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RANDOM COMPLETELY GENERALIZED
NONLINEAR VARIATIONAL INCLUSIONS WITH
NON-COMPACT VALUED RANDOM MAPPINGS

NAN-JING HUANG, XIANG LONG AND YEOL JE CHO

ABSTRACT. In this paper, we introduce and study a new class of
random completely generalized nonlinear variational inclusions with
non-compact valued random mappings and construct some new it-
erative algorithms. We prove the existence of random solutions for
this class of random variational inclusions and the convergence of
random iterative sequences generated by the algorithms.

1. Introduction

Variational inequalities, introduced by Hartman and Stampacchia
[12] in the early sixties, are a very powerful tool of the current mathe-
matical technology. These have been extended and generalized to study
a wide class of problems arising in mechanics, physics, optimization and
control, nonlinear programming, economics and transportation equilib-
rium and engineering sciences, etc. Quasivariational inequalities are
generalized forms of variational inequalities in which the constraint set
depend on the solution. These were introduced and studied by Ben-
soussan, Goursat and Lions [3]. For further details we refer to [1, 2, 4,
6, 20, 24] and the references therein.

In 1991, Chang and Huang [7, 8] introduced and studied some new
class of complementarity problems and variational inequalities for set-
valued mappings with compact values in Hilbert spaces. In the recent
paper [13], Hassouni and Moudafi introduced and studied a new class of
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variational inclusions, which included many variational and quasivari-
ational inequalities considered by Noor [21-23], Isac (19], Siddiqi and
Ansari [25, 26] as special cases. In 1996, Huang [17] has introduced and
studied a new class of generalized nonlinear variational inclusions with
non-compact valued mappings in Hilbert spaces.

On the other hand, the random variational inequality and random
quasi-variational inequality problems have been introduced and studied
by Chang [6], Chang and Huang [9, 10], Chang and Zhu (11], Huang
15, 16], Husain, Tarafdar and Yuan [18], Tan, Tarafdar and Yuan 28],
Tan [27] and Yuan [29).

The main purpose of this work is to extend their ideas to more general
problems. We introduce and study a new class of random completely
generalized nonlinear variational inclusions with non-compact valued
random mappings and construct some new iterative algorithms. We
also prove the existence of random solutions for this class of random
variational inclusions and the convergence of randomn iterative sequences
generated by the algorithms.

2. Preliminaries Throughout this paper, let (2, A) be a measure
space and H be a separable real Hilbert space endowed with the norm
|I-Il and inner product (-, ). We denote by B(H), 2H CB(H)and H{(-,-)
the class of Borel o-fields in H, the family of all nonempty subsets of
H, the family of all nonempty closed bounded subsets of H and the
Hausdorff metric on CB(H), respectively.

DEFINITION 2.1. A mapping z : Q — H is said to be measurable if
for any B € B(H), {t€ Q: z(t) € B} € A.

DEFINITION 2.2. A mapping T : Q@ x H — H is called a random
operator if for any x € H, T(t,z) = z(t) is measurable. A random
operator 1" is said to be continuous if for any ¢ ¢ 2, the mapping
T(t,-): H— H is continuous.

DEFINITION 2.3. A set-valued mapping V : © — 2 is said to be
measurable if for any B € B, V"1B) = {t € Q: V(t)N B # 0} e A

DEFINITION 2.4. A mapping u:  — H is called a measurable selec-
tion of a set-valued measurable mapping V : @ — 2 if 4 is measurable
and for any t € Q,u(t) € V(1).
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DEFINITION 2.5. A mapping V : Q@ — 2 is called a random set-
valued mapping if for any z € H, V(-,z) is measurable. A random
set-valued mapping V : } x H — CB(H) is said to be H-continuous if
for any t € 2, V (¢, -) is continuous in the Hausdorff metric.

Given random set-valued mappings T, A, g : @ x H — 28 and
random operators f, p: @ x H — H with Img (" dom(8y) # 0, we
consider the following problem:

Find measurable mappings u, w, y, z : @ — H such that, for all
teQ,ve H,
(2.1)

{w(t) € T(t,u(®), y(t) € At u(t), 2(t) € gt u(t))[)dom(dyp),
(F(tw(®) = plt,y(8),v = 2(1) > w(=(1) ~ (v),

where 0y denotes the subdifferential of a proper, convex and lower
semicontinuous function ¢ : H — R U {4o00}. This problem is called
a random completely generalized nonlinear variational inclusion with
non-compact valued random mappings.

If g: Q@ x H — H is a random operator with In g dom(8y) # 0,
then the random nonlinear variational inclusion (2.1) is equivalent to
the following problem:

Find measurable mappings u, w, y : € — H such that, for all ¢ € ,
veH,

(2.2)

{w<t) € T(t,u(t)), y(t) € A(t,ul(t), g(t,u(t))[)dom(dyp) # 0,
(f(t,w(t)) — plt,y(1)),v — g(t, u(t))) > w(g(t,u(t))) — p(v),

which is called a random generalized nonlinear variational inclusion
with non-compact valued random mappings.

