) ,(2,2) — cornered, a,3,7v,6 = 0.
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Proof. We prove this by induction on n. As mentioned before it is
obvious when n = 1. Now assume the theorem for n — 1. We need to
consider

T,AB°C°,i=1,2,3, and ¢ = 0,1, and 6 = 0,1,2, and ¢ + & # 0.

By the straight computation, we can show that any of them is one of
the three forms. We compute one case here.

2 _ ( _q1\m o B 0 -1 —(_1\m ﬁ 2[6‘&
T3ABC = (-1) <~7 —6)(1 9 >—( 1) (—6 (25 =)
So, T3ABC? = (—1)™ ( e _bd> a,b,c,d > 0. Now simple compu-
tation show that ¢ > a,d 2 b, b > a,d > ¢, d+b > c+a, and
dtc>2b+a. [

From Theorem 2.2, we know that any element in T is (2,1) or (2,2)-
cornered, and hence I' has no identity matrix. Now by computation, we
can see that B*CP A" = [ if and only if o = B=~=0and B°CPA" is
not of any form in Theorem 2.2. As we remarked before, any element
in (A, B,C) can be expressed as

B*CP(AB“C*%)...(AB*C%) 4",
where «,v,¢; = 0,1, and 3,6, = 0,1,2, and n > 0, and ¢ + &; %+
0,2=1,---,n. Since I' has no identity matrix, the identity matrix in
(A, B,C) must be of that form with n = a = 8 = v = 0. Hence using
von Dyck’s theorem [p.51, 4] we can get an isomorphism from Cj * S5
onto (A, B, C).
THEOREM 2.3. (A, B,C) = (A) * (B, C)

3. An application

It is well known that S3 has a torsion free normal complement in
V(ZS83) (3]. Also in [1], Allen and Hobby exhibited a non torsion free
normal complement of S3 in V(ZS3). We know that Do, 2 (z) x
{y),z2 =9y? =1, hassuch a property. This fact motivates the following
theorem :
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THEOREM 3.1. Suppose A is an arbitrary group and B is a non-
trivial group isomorphic to a subgroup of A. Suppose B is not torsion
free. Then A x B has both a normal complement N, to A which is
torsion free and a normal complement M, to A which is not torsion
free.

Proof. To construct N, let ¢ : B — A denote the embedding of B
in A. Then we have a mapping ¢ : A x B — A gven by

(arby -+ - apby)?® = alb‘fagbf...anbi where ¢; € A, b; € B.

The normal form theorem for free products shows disa homomorphism.
Set N =ker ¢. f 2 € Ax B and 2® = a € A then (a~'2)? = 1. So
AxB = NA. Futhermore NN A = NNB = 1 so by the Kuros
subgroup theorem N is a free group, and hence is torsion free.

To construct M define 8 : Ax B — A by

(alblazbg s anbn)e = Q1G9 -Uy.

Then 6 is a homomorphism. We set ker 8 = M. As above Ax B =
MAand MNA = 1. However B < M, so M is not torsion free. [J

From Theorem 3.1 and Theorem 2.3 we immediately see that S3 has
torsion free and non torsion free normal complements in V(ZS3). It is
also worth remarking that there is a normal complement of S3 which
is actually free, according to the proof of Theorem 3.1. Also note that
we can get some of the results in [2] as corollaries of Theorem 2.3.
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