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A SIMPLE MODEL FOR A MUSH
YOUNG-KYUN YANG

ABSTRACT. We have derived a simple ODE system for the mush by
assuming that the temperature 7', the solid fraction ¢ and the vertical
component w of the velocity, depend on z only. Analytical solutions
of the system have presented in case of w << 1 and ¢ << 1.

1. Introduction

When a multi-component liquid is cooled and solidified, commonly,
the solid phase advances from the cold boundary into the liquid as a
branching forest of dendritic crystals. This creates a region of mixed
solid and liquid phases, referred to as a mushy zone, in which the solid
forms a rigidly connected framework with the liquid occuring in the in-
tercrystalline gaps.

We consider a container having a liquid alloy or solution whose com-
position is less than the eutectic composition £g. Suppose that a freezing
interface advances steadily upward at speed U as the system is cooled
from the bottom. Let T, and £, be the temperature and the composition
in the far field of the liquid. Then the non-convecting liquid region ad-
mits solutions 7' = Too+(T; = To )e~U/%)% and € = £+ (& —Eoo e~ U/ Pe)2
where z = 0 represents the location of the freezing interface in a frame
moving upward with the speed U. T} is the temperature of the interface
and composition &; is the corresponding liquidus composition interface.
x and D, are the thermal and compositional diffusivity in the liquid,
respectively.

The solutions show that the temperature and the composition change
noticeably over a distance x/U and D,/U, respectively, measured from
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the interface. In general, x >> D, therefore the composition ahead of
the interface relaxes more rapidly from &; to £, than does the tempera-
ture from T to Ti,. Hence, the (£, T) path on the phase diagram in the
liquid is first a rapid change of ¢ from &; to &, and then a rapid change
of T from T; to T,. As we see, due to this effect, the liquid ahead of
the interface has a temperature less than its corresponding liquidus: it is
‘constitutionally supercooled’. Constitutional supercooling occurs when
the rate of solidification per unit area exceeds a critical value. The sys-
tem avoids this contradictory state by increasing the area of the surface
on which freezing occurs. This is manifest as a mophological instability
(Langer [8]) which results in a convoluted freezing interface. When the
rate of freezing is far above the critical value, the convolution of the inter-
face becomes extreme, with the surface effectively filling a finite volume,
which we call a mush.

We treat the mush as a new single continuum phase. The temperature
and the composition of solute in the interstitial fluid are approximately
uniform on the scale that is small compared with the macroscopic di-
mensions of the system but large compared with the pore size between
the crystals of the matrix. We assume that the mush is in a complete
equilibrium at all times. In other words, the time-scales of melting and
freezing processes are negligibly short compared with those of principal
interest in studying the evolution of the mushy zone. A system in mo-
tion is clearly not in thermodynamic equilibrium, but if the motion is
sufficiently slow a state of local thermodynamic equilibrium will prevail.

Thus the temperature and composition are required to satisfy the
liquidus relation 7' = T.(£), which we approximate here by the linear
expression

(11) T:Tr_F(g_goo)

where &, is a reference value of the composition of the liquid, 7, is the
liquidus temperature of liquid having composition ¢, the liquidus slope
' is a positive constant. The linear liquidus relationship is a common
metallurgical approximation which is mathematically convenient and ap-
parently leads to good practical results.
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2. Governing equations and boundary conditions

2.1. General equations and conditions

We introduce a set of governing equations and boundary conditions
for a mush that have been proposed by Hills etc. [5], based on principles
of diffusive mixture theory. In this study, the density is treated as a
constant everywhere except in the buoyancy term and the solid phase
is constrained to move in rigid-body motion. The conservation of total
mass requires that

(2.1) V-w=0

where w the mass flux of interdendritic fluid relative to the solid phase.
We assume that the thermal conductivity, the specific heat per unit vol-
ume and the latent heat of solidification per unit volume, are constant
and independent of phases. Also, we assume that the solutal diffusivity
in the liquid is constant and the diffusivity in the solid phase is neglected.

The equations describing conservation of a constitutent in the liquid
phase and energy in both phases can be written as

(2.2) %f +w-VE = S(d’a + D,V - ((1 - $)VE)
(2.3) pTcp( DT +w-VT) = kV?T + p,L%s?

where D, is the materlal diffusivity in the liquid phase, L is the latent
heat, ¢, is the specific heat, & is the thermal conductivity, p, is a reference
density, ¢ is the mass fraction of solid, £ is the mass fraction of light
constitutent of the liquidus, and D,/Dt = 3/9t + u® - V is the material
derivative following the solid phase. The first term on the right hand side
of the equation (2.2) represents the increase (or decrease) of composition
of the liquid due to freezing (or melting) of the solid phase, while the
second is the Fickian diffusive term which is commonly negligibly small.
The first term on the right hand side of the equation (2.3), represents
the thermal diffusion, and the second is the release (absorption) of latent
heat of fusion as solid phase freezes (melts).