It is clear that the random completely generalized nonlinear varia-
tional inclusion (2.1) and the random generalized nonlinear variational
inclusion (2.2) include many kinds of variational inequalities and qua-
sivariational inequalities of [6-10, 13, 15-17, 19, 20, 21-23, 25, 26, 30] as
special cases.
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3. Random Iterative Algorithms

We first give the following lemmas for our main results.

LEMMA 3.1. [5]| Let V : Qx H — CB(H) be a H-continuous random
set-valued mapping. Then for any measurable mapping u : Q — H, the
set-valued mapping V (-,u(-)) : @ — CB(H) is measurable.

LEMMA 3.2. [5] Let V, W : @ — CB(H) be two measurable set-
valued mappings, € > 0 be constant and u :  — H be a measurable

selection of V. Then there exists a measurable selection v :  — H of
W such that for all t € €,

[u(t) = v(@® < (1 +H(V(1), W(1)).

LEMMA 3.3. Measurable mappings u, w, y : 8 — H are solution
of the problem (2.1) if and only if for all t € Q, w(t) € T(¢, u(t)),
y(t) € A(t, u(t)), 2(t) € g(t, u(t)) and
(1) 2(t) =I5, (=(t) — al®)(F(t,w(t) - plt y(8)),

where o : 2 — (0,00) is a measurable function and J;’(t) =+
a(t)8p)~! is the so-called proximal mapping on H.

Proof. From the definition of Jf( £ it follows that

z(t) —a(t)(f(t, w(t) — p(t, y(1)) € 2(t) + a(t)Op(2(t)),
for all £ € Q and hence
p(t,y(t)) — f(t,w(t)) € Op(2(t)).
From definition of d¢, we have
e(v) 2 p(2(8)) + (p(t,y(t)) — f(t,w(t), v — ()
for all v € H and t € Q. Thus u, w, y and 2 are solutions of (2.1). [
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To obtain an approximate solution of (2.1) we can apply a successive
approximation method to the problem of solving

(3.2) u(t) € F(t,u(t))
for all t € 2, where

F(t,u(t)) = ult) - glt,u(®)) + J2, (g(t, u(®))
— oD T( u(t)) - plt, ALt ult)))):

Based on (3.1) and (3.2), we proceed our algorithms.

Let T, A, g : Q@ x H —» CB(H) be H-continuous random set-valued
mappings, and f, p : Q x H — H be continuous random operators.
For any given measurable mapping ug : 2 — H, the set-valued map-
pings T'(-,uo(+)), A(-,uo(")), g(-,uo(+)) : @ — CB(H) are measurable
by Lemma 3.1. Hence there exist measurable selection wp : 2 — H of
T(-,uo(+)), measurable selection yo : 2 — H of A{-,uo(-)) and measur-
able selection zg :  — H of g(-,ug(-)) by Himmelberg [14]. Let

wa(t) = uo(t) ~ 20(t) + JZ . (0(t) — al)(F (. wa(1)) — p(t,p0(6)))).

It is easy to see that u; : @ — H is measurable. By Lemma 3.2,
there exist measurable selections w; : Q — H of T'(¢,u;(t)), measurable
selection y1 : @ — H of A(t,u1(t)) and measurable selection z; : Q — H
of g(t,u;(t)) such that, for all £ € Q,

lwi(t) —wo(t)[| < (1 + VJH(T(¢,ur(t)), It uo(t))),
ly2(t) = yo ()| < (1 + 1) H(A(L, ur(2)), At, uo(t)))

and
l21(t) — 20 ()] < (1 + 1) H (g(t,ur(t)), g(¢, uo(t)))-
Letting

ug(t) = ur(t) — z1(t) + J 5y (21(8) — a(®)(f (2, wi(8)) — p(t; 11 (1))),

then us : Q — H is measurable. By induction, we can obtain our
algorithm for the random completely generalized nonlinear variational
inclusion (2.1) as follows:
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ALGORITHM 3.1. Let T, A, g : @ x H — CB(H) be H-continuous
random set-valued mappings and f, p : Q@ x H -» H be continuous
random operators. For given measurable ug : Q@ — H, we have
(? zth(t) = Uy (t) — 2,(t)

+ 50 nlt) = @O () — p(t,un(0)),
[wnt1(t) = wn(t)]]
< (1T+ (14 n) YH(T @ unt1 (8), Tt un(t))), wa(t) € T(t, un(t)),
[Yn+1(t) — yn ()]
< 1+ 1+ ) DH(AR, unt1 (1)), At un(t), un(t) € At ua(t)),
2ns1(t) = 2a(t)]]
LS (L4 (4 0) ) H(g(t uns1 (1)), 9(t, un(t))), 2u(t) € g(t, un(t))

foranyte Q2 andn=0,1,2,---.

