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ON SOLUTION AND STABILITY OF FUNCTIONAL
EQUATION f(x +y)? = af(x)f(y) + bf(x)? + cf(y)?

Soon-Mo Juna

ABSTRACT. The general {continuous) solution and the asymptotic
behaviors of the unbounded solution of the functional equation f (z+
y)* = af(x)f(y) + bf(x)? + cf(y)? and the Hyers-Ulam stability of
that functional equation for the case when a = 2 and b = ¢ = 1 shall
be investigated.

1. Introduction

In the last decades the explicit solutions of several functional equations
have been extensively investigated (cf. (1], [3] and [4]). It is well-known
that every continuous solution f : R — R of the Cauchy equation fla+
y) = f(z) + f(y) have the form of f(x) = ax, where « is a real constant.
Based on this fact we can easily presume that each continuous solution
of the following functional equation

fla+y)? = fx)* + f(y)*, forall z,y >0,
has the form
fle) = BVE or f(z) = -8,
for any x > 0, where 3 is a real constant.

Throughout the paper, let £ be a real normed space. The following
functional equation

(1) flz+y)?=af(x)f(y) +bf(z)? + cf(y):, forall z,y € E,
where a, b, ¢ are complex numbers, can be considered as a generalization
of the above functional equation. In section 2, the bounded solutions
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where a, b, c are complex numbers, can be considered as a generalization
of the above functional equation. In section 2, the bounded solutions
of the functional equation (1) shall be determined. Further, the general
continuous solution of the functional equation (1) with @ = 2 and b =
¢ =1 (£ = R) shall be investigated in Theorem 1. We also investigate in
Theorem 3 the asymptotic behaviors of the unbounded complex-valued
solutions of the functional equation (1). Furthermore, the Hyers-Ulam
stability for the functional equation f(z + y)? = (f(z) + f(y))2 shall be
proved in Theorem 4 and Theorem 5.

2. Thecaseof b#1or c#1

The complex-valued solutions of the functional equation (1) in the
case when b # 1 or ¢ # 1 shall be investigated.

By setting y = 0 in (1) when b # 1 or by setting ¢ = 0 and y = z
in (1) when ¢ # 1, we can transform the functional equation (1) into

(1=b)f(x)* —af(0)f(z) = cf(0)* =0 (for b+ 1)

or

(1—)f(x)? — af(0)f(2) — bF(0)* =0 (for ¢ £1),

and their solutions are

“-*J%iz,f;“”gf(()) forallz € E (for b # 1)

or

@ﬂo) forallz € E (forb#1)
(2) flz)=q or

i@gl_—_cwfm) forallz € E (for ¢ # 1)

or
a4/ a?44(1—c)b
\ 2(1-c¢)

f(0) forallz e E (for c+#1).

First, we assume that a + b+ ¢ # 1. Then, by applying (2) to (1), we
obtain f(z) = 0 for all z € E. Hence, f(z) = 0 is the unique solution of
the functional equation (1) whena+b+c# landb# lora+b+c+# 1
and ¢ # 1. Now, let’s assume that a+b+c = 1. By puttinga =1—b—¢
in (2) we get f(x) = f(0) for all z € E. Therefore, f(z) = o, where « is
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a complex number, is the general solution of the functional equation (1)
whena+bt+c=1landb#lora+b+c=1andc+#1.

3. Thecaseof b=c=1

Suppose that b = ¢ = 1 in the functional equation (1). By putting

z=y=01in (1), we get
(a+1)f(0)* = 0.
First, assume that ¢ = —1. By putting y = 0 in (1), we obtain
F0)(f(0) = f(z)) = 0.
Hence, if f(0) # 0 then f(z) = f(0) # 0. Otherwise, by substituting —z
for y in (1),
0= f(0) = —f(2)f(=2)+ f(z)* + f(~z)?
= (f(=2) = 3(@))* + § /()2

Hence, it follows that f(z) = 0 for any z € E. Therefore, f(z) = a

(o is a complex number), for all # € E, is the general solution of the
functional equation

fle+9)* = —f(@)f(y) + f(2)* + f(y)>, forall z,y € E.

Now, let a # —1. We then have f(0) = 0. For this case, it follows from
the functional equation (1) that

fl-2) = (~g + .;-\/m) (o)

or

fles) = (=5 - 3V@=1) 1)

by putting y = —z in (1) and by using f(0) = 0. Further, by substituting
~x for z in the above equations, we get

f(z) = (—g + %\/a?——ziy £2)

or
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for all z € E. Thus, we obtain @ = —2 or a = 2 if there exists at least
one r € I such that f(z) # 0. If a = —2 then it follows from (1) that
f(2z)? =0, ie., f(z) =0, forany = € E, by putting y = z in (1). Hence,
f(z) =0 (for z € E) is the unique solution of (1) with a ¢ {—1,2} and
b=c=1.

