LIE DERIVATIVES ON HOMOGENEOUS REAL HYPERSURFACES OF TYPE A IN COMPLEX SPACE FORMS JUNG-HWAN KWON AND YOUNG JIN SUH ABSTRACT. The purpose of this paper is to give some characterizations of homogeneous real hypersurfaces of type A in complex space forms $M_n(c)$, $c\neq 0$, in terms of Lie derivatives. ### 1. Introduction A complex n-dimensional Kaehler manifold of constant holomorphic sectional curvature c is called a complex space form, which is denoted by $M_n(c)$. The complete and simply connected complex space form is isometric to a complex projective space $P_n(C)$, a complex Euclidean space C^n , or a complex hyperbolic space $H_n(C)$ according as c > 0, c = 0 or c < 0 respectively. The induced almost contact metric structure of a real hypersurface M of $M_n(c)$ is denoted by (ϕ, ξ, η, g) . Now, there exist many studies about real hypersurfaces of $M_n(c)$, $c\neq 0$. One of the first researches is the classification of homogeneous real hypersurfaces of a complex projective space $P_n(C)$ by Takagi [13], who showed that these hypersurfaces of $P_n(C)$ could be divided into six types which are said to be of type A_1, A_2, B, C, D and E, and in [3] Cecil-Ryan and in [8] Kimura proved that they are realized as the tubes of constant radius over Hermitian symmetric spaces of compact type of rank 1 or rank 2. Also Berndt [1], [2] showed recently that all real hypersurfaces with constant principal curvatures of a complex Received April 28, 1997. ¹⁹⁹¹ Mathematics Subject Classification: Primary 53C40; Secondary 53C15. Key words and phrases: Real hypersurfaces in complex space forms, Lie derivatives, infinitesimal conformal transformation, Real hypersurfaces of type A. This paper was supported by the grant from Basic Science Research Program, BSRI 97-1404 Ministry of the Education, 1997 and partly by TGRC-KOSEF. hyperbolic space $H_n(C)$ are realized as the tubes of constant radius over certain submanifolds when the structure vector field ξ is principal. On the other hand, Okumura [12] and Montiel and Romero [11] proved the followings respectively. THEOREM A. Let M be a real hypersurface of $P_n(C)$, $n \ge 2$. If it satisfies $$(1.1) A\phi - \phi A = 0,$$ then M is locally congruent to a tube of radius r over one of the following Kaehler submanifolds: - (A₁) a hyperplane $P_{n-1}(C)$, where $0 < r < \frac{\pi}{2}$, (A₂) a totally geodesic $P_k(C)$ $(1 \le k \le n-2)$, where $0 < r < \frac{\pi}{2}$. THEOREM B. Let M be a real hypersurface of $H_n(C)$, $n \ge 2$. If it satisfies (1.1), then M is locally congruent to one of the following hypersurfaces: - (A_0) a horosphere in $H_n(C)$, i.e., a Montiel tube. - (A_1) a tube of a totally geodesic hyperplane $H_k(C)$ (k = 0 or n-1), - (A_2) a tube of a totally geodesic $H_k(C)$ $(1 \le k \le n-2)$. Now hereafter, unless otherwise stated, the above kind of real hypersurfaces in Theorem A or in Theorem B are said to be of real hypersurfaces of type A. From two decades ago there have been so many investigations for real hypersurfaces of type A in $M_n(c)$, $c\neq 0$ and several characterizations of this type have been obtained by many differential geometers (See [1], [3], [7], [11] and [12]). But until now in terms of Lie derivatives only a few characterizations are known to us. From this point of view we have paid our attention to the works of Okumura [12] and Montiel and Romero [11] as in Theorem A and in Theorem B respectively. They showed that a real hypersurface M in $P_n(C)$ or in $H_n(C)$ is locally congruent to a real hypersurface of type A if and only if the structure vector ξ is an infinetesimal isometry, that is $\mathcal{L}_{\xi}g = 0$, which is equivalent to (1.1), where \mathcal{L}_{ξ} denotes the Lie derivative along the structure vector ξ. Being motivated by these results Ki, Kim and Lee [4] proved that the Lie derivatives $\mathcal{L}_{\xi}g = 0$, $\mathcal{L}_{\xi}\phi = 0$ or $\mathcal{L}_{\xi}A = 0$ are equivalent to each other, where A denotes the second fundamental tensor of M in $M_n(c)$. In this paper we want to generalize these results and to investigate further properties of real hypersurfaces of type A in terms of the tensorial formulas concerned with the Lie derivatives along the structure vector field ξ as follows: THEOREM. Let M be a real hypersurface of $M_n(c)$, $c \neq 0$, $n \geq 3$. Assume that the structure vector ξ of M satisfies one of the followings - (1) $\mathcal{L}_{\xi}g = fg$ for the induced Rimannian metric g, - (2) $\mathcal{L}_{\xi}\phi = f\phi$ for the structure tensor ϕ , (3) $\mathcal{L}_{\xi}\phi = fA$ for the second fundamental tensor A, - (4) $\mathcal{L}_{\xi}\phi = fA\phi$ for the certain tensor $A\phi$ of type (1,1) or, - (5) $\mathcal{L}_{\mathcal{E}}\phi = f\phi A$ for the certain tensor ϕA of type (1,1), where f denotes any differentiable function defined on M. Then M is locally congruent to a real hypersurface of type A. In section 2 the theory of real hypersurfaces in complex space forms is recalled and in section 3 we will prove the first part of the Theorem when ξ becomes an infinitesimal conformal transformation. In section 4 we will give the complete proof of the latter parts of the Theorem in above. Namely, some characterizations of real hypersurfaces in $M_n(c)$ will be given in terms of the tensorial formulas concerned with the Lie derivatives $\mathcal{L}_{\xi}\phi$. ## 2. Preliminaries Let M be a real hypersurface of a complex n-dimensional complex space form $M_n(c)$, $c \neq 0$, $n \geq 3$ and let C be a unit normal vector field on a neighborhood of a point x in M. We denote by J an almost complex structure of $M_n(c)$. For a local vector field X on a neighborhood x in M, the transformation of X and C under J can be represented as $$JX = \phi X + \eta(X)C, \quad JC = -\xi,$$ where ϕ defines a skew-symmetric transformation on the tangent bundle TM of M, while η and ξ denote a 1-form and a vector field on a neighborhood of x in M, respectively. Moreover it is seen that $g(\xi,X)=\eta(X)$, where g denotes the induced Riemannian metric on M. By properties of the almost complex structure J, the set (ϕ,ξ,η,g) of tensors satisfies (2.1) $$\phi^2 = -I + \eta \otimes \xi, \quad \phi \xi = 0, \quad \eta(\phi X) = 0, \quad \eta(\xi) = 1,$$ where I denotes the identity transformation and X denotes any vector field tangent to M. Accordingly, this set (ϕ, ξ, η, g) defines the almost contact metric structure on M. Furthermore the covariant derivative of the structure tensors are given by (2.2) $$(\nabla_X \phi) Y = \eta(Y) A X - g(AX, Y) \xi, \quad \nabla_X \xi = \phi A X,$$ where ∇ is the Riemannian connection of g and A denotes the shape operator with respect to the unit normal C on M. Since the ambient space is of constant holomorphic sectional curvature c, the equations of Gauss and Codazzi are respectively given as follows: (2.3) $$R(X,Y)Z = \frac{c}{4} \{ g(Y,Z)X - g(X,Z)Y + g(\phi Y,Z)\phi X - g(\phi X,Z)\phi Y - 2g(\phi X,Y)\phi Z \} + g(AY,Z)AX - g(AX,Z)AY,$$ $$(2.4) (\nabla_X A)Y - (\nabla_Y A)X = \frac{c}{4} \{ \eta(X)\phi Y - \eta(Y)\phi X - 2g(\phi X, Y)\xi \},$$ where R denotes the Riemannian curvature tensor of M and $\nabla_X A$ denotes the covariant derivative of the shape operator A with respect to X. Now, in order to get our result, we introduce a lemma which was proved by Ki and Suh [6] as follows: LEMMA 2.1. Let M be a real hypersurface of a complex space form $M_n(c)$. If $A\phi + \phi A = 0$, then c = 0. # 3. The infinitesimal conformal transformations Before going to prove our assertion in Case (1), let us introduce a slight weaker condition than an infinitesimal isometry. A vector field X on a Riemannian manifold is said to be an *infinitesimal conformal transformation* if the metric tensor g satisfies $\mathcal{L}_X g = fg$, where \mathcal{L}_X denotes the Lie derivative with respect to the vector field X and f denotes a differentiable function defined on M. Let M be a real hypersurface of $M_n(c)$, $c \neq 0$, $n \geq 3$, whose structure vector ξ is an infinitesimal conformal transformation. Then the metric tensor g on M satisfies $$(\mathcal{L}_{\xi}g)(X,Y) = g((\phi A - A\phi)X,Y)$$ $$= fg(X,Y),$$ where X and Y are any vector fields tangent to M. It yields that $$(\phi A - A\phi)X = fX$$ for any differentiable function f on M. From this, putting $X = \xi$, we have $$\phi A \xi = f \xi.