ON FREE PRODUCT IN $V(ZS_3)$

HYUNYONG SHIN, IKSEUNG LYOU AND MARTYN R. DIXON

ABSTRACT. The group $V(ZS_3)$ of units of augmentation 1 in the integral group ring ZS_3 is characterized as the free product of C_2 and S_3 , where C_2 is the cyclic group of order 2.

1. Introduction

In [2], Hughes and Pearson characterized $U(ZS_3)$, the group of units of the integral group ring ZS_3 . One of the main results is:

$$U(ZS_3)\cong \{egin{pmatrix} a & b \ c & d \end{pmatrix} \in GL(2,Z)|a+c\equiv b+d \pmod 3 \}.$$

From their work we can easily get the following characterization of $V(ZS_3)$, the group of units of augmentation 1 in ZS_3 .

$$V(ZS_3)\cong G=\{\left(egin{array}{cc}a&b\\c&d\end{array}
ight)\in GL(2,Z)|a+c\equiv b+d\equiv 1 ({
m mod }\ 3)\}.$$

On the other hand, in [5] Taussky gives two nontrivial units of order 2 in $V(ZS_3)$. Consider $A = \begin{pmatrix} -1 & 0 \\ 2 & 1 \end{pmatrix}$, one of the units given by Taussky,

 $B=\begin{pmatrix}1&-1\\0&-1\end{pmatrix}$, and $C=\begin{pmatrix}0&-1\\1&-1\end{pmatrix}$ in G. Clearly $\langle B,C\rangle\cong S_3$. In this note we shall prove that

$$V(ZS_3) = \langle A, B, C \rangle = \langle A \rangle * \langle B, C \rangle \cong C_2 * S_3,$$

where C_2 is the cyclic group of order 2, and X * Y denotes the free product of the groups X and Y.

Received April 25, 1997. Revised June 10, 1997.

1991 Mathematics Subject Classification: 20E06.

Key words and phrases: group of units, free product.

The first author was partially supported by Center for Applied Mathematics at KAIST.

2. Theorems

First we prove that A, B and C generate G.

Theorem 2.1. $\langle A, B, C \rangle = G$.

Proof. Let $F = \langle A, B, C \rangle$ and we will show that F = G. Since A, B, C are integral matrices with determinant ± 1 so are A^{-1}, B^{-1}, C^{-1} , and hence the elements of F are integral matrices. If $F \neq G$ then there exists $X = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G \backslash F$ with |a| + |c| minimal. For the moment

suppose that $a \neq 0$ and $c \neq 0$. Since $(BC)A = \begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix}$,

$$((BC)A)^rX=egin{pmatrix}1&0\3r&1\end{pmatrix}egin{pmatrix}a&b\c&d\end{pmatrix}=egin{pmatrix}a&b\3ra+c&3rb+d\end{pmatrix}
otin F.$$

If $2|a| \le |c|$ then the integer r can be chosen so that |3ra+c| < |c|, and hence |3ra+c|+|a| < |a|+|c|, contradicting the choice of |a|+|c|. Hence 2|a| > |c|. So |a| < |c| < 2|a|, |c| < |a|, or |a| = |c|. First suppose that |a| < |c| < 2|a| and a, c have same sign. Then

$$BX = \begin{pmatrix} 1 & -1 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a-c & b-d \\ -c & -d \end{pmatrix} \notin F.$$

But |a-c| < |a|. This gives a contradiction to the choice of |a| + |c|. If a, c have different signs then

$$AX = \begin{pmatrix} -1 & 0 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} -a & -b \\ 2a+c & 2b+d \end{pmatrix} \notin F.$$

But |2a+c| < |c|. So we also have a contradiction. Now suppose that |c| < |a| and a, c have the same sign then

$$BX = \begin{pmatrix} 1 & -1 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a-c & b-d \\ -c & -d \end{pmatrix} \notin F.$$

But |a-c| < |a|. This contradicts the choice of a and c. If a and c have different signs then

$$(ABC^2)X = \begin{pmatrix} 0 & -1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} -c & -d \\ a+2c & b+2d \end{pmatrix} \notin F.$$

But |a+2c|<|a|, and hence |a+2c|+|c|<|a|+|c|. This is also a contradiction to the choice of a and c. Finally we suppose that |a|=|c|. Then a and c may have same or different sign. In each case, we can get a contradiction by same arguments as above. Therefore a=0 or c=0. If a=0, then since $G=\{\begin{pmatrix} a & b \\ c & d \end{pmatrix}\in GL(2,Z)|a+c\equiv b+d\equiv 1 \pmod{3}\}$, we have two cases $X=\begin{pmatrix} 0 & 1 \\ 1 & d \end{pmatrix}$ or $\begin{pmatrix} 0 & -1 \\ 1 & d \end{pmatrix}$. If $X=\begin{pmatrix} 0 & 1 \\ 1 & d \end{pmatrix}$ then d=3k for some integer k. Now

$$\begin{pmatrix} 0 & 1 \\ 1 & 3k \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 3k & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = (BCA)^k BC^2 \in F.$$