From Algorithm 3.1, we can get the algorithm for the random gen-
eralized nonlinear variational inclusion (2.2) as follows:

ALGORITHM 3.2. Let T, A: Qx H — CB(H) be two H-continuous
random set-valued mappings and f, p, g : Q x H -~ H be continuous
random operators. For given measurable ug : @ — H, we have

3.4
(' Uzz+1(t) = un(t) — g(t,un(t))
+ 59t un(t)) — a(t)(f(twa(t) — p(t, ya(1)))),
[wni1(t) — wn(2)]]
<L+ (1 +n) HH(TR, unta (1), Tt un(?)), walt) € T(t ua(t)),
[yn1(t) = yn(t)]]
<1+ (14 n) DH(AR w1 (1)), At un(1), ynlt) € At un(t))

foranyte Qandn=20,1,2,---.

REMARK 3.1. Algorithms 3.1 and 3.2 include several known algo-
rithms of [6-10, 15-17, 21-23, 25, 26, 30| as special cases.
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4. Existence and Convergence

DEFINITION 4.1. A random operator g : 2 x H — H is said to be
(i) strongly monotone if there exists a measurable function § : Q —
(0, 00) such that

(g(t,u1) — g(t,uz), uy — ug) > 8(t)|lus — uz|)?
forallu; e H,i=1,2,and t € Q,

(ii) Lipschitz continuous if there exists a measurable function o :
Q — (0, 00) such that

lg(t,u1) — g(t,u2)ll < a(t)||ur — uzl|

forallu; e H,i=1,2, and t € Q.

DEFINITION 4.2. A random set-valued mapping T : QxH — CB(H)
is said to be

(1) strongly monotone with respect to a random operator f : Qx H —
H if there exists a measurable function 8 : Q — (0, 00) such that

(f(t,wi) = ft,we),ur — ug) > Bt)||uy — ua|?

forallt € Q, u; € H and w; € T(t,u;),i=1,2,

(ii) H-Lipschitz continuous if there exists some measurable function
v : Q0 — (0,00) such that

H(T(t,w1), T(t,u2)) <v(@)|ur — uzll

forall u;, € H, ¢t =1,2.

(iii) strongly monotone if there exists a measurable function £ : ) —
(0, 00) such that

(w1 — wa,ur — ug) > E(t)ur — uy||?

for all u; € Q, u; € H and w; € T'(t,u;), 1= 1,2.
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THEOREM 4.1. Let g: 2 x H — CB(H) be strongly monotone and
H-Lipschitz continuous random set-valued mapping, f,p: Qx H — H
be Lipschitz continuous random operators, T, A : Q0 x H — CB(H) be
H-Lipschitz continuous random set-valued mappings and T be strongly
monotone with respect to f. If the following conditions hold:

oty - B0+ DR - 1
IO (0 — (O2u(0P
VB + (B — De@r®? = 10

OO RO,

(4.1)

<

(4.2) B(t) > (1= k(®)e(®)u(t) + VI(E), n(t)(2) > e(t)u(t),

1(t) = (n()*7(t)* — () u(t)*)k(2)(2 - k(1))

(4.3) ot u(t)e(t) < 1 — k(t),

(4.4) k(t) = 2¢/1 — 20(t) + o(t)2, k(t) <1

for all t € 0, where 3(t) and 6(t) are strongly monotone coefficients of
T and g, respectively, o(t), v(t) and u(t) are H-Lipschitz coefficients
of g, T and A, respectively, n(t) and €(t) are the Lipschitz coefficients
of f and p, respectively, then there exist measurable mappings u, w, y,
z: Q¢ — H such that (2.1) holds. Moreover,

un(t) — ult), wn(t) = w(t), yu(t) — y@), z.(1) — z(t), n— oo,

where {u,(t)}, {wn(8)}, {yn(t)} and {z,(t)} are generated by Algo-
rithm 3.1.

Proof. From (3.3), for any t € 2, we have

Junea (2) = wa(t)]| = nun< )~ o1 () = (za(t) = 20-1(2))
T2 (Rt un()) = JZ, (h(t,un-1 ()],
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where

h(t,un(t)) = 2n(t) — (&) (f(t, walt)) — p(t, yn(2))).