Now let a = 2, b = ¢ = 1 and f(0) = 0. For this case the functional
equation (1) can be transformed into

(3) flz+y)* = (f(x) + f(y))*, foralzyekE,

which is equivalent to

4)  flet+y) = f@)+fly) or flz+y)=-f(z)— fly),
for all z,y € E.

‘THEOREM 1. Let f be a complex-valued mapping, defined on R,
which is continuous at 0. The mapping f is a solution of the functional
equation (3) or (4) with E = R if and only if f is linear, that is, there
exists a complex number a such that f(z) = az for all z € R.

Proof. 1t follows from (3) that f(0) =
putting ¥y = —z in (3) and by using f(0)
of f. Now, we shall prove

(5) f(nz) = nf(z)

for all integers 7 and any 2 € R. On account of the oddness of f we may
prove (5) only for integers n > 2. By putting y = z in (3) we get

(6) F(2) = 2f(x) or f(22) = —2f(s).
Replacing y in (3) by 2z yields

f(32)? = (f(z)+ f(22))
{9f(ar)2 if f(2z) = 2f(x),
f(@)? i f(2z) = —2f(2).

In view of (3) and (6), it follows
(8) faz)® = (f(22) + f(22))* = 16f(z)".
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On the other hand, by using (7), we obtain

flax)* = (f(x) + f(3z))
{ 16f(z)? if f(3z) = 3f(x)

I

)
Af () if f(32) = =3f(z ) r f(3z) = f(z),
0 if f(3z) = —f().

By comparing (8) with (9) and taking (7) into consideration, we get
f(3z) = 3f(z). Hence, it follows from (6) and (7) that

f(2z) = 2f ().

Thus, (5) holds true for n = 2. Assume that (5) holds true for all positive
integers < n (n > 2). Then, by putting y = nz in (3), we obtain
(10)  fl(n+1)z) = (n+1)f(z) or f((n+1)z)=—(n+ ) f(z).
Replacing y in (3) by (n + 1)z yields
f((n+2)e)?

_ [ @22 f(@)? i f((n+ 1)z) = (n+ 1) f(x),

- { n?f(z)? if f((n+1)z) = —(n+1)f(2).

On the other hand, by substituting 2z and nz for z and y in (3), respec-
tively, and by using induction hypothesis, it holds

(12) f((n+2)2)* = (n+2)*f(2)*.
By comparing (11) with (12) and by considering (10) we conclude
Hn+1)z) = (n+ 1) f(2),
which completes the proof of (5).
By substituting z/n, n # 0, for = in (5) we get

(13) (%) = %f(m)-

n

(9) =

(11)

Hence, for every rational number ¢, we have

flgr) = qf(z)
by (5) and (13). If we put z = 1 in the above equation then
(14) Ha) = f(1)q.

365



S.-M. Jung

The continuity of f at 0, together with (3), implies that f(z)? is contin-
uous at each x € R. From this fact and (14) it follows
(15) flr)y=f(Dr or f(r)=—f(1)r

for all irrational numbers r. Assume that f satisfies f(r) = —f(1)r for
some irrational number r. Then, by (15), it holds

(16)  flg+7)=Ff(D(g+r) or flg+r)=—Ff(1)(¢+7)
for any rational number ¢ # 0. On the other hand, by (3), (14) and the
assumption, we get

flg+7r)* = f(1)*(g )"
By comparing this equation with (16) we conclude f(1) = 0. Hence, if
f(r) = —f(1)r holds for some irrational number 7 then it follows

flz) =0
for all z € R. Now, assume that f(r) = f(1)r for all irrational numbers 7.
Then this assumption, together with (14), yields
flz) = f()z

for all z € R.
Conversely, every complex-valued mapping f, defined on R, of the

form f(z) = ax with a constant « satisfies the functional equation (3).
O

REMARK. If f is a real-valued mapping, the functional equation (3)
is equivalent to

(17) |[f(z+y)|=|f(z)+ fly)], forallz,yeFE.

Since (R, |- |) is a strictly normed space, according to Skof [6], the map-
ping f is a solution of the functional equation (3) if and only if f is
an additive mapping. (When f is complex-valued, the functional equa-
tion (3) implies the functional equation (17) but, in general, (17) does
not imply (3).)

It is easy to prove the following lemma. Hence, we omit the proof.
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LEMMA 2. Let f be a complex-valued solution of the functional equa-
tion (3). Then it holds

| f(252) | = 2" | f(z)]
for all x € E and all integers k.

The asymptotic behaviors of unbounded complex-valued solutions of
the functional equation (3) shall be investigated.

THEOREM 3. Let f be any complex-valued solution of the functional
equation (3) or (4). We further assume that there exist some M, My > 0
and an integer ng such that M; < |f(z)| < M, for any « € E with
2m0 < ||z|} < 20, If p > 0 is given, then
(a) {lzI"™7 = o(| f(z)]) and |f(z)| =o(||z]|""?), as ||lz|| — oo,

(b) [ f(z)| = o([lz]'"?) and |lz}|'** = o(] f(z)]), as [l«] —O.