However this is a contradiction. If $X = \begin{pmatrix} 0 & -1 \\ 1 & d \end{pmatrix}$ then d = 3k' + 2 for some integer k'. Now

$$X = \begin{pmatrix} 0 & -1 \\ 1 & d \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 3k' + 2 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 \\ -3k' & 1 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 2 \end{pmatrix} = (BCA)^{-k'} (ABC^2) \in F,$$

and this is also a contradiction. Now if c=0 then $X=\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}$ or $X=\begin{pmatrix} 1 & b \\ 0 & -1 \end{pmatrix}$. If $X=\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}$ then b=3k for some $k\in Z$. So,

$$CX = \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 3k \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 3k - 1 \end{pmatrix}$$
$$= \begin{pmatrix} 0 & -1 \\ 1 & 3k' + 2 \end{pmatrix} = (BCA)^{k'} (ABC^2).$$

Therefore $X = C^2(BCA)^{k'}(ABC^2) \in F$, a contradiction. If $X = \begin{pmatrix} 1 & b \\ 0 & -1 \end{pmatrix}$ then b = 3k + 2 for some $k \in Z$ and $(ABC^2)X = \begin{pmatrix} 0 & -1 \\ 1 & 2 \end{pmatrix}$

$$\begin{pmatrix} 1 & 3k+2 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 3k \end{pmatrix} = (BCA)^k BC^2 \text{ Hence } X = (ABC^2)^{-1}$$
$$(BCA)^k BC^2 \in F, \text{ the final contradiction which proves the theorem. } \square$$

Now any element $\langle A, B, C \rangle$ can be expressed as $B^{\alpha}C^{\beta}A^{\gamma}$ or $B^{\alpha}C^{\beta}(AB^{\epsilon_1}C^{\delta_1})\cdots(AB^{\epsilon_n}C^{\delta_n})A^{\gamma}$, where $\alpha, \gamma, \epsilon_i = 0, 1$, and $\beta, \delta_i = 0, 1, 2$, and $n \geq 1$, and $\epsilon_i + \delta_i \neq 0, i = 1, \ldots, n$. Consider

$$\Gamma = \{ (AB^{\epsilon_1}C^{\delta_1}) \cdots (AB^{\epsilon_n}C^{\delta_n}) | \epsilon_i = 0, 1,$$

and $\delta_i = 0, 1, 2$, and $\epsilon_i + \delta_i \neq 0$, and $n \geqslant 1 \}.$

If n = 1, there are five cases:

$$\begin{split} AC &= \begin{pmatrix} 0 & 1 \\ 1 & -3 \end{pmatrix}, AC^2 = \begin{pmatrix} 1 & -1 \\ -3 & 2 \end{pmatrix}, AB = \begin{pmatrix} -1 & 1 \\ 2 & -3 \end{pmatrix}, \\ ABC &= \begin{pmatrix} 1 & 0 \\ -3 & 1 \end{pmatrix}, ABC^2 = \begin{pmatrix} 0 & -1 \\ 1 & 2 \end{pmatrix}. \end{split}$$

Definition. $X=\begin{pmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{pmatrix}\in GL(2,Z)$ is called (i,j)- cornered, $1\leqslant i,\,j\leqslant 2,$ if

$$|a_{ij}| = \max \{|a_{11}|, |a_{12}|, |a_{21}|, |a_{22}|\} \text{ and } |a_{3-i3-j}| = \min \{|a_{11}|, |a_{12}|, |a_{21}|, |a_{22}|\},$$

and the absolute values of the sum and difference of the row and column containing a_{ij} is greater than or equal to those of the row and column containing a_{3-i3-j} , respectively.

We can see that the above five matrices are (2,1) or (2,2)-cornered.

THEOREM 2.2. Any $X=(AB^{\epsilon_1}C^{\delta_1})\cdots(AB^{\epsilon_n}C^{\delta_n})\in\Gamma$ is one of the following three forms :

$$T_1: (-1)^m \begin{pmatrix} \alpha & -eta \\ -\gamma & \delta \end{pmatrix}, (2,1)-cornered,$$
 $T_2: (-1)^m \begin{pmatrix} \alpha & -eta \\ -\gamma & \delta \end{pmatrix}, (2,2)-cornered, and$
 $T_3: (-1)^m \begin{pmatrix} \alpha & eta \\ -\gamma & -\delta \end{pmatrix}, (2,2)-cornered, lpha, eta, \gamma, \delta \geqslant 0.$

Proof. We prove this by induction on n. As mentioned before it is obvious when n = 1. Now assume the theorem for n - 1. We need to consider

$$T_iAB^{\epsilon}C^{\delta}$$
, $i=1,2,3$, and $\epsilon=0,1$, and $\delta=0,1,2$, and $\epsilon+\delta\neq 0$.

