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REAL PROJECTIVE STRUCTURES
ON THE (2,2,2,2)-ORBIFOLD

JINHA JUN

ABSTRACT. The (2,2,2,2)-orbifold is a 2-dimensional orbifold with
four order 2 cone points having 2-sphere as an underlying space. The
(2,2,2,2)-orbifold admits different geometric structures. The purpose
of this paper is to find some real projective structures on the (2,2,2,2)-
orbifold.

1. Introduction

When a group I' acts properly discontinuously but do not necessar-
ily act freely on a space X, the quotient space X/I is called orbifold.
Orbifold was first introduced by I. Satake in the name of V-manifold.
In section 3, we give the precise definition of the orbifold and discuss
its geometric structures. There are many reasons to study the orbifolds.
2-dimensional orbifolds occur naturally in the study of 3-dimensional
manifolds, e.g., Seifert fibered spaces. In [T1], Thurston gave a quite
complete treatment of the two dimensional case, and raised many inter-
esting questions.

2. (X,G)-manifolds

Let X be a manifold and G a Lie group acting (transitively) on X.
Let M be a manifold of the same dimension as X. An (X, G)-atlas on
M is a pair (U, P) where U is an open covering of M and & = {d, :
Us — X}y, eu is a collection of coordinate charts such that for each pair
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(Ua,Ug) € U x U and connected components C of U, N Uj there exists
gcaps € G such that goop o0 o = ¢5. An (X, G)-structure on M is
a maximal (X, G)-atlas and an (X, G)-manifold is a manifold together
with an (X, G)-structure on it. Suppose that M and N are two (X, G)-
manifolds and f : M — N is amap. Then f is an (X, G)—map if for each
pair of charts ¢, : U, — X and ¢5: V3 — X (for M and N respectively)
and a component C of U, N f~!(V;) there exists g =g(C,a, ) € G such
that the restriction of f to C equals Y5 ©go @, . There is a useful
globalization of the coordinate charts of a geometric structure in terms
of the universal covering space and the fundamenta! group. The proof of
the following basic result can be found in Goldman [G2].

DEVELOPMENT THEOREM. Let M be an (X, G)-manifold with uni-
versal covering space p : M — M and group of deck transformation
7 = m(M). Then there exists a pair (dev,h) such that dev : M — X
is an immersion and h : 1 — G is a homomorphism such that, for each
yem,

M 9, x

1 l lh(v)

M — X
dev
commutes. Furthermore if (dev’, k') is another such pair, there exists
g € G such that dev’ = go dev and h'(vy) = gh(v)¢™! for each v € =.

We say that such a pair (dev,h) is a development pair, and dev the
developing map and the homomorphism h a holonomy representation.

3. Orbifold

An n-dimensional orbifold (without boundary) is defined to be a space
equipped with a covering by open sets {U;} closed under finite intersec-
tions. To each U, is associated a finite group [';, an action of I'; on an
open subset U; of R*, a homeomorphism &; : U, /Ty — U;. Whenever
U; C Uj, there is to be an inclusion fi; : I — I'; and an embedding
(Z),v]— U — 0j equivariant with respect to f;; such that the following
diagram commutes (see Scott [Sc]):
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A covering orbifold of an orbifold © is an orbifold O with a projection
p : X5 — Xo between the underlying spaces, such that p is a local
covering , that is, each point € X5 in the domain has a neighborhood
U = U/T (where U is an open subset of R™) such that p restricted to U
is isomorphic to a map U /T’ — ﬁ/F’(F C I") and p is an even covering,
that is, each point ' € O in the range has a neighborhood V = V /T for
which each component U; of p~!(V) is isomorphic to V /T, where'; C T
is some subgroup. The isomorphism must respect the projections.

U — U/T U; —— V/T;
‘”l J" pl Jq
U e— U'JI’ V e— V/r

Similarly to (X, G)-structures on manifolds, we can define locally ho-
mogeneous geometries on orbifolds by using in the definition of orbifolds
all the mappings and group actions related to (X.G)-category. In that
sense, we can speak about (X,G )-orbifold.

The cone point of order n of a 2-dimensional orbifold means a point
whose neighborhood is modeled on R?/Z, with Z, acting by rotation
of order n. The (2,2,2,2)-orbifold is a 2-dimensional orbifold with four
order two cone points. We will denote it by S?(2,2,2,2). As defined in
Scott [Sc], the Euler number of $2(2,2,2,2) is zero. Then it is known
that our orbifold has a Euclidean structure and the Euclidean plane E?
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is the universal covering space (see Thurston [T1]). For convenience,
we will write M = $%(2,2,2,2) and M = EZ. Every Euclidean struc-
ture is a similarity structure which induces an obvious affine structure.
Similarly every affine structure determines a projective structure, using
embedding (R", Aff(R")) — (RP®, PGL(n + 1,R)). According to the De-
velopment Theorem, we can deduce that there exists a developing map
dev: M — RP?. N

To express the developing image clearly, we lift dev: M — RP? to the
universal covering dev : M — S2. The universal covering space S? of RP?
is realized geometrically as the sphere of directions in R3. Furthermore
the group of lifts of PGL(3,R) to S? equals the quotient

GL(3,R)/R* 2 SL(3,R) = {A € GL(3,R)| det(A) = +1}.