Also we have, for all t € Q,

”J(f(t)(h(t’un(t))) - Jf(t)(h(taun—l(t)))”

< A, un(t)) = R(t, un-1(2))]]

< lun(t) = un—1(t) — a(t)(f(t, wa(t)) — f(¢, wn—1(8)))]|
+ lun(t) = un—1(t) — (2n(t) — zp-1(t))|
+ a(t)lp(t, yn(?)) — p(t, yn-1 (L)),

that is,

[n1(8) = un(B)]]

< 2[un(t) = un-1(t) = (2n(t) = 2a-2(8)1]
F un(t) = un—1(t) — a(O)(f(t, wa(t)) ~ f(t, wn1())]|
+a()|p(t, yn(t)) — p(t, yn-1 (D).

(4.5)

By H-Lipschitz continuity and strongly monotonicity of g, we obtain

lun(t) = un-1(t) — (2n(t) — zn—l(t))“2

(4.6) < (1=28(t) + (1 + 27120 ()Y Jun(t) — a1 ()]

for all t € 2. Also from H-Lipschitz continuity and strongly monotonic-
ity with respect to f of T' and Lipschitz continuity of f, we have
(4.7)

[ (8) = n—1(t) = () (f(t, wn()) — f(t, wa1(t))II

< (1=28(1)a(t) + a(t)*n()* (1 + 07 29(6))] un () — un-1 (2)]|?
By H-Lipschitz continuity of A, Lipschitz continuity of p and (3.3), it
follows that
(4.8)
a(®)[[p(t, yn(t)) =Pt yn—1 ()N < c(t)e(t)(1+n")a(t) [ (8) —un-1(2)]]
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for all ¢ € Q. So by combining (4.5)-(4.8) and denoting
On(t) : = 2¢/1—26(t) + (1 + n=1)20()2 + a(tie(t)(1 + n~ u(t)

+ /1= 28(t)a(t) + a(t)?n(t)2(1 + n 1)2y(t)2,
we get, for all € €,

[tr1(2) = un(B)l] < On(t)llun(t) — un-1(2)]-

Letting
0(t) : = 24/1 — 28(t) + o (t)2

+ V1 = 26(t)a(t) + a(t)?n(t)24(8)% + a(t)e(t)u(t),
for all ¢ € 2, we know that 8,(t) N\, 6(¢) for all t € . It follows from
(4.1)-(4.4) that 6(t) < 1 for all ¢ € §2. Hence, for any t € Q, 6,,(t) < 1,
for n sufficiently large. Therefore {u,(¢)} is a Cauchy sequence and we
can suppose that u,(t) — u(t) for all ¢ € €.
From (3.3), we get

llwn () = wna (DI < (1 + 071 y()||un(t) = un—1(t)|),

1y () = yn-1 O] < (1 + 27" p(t)un(t) = un-a (D),

2n(t) — zn-1 ()] < ( n" 1o (t)un(t) — un_1(t)]|
for all t € Q, i.e, {wn(t)}, {yn(t)} and {z,(t)} are Cauchy sequences.
Let wy,(t) — w(t), yn — y(t) and 2, (t) — z(¢). Since {u,(t)}, {wn(t)},
{yn(t)} and {z,(t)} are sequences of measurable mappings, we know

that mappings v, w, y, 2 : @ — H are measurable. Further, for any
t € €2, we have

d(w(t), T(t, u(t))) = lnf{llw(t) — 2|l - z € T(t,u(t))}
< lw(t) — wa (O] + d(wn(t). T(t, u(t)))
SHlw(®) —wn ()N + H(T(t,wn(t)), T(t, u(t)))
< Jlw(@) = wn (O + () lun't) = u(t)||
— 0.

Hence, w(t) € T(t,u(t)) for all ¢ € Q. Similarly, we have y(t) €
A(t,u(t)) and z(t) € g(t,u(t)) for all ¢ € Q. This completes the proof
of Theorem 4.1. (]

From Theorem 4.1, we can get the following:
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THEOREM 4.2. Let g: 2 x H — H be strongly monotone and Lip-
schitz continuous random operator, f, p : @ x H — H be Lipschitz
continuous random operators, T, A: Q@ x H — CB(H) be H-Lipschitz
continuous random set-valued mappings and T be strongly monotone
with respect to f. Suppose that (3(t) and 6(t) are strongly monotone
coefficients of T' and g, respectively, v(t) and u(t) are H-Lipschitz co-
efficients of T' and A, respectively, o(t), n(t) and €(t) are the Lipschitz
coeflicients of g, f and p, respectively. If for all t € §} the conditions
(4.1)-(4.4) in Theorem 4.1 hold, then there exist measurable mappings
u, w, y: Q@ — H such that (2.2) holds. Moreover,

un(t) = ult), wn(t) = w(t), yn(t) —y(t), n— oo,

where {u,(t)}, {wn(t)} and {y,(t)} are generated by Algorithm 3.2.

REMARK 4.1. For a suitable choice of the mappings g, T, A, f, p
and the function ¢, we can obtain several known results of [6-10, 15-17,
19, 21-23, 25, 26, 30] as special cases of Theorems 4.1 and 4.2.
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