The solid phase is assumed to be rigidly attached to a substrate so
that only the motion of the liquid phase is of concern. The percolation
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of the liquid phase relative to the solid is assumed to be governed by
Darcy’s law:

mwo
v(1— )

where 7 is the dynamic viscosity of the liquid, p is the dynamic pressure
i.e. the hydrostatic pressure field subtracted, p' is mass of liquid per unit

volume of mixture, g is the gravity, z is the unit upward vector, and ~ is
the permeability of the mush. Worster ([16]) used

(2.5) Y= 70(1 - ¢)3»

which is suggested by the form of the Kozeny equation. We note that the
Kozeny-Carmen equation v = (1 — ¢)%d?/180¢* (d is the base diameter
of a slender cone approximating the dendrite.) used by Chen & Chen
((1]), in which v — 00 as ¢ — 0, is inappropriate when, as in this study,
the Darcy equation is used to describe the flow in the porous medium
rather than the more general Brinkman equation (Worster [16]). We use
equation (2.5) for the permeability.

Since both thermal and compositional gradients exist across the mush,
we must take account of both in calculating the overall density difference
driving compositional convection. Thus, to determine the buoyancy fore-
ing in (2.4), we use a linearized equation of state

(2.6) P =pll—a(T - T,) - A€ — &)

where a and (3, are coefficients of thermal and compositional expansion,
assumed constant. Note that 3 is positive since £ is the mass fraction of
light constitutent. Within the mush, this relationship can be written as

(2-4) ~Vp— (¢ - pr)gz

f

(2.7) o =plt+ (& o)1)

by taking the liquidus relationship (1.1) into account. Note that (3/I')—a
is usually positive since 3/(al) is typically much larger than unity. Now,
if we substitute equation (2.7) into (2.4), we get

W o B N
ST —op Vp /)T(F a)(T —T,)gz.

Equations (1.1), (2.1), (2.2), (2.3) and (2.8) constitute a full set of gov-
erning equations for the variables T, p, £, ¢ and w within the mush.

(2.8)
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Three interfacial conditions that express conservation of mass, energy
and solute at both solid-mush and mush-liquid interfaces can be derived
directly by integrating equations (2.1), (2.2) and (2.3) over an elemen-
tary volume enclosing (and collaping onto) each interface. These can be
expressed as

(2.9) [w-n|f =0,
(2.10) p[—c,T + LYV, = [(—pc,T(0® + W) + p.Léu® + kVT) -n]*,

(2.11) (1= @)E]EVa = [((1 - ¢)€u’ — Do(1 - ¢)VE) - nt,

where V, is the normal velocity of the solid-mush or mush-liquid interface,
n is a unit vector normal to the interface and the square brackets denote
the jump in the enclosed quantity across the interface. Also, we require
that the pressure , temperature and liquid composition be continuous at
the mush-liquid interface, i.e.,

(2.12) [plt =0, [Tt =0, gt =o.

Finally, we adopt a configuration of marginal thermodynamic equilib-
rium suggested by Worster ([14]), which is achieved if the temperature
gradient on the liquid side of the mush-liquid interface is equal to the
gradient of the local liquidus temperature. This is expressed by

(2.13) n-v7T = -In- V¢

But, since we assume that the thermal conductivity is independent of
phases, the marginal equilibrium condition (2.13) is equivalent to

(2.14) ¢ =0,

on the mush-liquid interface (Worster [14]).

Now, the boundary conditions to be applied to the mush-liquid inter-
face are (2.9) through (2.12) and (2.14). The boundary conditions on the
solid-liquid interface, consist of (2.9), (2.10), (2.12.2) and

(2.15) T=T,

where 7, denotes the eutectic temperature. Note that if growth is not
eutectic, then the equation (2.12.2) will be used instead of (2.15). (Fowler

3]).
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2.2. Steady nondimensional problem

We assume the system to be steady in a frame fixed to the mush-solid
interface, which moves upward relative to the solid with a prescribed
constant speed V. The liquid region has fixed temperature T and com-
position £ of light constitutent as z — co, where 2 measures vertical dis-
placement in the moving frame. The temperature decreases downward,
and we consider the case in which a mushy zone separates a completely
solid region from a completely liquid region. In this model problem we
assume that the eutectic front, at which the temperature is equal to the
eutectic temperature 7, and below which the system is completely solid,
can be maintained at the fixed position z = 0. The mush-liquid interface
z = h is a free boundary to be determined as part of the solution. In
general h = h(z,y) though, in our case, it will be assumed a constant, as
suggested by the experiments of ammonium chloride solution (Roberts
& Loper [11], Chen & Chen [1]). We nondimensionalize the governing
equations and boundary conditions by choosing a thermal length scale
#/V and thermal time scale »/V2, where & is the thermal diffusivity
Kk = k/prc,. Specifically, put x = (R/V)x*, w = Vw*, p = KN/ Yop~,
Y= T =T, = (1, = T)T*, € — by = (& — §x)&", where T, is the
liquidus temperature of £,,. Dropping the asterisks. (2.1), (2.2) and (2.8)
become

_ 96 0(ef) ¢
(2.17) wVE= - S o
(2.18) w-VT:V27’+£— @
2z iz
W
(219) m + Vp + R, Tz =0,
(2.20) T = —¢.