By the straight computation, we can show that any of them is one of the three forms. We compute one case here.

$$T_3ABC^2 = (-1)^m \begin{pmatrix} \alpha & \beta \\ -\gamma & -\delta \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 2 \end{pmatrix} = (-1)^m \begin{pmatrix} \beta & 2\beta - \alpha \\ -\delta & -(2\delta - \gamma) \end{pmatrix}$$

So, $T_3ABC^2 = (-1)^m \begin{pmatrix} a & b \\ -c & -d \end{pmatrix}$, $a,b,c,d \ge 0$. Now simple computation show that $c \ge a$, $d \ge b$, $b \ge a$, $d \ge c$, $d \pm b \ge c \pm a$, and $d \pm c \ge b \pm a$.

From Theorem 2.2, we know that any element in Γ is (2,1) or (2,2)-cornered, and hence Γ has no identity matrix. Now by computation, we can see that $B^{\alpha}C^{\beta}A^{\gamma} = I$ if and only if $\alpha = \beta = \gamma = 0$ and $B^{\alpha}C^{\beta}A^{\gamma}$ is not of any form in Theorem 2.2. As we remarked before, any element in $\langle A, B, C \rangle$ can be expressed as

$$B^{\alpha}C^{\beta}(AB^{\epsilon_1}C^{\delta_1})\cdots(AB^{\epsilon_n}C^{\delta_n})A^{\gamma}.$$

where $\alpha, \gamma, \epsilon_i = 0, 1$, and $\beta, \delta_i = 0, 1, 2$, and $n \ge 0$, and $\epsilon_i + \delta_i \ne 0, i = 1, \dots, n$. Since Γ has no identity matrix, the identity matrix in $\langle A, B, C \rangle$ must be of that form with $n = \alpha = \beta = \gamma = 0$. Hence using von Dyck's theorem [p.51, 4] we can get an isomorphism from $C_2 * S_3$ onto $\langle A, B, C \rangle$.

Theorem 2.3.
$$\langle A, B, C \rangle = \langle A \rangle * \langle B, C \rangle$$

3. An application

It is well known that S_3 has a torsion free normal complement in $V(ZS_3)$ [3]. Also in [1], Allen and Hobby exhibited a non torsion free normal complement of S_3 in $V(ZS_3)$. We know that $D_\infty \cong \langle x \rangle * \langle y \rangle, x^2 = y^2 = 1$, has such a property. This fact motivates the following theorem:

THEOREM 3.1. Suppose A is an arbitrary group and B is a non-trivial group isomorphic to a subgroup of A. Suppose B is not torsion free. Then A*B has both a normal complement N, to A which is torsion free and a normal complement M, to A which is not torsion free.

Proof. To construct N, let $\phi: B \longrightarrow A$ denote the embedding of B in A. Then we have a mapping $\bar{\phi}: A*B \longrightarrow A$ given by

$$(a_1b_1 \cdots a_nb_n)^{\bar{\phi}} = a_1b_1^{\phi}a_2b_2^{\phi}...a_nb_n^{\phi} \text{ where } a_i \in A, b_i \in B.$$

The normal form theorem for free products shows $\bar{\phi}$ is a homomorphism. Set $N = \ker \bar{\phi}$. If $x \in A * B$ and $x^{\bar{\phi}} = a \in A$ then $(a^{-1}x)^{\bar{\phi}} = 1$. So A * B = NA. Futhermore $N \cap A = N \cap B = 1$ so by the Kuroš subgroup theorem N is a free group, and hence is torsion free.

To construct M define $\theta : A * B \longrightarrow A$ by

$$(a_1b_1a_2b_2\cdots a_nb_n)^{\theta} = a_1a_2\cdots a_n.$$

Then θ is a homomorphism. We set $\ker \theta = M$. As above A * B = MA and $M \cap A = 1$. However $B \leq M$, so M is not torsion free. \square

From Theorem 3.1 and Theorem 2.3 we immediately see that S_3 has torsion free and non torsion free normal complements in $V(ZS_3)$. It is also worth remarking that there is a normal complement of S_3 which is actually free, according to the proof of Theorem 3.1. Also note that we can get some of the results in [2] as corollaries of Theorem 2.3.

References

- [1] P. Allen and C. Hobby, A note on the unit group of ZS₃, Proc. AMS 99 (1987).
- I. Hughes and K. R. Pearson, The group of units of the integral group ring ZS₃,
 Cana. Math. Bull. 15 (1972).
- [3] D. S. Passman and P. F. Smith, Units in integral group rings, J. Algebra 69 (1981).
- [4] D. J. S. Robinson, Graduate Texts in Mathematics Vol. 80 (1982), Springer Verlag, New York, Heidelberg, Berlin.

On free product in $V(ZS_3)$

[5] O. Taussky, Matrices of rational integers, Bull. Amer. Math. Soc. 66 (1960).

HYUNYONG SHIN AND IKSEUNG LYOU
DEPARTMENT OF MATHEMATICS, KOREA NATIONAL UNIVERSITY OF EDUCATION,
CHUNGWON 363-890, KOREA

MARTYN R. DIXON
DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ALABAMA, TUSCALOOSA, AL 35487, U. S. A.