Proof. 1t follows from the assumptions for | f(z)| that there are some
my, my > 0 for which

(18) mflz]| <[ f(2)] < myz]|

holds for all z € E with 2™ < ||z|| < 27", Now, let z € E, z # 0, be
given arbitrarily. We may choose an integer n such that 270 < [|27z|| <
270+1 From Lemma 2 and (18), we get

(19)
mille] = goml2°a] < o |7 =1 £(2)] € o2l = male]|
By using (19) we prove the part (a):
el 11 /(@)
— — 0 and : —0
@] = el 0 el = e

as ||z]] — oo. Analogously, we can easily prove the part (b) by using
(19). O

4. The stability of f(x +y)? = (f(x) + f(y))?

Using ideas from the papers of Hyers [2] and Rassias [5|, we shall inves-
tigate the Hyers-Ulam stability problem for the functional equation (3).
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Suppose f : E — R to be a mapping which fulfils
(20) [f@+y)* ~ (Fl2)+ f)? < 6
for some § > 0 and any z,y € E.

THEOREM 4. There exists an additive mapping T : E — R which
satisfies

(21) IT(z)* — f(z)’| < =, forallzc E.

Wil

Moreover, if U : E — R is another additive mapping which fulfils (21)
then
(22) T(z)* = U(x)?

forany r e E.

Proof. By using induction on n we first prove that

n—1

(23) S~ @ f @) <5 Y 2

for n € N. For n = 1, it is trivial by (20). Assume that (23) holds
true for some n. Then, by substituting 2"z for z and y in (20) and by
using (23), we show

FEa)2 = @M )P <
< IFEY )~ (20(272)] + 2% £(272)* ~ (27 f(2))?]

n—1
< G200 27

1=0)

< 6i2'”,

i=0

which completes the proof of (23). Dividing the both sides in (23) by 22n
yields

(24) @22 - ) < g
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for all z € E and n € N. It follows from (24) that, for n > m > 0

[(F(2°2)/2) = (f(27z)/2m)°
(25) = 52% (f(2"‘m2ma:)/2"—’")2_f(Qmm)?{
14
22m 3
— 0, asm — oo.

H

<

For each z € E we define
I ={neN|f(2"z) >0} and I] ={neN| f(2"z) <0}.
In view of (25), we know that if I,/ or I is an infinite set then the
sequence (f(2"z)/2"),c;+ or (f(2"z)/2"), ;- is a Cauchy sequence, re-
spectively. Now, let us define
lim 55 f(2"z) if I} is infinite,

7 —F 00
nelf

lim & f(2"z) otherwise.
7 — OO
nely

If both 7 and I are infinite sets then

T(r) =

1
(26) T(z) =— lim 2—nf(2":c).
nel;

The definition of T" and (24) imply the validity of (21). Let z,y € E
be given arbitrarily. It is not difficult to prove that there is at least one
infinite set among the sets LI NI NI IINLNI - IoNI NI
We may choose such an infinite set and denote this set by I. Let n € [
be given. Replacing z and y in (20) by 2"z and 2"y, respectively, and
then dividing the both sides in (20) by 22", we obtain

27) (@M@ +)/2") = (f(2")/2" + f(2"y)/2")? | <
By letting n — oo through I in (27) and taking (26) into consideration,
we immediately get

T(z+y)* = (T(x)+T(y)* or T(x-+y)?=(T(x)-T(y)°,
(28) for all z,y € E.

J
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The second equality in (28) can take place, e.g., when both I} and I;
are infinite sets and I = I} N I7 NI}, for some z,y € E, because (27)
and I = I} NI NI lead to

T+y

1 1
lm /(2@ ty) = lm o f(2( ) = Tl +y),
nel nell,

1 1

lim —f(2"2) = lim —f(2")=T(z)
7 — 00 27'l n— 00 27’1

nelj ne Il

and

M 1 n : l n

lim = f(2") = lim —f(2"%)=-T(y).
n — o0 2 n — 00 2
nel nely

T(z) = 0, for al z € E, is not only the unique solution of the second
functional equation in (28) but also a solution of the first equation in (28).
Hence, it holds

T+y) = (T)+T)" or |T(x+y)|=|T(z)+T(y)),
for all z,y € E.

According to Remark in section 3, 7" is an additive mapping.
Now, suppose U : E — R to be another additive mapping which
satisfies (21). Since T and U are additive mappings, it is clear that

T(nz) =nT(z) and U(nz) = ni(z)
for all n € N and any z € E. Hence, by (21), we get

TP ~UGaP = —iTna)? Vo))
< = (170w ~ f(ne)) + | f(ne) — UGno)
< 20
~ n?3
— 0, as n — oo,
which completes the proof of (22). O
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