Hence there exists a lift of the holonomy map h : (M) — PGL(3,R) to
h:m (M) — SL(3,R).

4. Main Computation

Now we find some examples of RP?-structures on S%(2,2,2,2). Let
rectangle Q be the fundamental domain of our orbifold in E2. For com-
putational ease we will assume the developing image of Q in S? has ver-
tices at [0,0,1], [1,0,1}, [1,1,1], [0,1,1] in homogeneous coordinate: i.e., v is
equivalent to w if and only if v = Aw for some A > 0 for v,w € R® . Let
p; be the midpoints of each sides in Q and R; the order two deck trans-
formation in S? fixing p; for i=1,2,34. If T is the deck transformation
group of M with generators Rls , then I' admits the presentation

I'=< Rl,RQ,R3,R4 | R? = Ré = Rg = Rfl = I, R,1R2R3R4 =]>
We want to find A B,C,D in SL(3,R) acting on S? satisfying

(1) A2=B=C2=D?=]
(2) ABCD = |

(3) A[0,0,1] = [1,0,1]
(4) B1,0,1] = [1,1,1]
(5) Cl1,1,11 =10,1,1]
(6) D[0,1,1] = [0,0, 1]
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Real projective structures on the (2,2,2,2)-orbifold
The possible A, B, C,D € SL(3,R) satisfying the conditions (1) and
(3) ~ (6) are easily computed. They turn out to be

-1 ay 1
A — O ClQ O
at -1 a(l—ap) 1

with fixed points [1,0,1 — ao],

by —by—biby B2 —1 (L+b1)(1+bs)
—b1(1+b2) b%—l 1+ by + biby

with fixed points [1 + by, 1,1 + be],

-1 —C 1+ 1
C= Cg—'l —Cj} — Cp — C1Cg (1+C1)(1+02)
-1 —ca(l+c) 1+c¢ +ac

with fixed points [1,1 + ¢z, 1 + ¢,

—d 0 0
D= —dy 11
—dy(1+dy) d2—1 1
with fixed points [0,1, 1+ d3].

Since det A = —aj > 0,det B = b3 > 0,detC =: ¢} > 0 anddet D =
d3 > 0, we see that

(7) 02<0,b2>0,02>0,d1>0.
The fact that all R; have order two implies (2) is equivalent to
(2" CD = BA.
di —dz — (1 + e1)drds -1+ (1+ca)d}
CD = d1(1—C§)—d2 4(1+Cl)(1+02)d1d2 w1+(1 -~ Cl)(l—sz)d%
di(1~c3) —ds —dida(1 + 1 +crcz) =1+ (L +er+ciez)ds

—1+4 (1 +b1)a3 a1 —az — a1az(l + b1)
-1+ (1 + by +b1b2)a§ ay — 02(1 — b%) —araz{l+ by + b]bz)

[
v
—

[( “14+ (1 +b)(1+b2)aj a1 —a2(l —b3) — a1az (L + b1)(1 + b2)
BA =
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From (2'), we get the following 6 equations with 8 unknowns.

®)  di—dy— (1 +e)didy = =1+ (14 by)(1 + by)a?

(9 dl-c)~do— (1 +c)(1 +cp)didy = 1 + (1 +by)a

(10) dy(1—c3) —dy — didy(1 4+ ¢ +erea) = (1 + by + blbz)ag -1
(1) =1+ (1 +e)d] =a; —ax(l — b2) ~ arag(l -+ by)(1 + by)

(12) =1+ (1 +e)(1+e)d; = a; — ay — agas(1 = by)

(13) =14+ (1+c + crey)dy = ap — ag(1—b3) — ¢1az(1 -+ by + byby)

To determine A, B, C, D, we only need to solve the above equations
with ay < 0, b2 > 0, ¢ >0, and d; > 0.
Subtract (11) from (12), (9) from (8), (13) from (12), (9) from (10), (11)
from (13), and (10) from (8) respectively.

(14) C2(1+(?1)d% :a1a2b2(1+b1) —agbg
(15) dic; + cp(1 + cr)didy = bo(1 + by)a3
(16) ng? = —agbg + a1a2b1b2
(17) C2d1d2 = b]bg(lg
(18) Clczdilz - alagbg
(19) C%dl + Clczdldg = b2a§
Because cyd; # 0 by (7),
b
(18) € = a1a222 by (18),
blbza%
! dy = ——= by (17).
(17) 2= T y (17)
Firstly, assume
(assumption 1) by =0
which implies
(20) dy =0 by (17),
codi = —agb? by (16),
(21) dich = bya? by (15) and (20).
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Multiplying the above two equations gives
(22) cody = —aghs .
Substituting the above into (21) gives

(23) €y = —ay by (7)

which yields

Thus
(25) o= -2 by (18).
by

Finally, put (24) and (25) into (11), we obtain

“14+(1+ (-%))bg = a; — ap(1 — b2) — aras(1 + by)

which becomes
((12 - 1)(b2 + 1)(b2 - (]. + al)) = 0 .
Since ap; < 0 and by > 0 by (7),

(26) bp=1+a, >0
which yields in turn

(27) d] =1+ ap by (24),
(28) o =-77 @ by (25).