The parameters are a Stefan number S == L/ cp(T — T.), which represents
the ratio of the latent heat needed to melt the solid and the heat needed
to warm the solid from its eutectic temperature to the reference temper-
ature 1., the ratio of composition (' = £oo/ (€ — &), which denotes the
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compositional contrast between solid and liquid phases compared to the
typical variations of concentration within the liquid (Worster [15]), and
a Rayleigh number R, = v,0.(8 — al')g(T, — T.)/VnT', which will act
to drive buoyancy induced convection in the mush if it is large enough.
Note that very large Lewis number Le = x/D, is assumed in equation
(2.18). Boundary conditions are:

(i) on the liquid-mush interface, z = h(z, y)

¢ =0, [w-2z]" =0, [pl* =0, €17 =0,

orT 0
TE-0,  5r=0 (X

(ii) on the solid-mush interface, z = 0

+
52]” =0

w-z=0 T=-1 €£=1.

3. A simple model for a mush

We derive a simple ODE system, present analytical solution of the
model in case of w << 1 and ¢ << 1. The knowledge of ¢ provides
us the structure of the mush. We obtain the expression of the constant
thickness hq of the mush.

3.1. Derivation of a simple ode system

We assume that 7', ¢ and w depend on z only. Then we derive a ODE
system consisting of three equations.

If T'= T(z) and let —w be the vertical component of the velocity,
from (2.17) and (2.18), we have

(3.1) —wT' =T — (¢T) + CF,

(3.2) —wT' =T"+T - 8¢,

where the liquidus relation (2.20) has been used in (3.1) and the prime ’
denotes the derivative with respect to z. From (3.1) and (3.2), we get

(3.3) T =(C+8—T)p+H,
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where H = T"(ho) measures the amount of superheat. (3.3) If we solve
(3.1) for ¢/, we obtain the second of the set of three equations

4

S L
(3.4) = sl rw—9)

Within the mush, we let w = wy — w(2)%, where wy denotes the
horizontal velocity vector. Then we have from (2.16) and (2.19)

(35) VH Wy — ’(Ul = 0,
Wy
3.6 A -0
(3.6) Y@ -—gp V=0
—w Op
: — 7 . pT-0
(3.7) T R

If we take Vy of (3.7), we obtain
op

(38 V(5 =0,
which is solved by

(3.9) P = pa(2) + po(xn).

Dividing (3.6) by v(¢)(1— ¢)* and differentiating with respect to z yields
(3.10) (Vi - wa —w')/v(¢)(1 - ¢)*] = 0.

If we take B%VH -(3.6), (3.10) and (3.8) imply

wl

(3:11) S =ap

) = 0.

Integrating (3.11) gives
(3.12) w' = Vy(¢)(1-¢)?,

where V' = w/(hg). Now, the set of equations is (3.3), (3.4) and (3.12)
involving variables T, ¢ and w .
The boundary conditions are

(313)  T(hg)=0, ¢(ho)=0, T(O)=-1, w(0)=0.
Note that we use (3.12.3) to find the thickness hgy of the mush.
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3.2. Analytic solutions

The system consisting of (3.3), (3.4) and (3.12) plus boundary condi-
tions have analytical solutions in case of w << 1 and ¢ << 1.
We assume that w << 1. Then from (3.3) and (3.4), we have

T
3.14 ) =
(3.14) 1 ¢
where the conditions T}, = 0 and ¢, = 0 were used.
(3.15)

1. 1+A+B 20~A ., A+2B+vVD -T2+ A-+D)

z==1

+ ’
2" TP AT+ B ( 2vD ) nA+QB—\/5—T(2+A+\/B)

where

A=C+S+H, B =CH, D = A% — 4B.

The solution (3.14) for ¢ reveals that the solid fraction in the mush
decreases when the temperature increases, and shows that the ratio of
composition C affects the distribution of solid in the mush. The depth
of the mush is obtained by setting 2z = hg, 7" = 0 in (3.15). Similar
expressions to (3.14) and (3.15) are given by Hills al.([5]), Fowler([3])
and Worster([15]).

The case C >> 1 and ¢ << 1 is typical of the experiments using
aqueous solutions of ammonium chloride. This limit yields explicit func-
tions w, ¢ and T of z. The value of hg depends on V and H if S << C.
This means that the thickness of the mush is determined dominantly by
the strength of convection.

If C >>1and ¢ << 1, from (3.3), (3.4) and (3.12), we obtain

(3.16) w=Vz,
H 1 1
(3.17) b= s e U e e S 1
where ¢, = 0 was used,
mC 20
(3.18) T+1= mHe lerf(¢) — erf(¢(0))],
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where
_ (C+ 9V 1 2 T
(= 50 (z+ V), erf(z) = ;7?/ e " dt.

Note that the thickness hg of the mush is obtained by setting z = hy,
T'=01in (3.18), and it is independent of C if S << C, 1. €.,

(319) 1= \/—Hé Folerf(¢) — erf(¢(0))], ¢ = \/g(w %).

We solve (3.19) numerically for hy. We see that hy decreases as the
strength of convection V increases. This confirms the fact that convection
increases the heat transfer from the liquid above the mush.
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