Putting (20), (26), (27) and (assumption 1) into (8) gives
(2+ay) = (2+a)as.

Because 1 + a; = by > 0 and a2 < 0 by (7) and (26),

(29) a = —1

which implies

(30) =1 by (23).

In summary, we get the solution of our 6 equations under b, = 0 as
follows.
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Solution (1)

(@, independent variable greater than -1 by (26)
g = -1 (2 )
by =0 by (assumptionl)
b2 =1 + ay (2())
Ccp = —T_%_la (28)
Cy = 1 (3())
dl =1+ ay (2 )
\d2 =0 by (20)
Secondly, assume
(assumption 2) by #0.
Note that d; # 0 by (7). Then (16) becomes
CQd% a2b§
ay —
a2b162 a2b1b2
dlblbga bQ
31 2 by (17
( ) d2a2b1b2 b1 Y ( )
_diag | b
Cd b
Substitute the above into (18), then we get
o = a1a2b2 i d1a2 % a2b2
YT ad TV dy by od
2 2 2 2
G,ng b2a2 Cl»2b2 b2a2
2 = = by (17
(3 ) C2d1d2 bl(lgd% blbgag blcgd% y ( )
. 1 bg(lg
N bl b102d§

Putting (17) and (32) into (19) gives



Real projective structures on the (2,2,2,2)-orbifold
Simplifying the above, we have
(33) asby = —djcsy .
Then (31) and (32) become

dl Co dl bg bg d:fCQ

3 A A T
1 by
(35) c| = E - Ed—l .

Substituting the above two equations and (33) intc (18) gives

1 bg 9 bQ ng?
—_—— — (L _ £ 1 __d S
(bl bldl )CQ 1 (bl bzdg)( ](’2) )

which simplified as

(36) b2d2 = bICle .
Thus
b d
(37) G =——— by (34).
b H

Putting (35) and (36) into (8) gives

bicadi(cody + bacody + by + bad;)
— ((cady + dy + l)bg — (dy + cpdy)cad by — cgd%)
= bicad; (cady + bacady + by + bod)
~ ({cody + dy 4+ 1)bo + c2dy ) (b2 — cod,)
= (cady + bacady + by + body ) (bycody -~ by + cdy) = 0 .

Therefore Czdl + bQC2d1 + bg + b2d1 = 0, or b]Cle — (')2 + Czdl =0. By (7)
only the second is true. Hence

?

(38) b2 = C2d1(1 + bl) 7£ 0.
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which yields in turn
(32(11(1+b1)—d1 d]

(39) a; = i = E(CQ + by — 1) by (37),
dl —(1+b1)(;2d1 Cz+b1C2— 1
4 _ I e 4
(10) o o 2 by (35),
cod 1
(41) g == ——%21 e —1 n bl by (33)’
bieyd
(42)  dp = — 12 by by (36).

02d1(1 + bl) - 1 + bl
Then (12) becomes

(bl(]- + bl) — (1 -+ bl)(CQ + b1C2 — 1))(1 + CQ)drf
- 2(1 -+ bl)(CQ + b102 - 1)d1 - b](l + b]) - b1

Since ¢g, d; > 0 and 14+-b; > 0by (41) and (7), (1+c2)(1+by)d;+b,+2 £ 0.

Hence

(1 - CQ)(I +b1)d1 - b[ = 0.

Note that ¢; = 1 implies b, = 0 which is contradicted to (assumption 2).
Moreover 1+ b, > 0 by (41) and (7). Therefore
b
(1 —e)(1+by)
Putting the above into (38) and (39) gives

b
(44) by = 12
1-— Co
(45) 4 — Cco + Cle -1
1=

(I1—e)(1+8y)°

respectively. Under b; # 0, we get the other solution as follows.
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Solution (2)

( __Cy + C2b1 -1 .
@ = (= e ) by (45)

b1 independent variable greater than -1 not equal to 0

by = A2 by (44)

¢ =Gt =1 bblc -1 by (40)
c;  positive independent variable not equal to 1
d, = by by (43)

(11- CQ)(]. + bl)

|2 = ﬂiﬁ by (42)

Note that d; > 0 implies either =1 < b, < 0,¢3 > 1l or by > 0,0 <
co < 1.

Pictured below are the developing images in E? using the stereographic
projection from (0, 0, -1) with various choice of value of the each param-
eters. The equator in S? is drawn as the circles in the pictures.

Solution(1)
a_l =064
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Solution(1) m

atl=-8.?7 T

/.

Solution(2)
b1l=-6
c2Z=2
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Solution(2)
bl =1
c 2 =08.4
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