$$ So, from applying the operator ϕ we have $$(3.2) A\xi = \alpha \xi,$$ where α denotes $g(A\xi, \xi)$. By virtue of the latter two formulas (3.1) and (3.2) we know that f identically vanishes. This means the structure vector ξ becomes an infinitesimal isometric transformation. Thus by Theorems A and B in the introduction, we have completed the proof of our Theorem in Case (1). # 4. Some characterizations of real hypersurfaces in terms of $\mathcal{L}_{\xi}\phi$ In this section let us prove the latter part of our main Theorem. Namely, we will give some characterizations of real hypersurfaces of type A in terms of the Lie derivatives of the structure tensor ϕ along the structure vector ξ . Let M be a real hypersurface of $M_n(c)$, $c \neq 0$, $n \geq 3$ whose structure vector ξ on M satisfies $$\mathcal{L}_{\xi}\phi = fT$$ where f is a differentiable function and T is a tensor field of type (1,1) defined on M. By the definition of the Lie derivative and (2.2) we have (4.1) $$\mathcal{L}_{\xi}\phi = \phi^2 A - \phi A \phi + A \xi \otimes \eta - \xi \otimes \eta(A) = fT,$$ from which together with (2.1), it follows that $$(4.2) A - A\xi \otimes \eta + \phi A\phi = -fT.$$ Operating the linear transformation (4.2) to the structure vector ξ and taking account of (2.1), we have $$(4.3) fT\xi = 0.$$ Next, operating ϕ to (4.2) to the left and using (2.1), we have (4.4) $$A\phi - \phi A + \phi A \xi \otimes \eta - \xi \otimes \eta (A\phi) = f\phi T.$$ Operating ϕ to (4.2) to the right and making use of (2.1), we have (4.5) $$\phi A - A\phi - \phi A\xi \otimes \eta = fT\phi.$$ Taking the inner product of (4.2) with the structure vector ξ , we have for any X in TM $$(4.6) g(AX,\xi) - \alpha \eta(X) + fg(TX,\xi) = 0.$$ Then from (4.4) and (4.5) we have LEMMA 4.1. Let M be a real hypersurface of $M_n(c)$, $c \neq 0$, $n \geq 3$. Assume that the structure vector ξ satisfies $\mathcal{L}_{\xi}\phi = fT$, where f is a differentiable function and T is a tensor field of type (1,1). If the structure vector ξ is principal, then it satisfies (4.7) $$f\phi T + fT\phi = 0$$, $2(A\phi - \phi A) = f(\phi T - T\phi)$. Case (2): $T = \phi$ Assume that $T = \phi$. In this Case (2) the formula (4.6) yields the structure vector ξ is principal. Then, by Lemma 4.1 we have $A\phi - \phi A = 0$. So by virtue of Theorems A and B, we have our assertion under this case. Case (3): $$T = A$$. We assume that T = A. By (4.4) and (4.5), we have $$(4.8) A\phi - (1+f)\phi A + \phi A\xi \otimes \eta - \xi \otimes \eta (A\phi) = 0,$$ $$(4.9) \phi A - (1+f)A\phi - \phi A\xi \otimes \eta = 0.$$ Acting the structure vector ξ to the linear transformation (4.8), we get $$(4.10) f\phi A\xi = 0.$$ Taking an inner product (4.9) with the structure vector ξ , we have $$(4.11) (1+f)\phi A\xi = 0.$$ From (4.10) and (4.11) we have $$\phi A \xi = 0$$, that is, ξ is the principal curvature vector with principal curvature α . Then by Lemma 4.1 we have $$(4.12) f(A\phi + \phi A) = 0,$$ $$(4.13) (2+f)(A\phi - \phi A) = 0.$$ Let us denote by M_1 a subset of M consisting of points at which $f(x) \neq 0$. Now let us assume M_1 is not empty. Then, by (4.12), we see that $A\phi + \phi A = 0$ on M_1 , and hence c = 0 on M_1 by Lemma 2.1. This makes a contradiction. So M_1 is empty. Therefore the function f vanishes identically on M. Then (4.13) together with Theorems A and B we have our assertion in Case (3). Case (4): $$T = A\phi$$ Next, we assume that $T = A\phi$. Then, by (4.6), we have $$(4.14) A\xi - \alpha\xi = -f\phi A\xi.$$ Applying ϕ to (4.14) and using (2.1) and (4.14), we have $(1+f^2)\phi A\xi = 0$, that is, ξ is the principal curvature vector with principal curvature α . From this and (4.5) we have $$(4.15) \phi A - A\phi + f(A - \alpha \eta \otimes \xi) = 0.$$ Operating ϕ to (4.15) to the right and using (2.1) and the fact ξ is principal, we get $$(4.16) \phi A \phi + f A \phi + (A - \alpha \eta \otimes \xi) = 0$$ from which together with (4.15), it follows (4.17) $$\phi A - (1 + f^2)A\phi - f\phi A\phi = 0.$$ Next, operating ϕ to (4.16) to the left and using (2.1), we get $$(4.18) \phi A - A\phi + f\phi A\phi = 0.$$ From (4.15) and (4.18), we find $$(4.19) f\phi A\phi - f(A - \alpha\eta \otimes \xi) = 0.$$ From this, operating ϕ to the left and using (2.1) and the fact ξ is principal, we have $$(4.20) f(A\phi + \phi A) = 0.$$ Let M_1 be an open set consisting of points x in M such that $f(x) \neq 0$. If M_1 is not empty, then, by (4.20), we see that $A\phi + \phi A = 0$ on M_1 , and hence c = 0 on M_1 by Lemma 2.1. This makes a contradiction. Hence M_1 is empty. Therefore the function f vanishes identically on M. From this, together with (4.15), we have $\phi A = A\phi$. So by Theorems A and B, we have our assertion in this case. Case (5): $$T = \phi A$$ Finally, we assume that $T = \phi A$. Then, by (4.6), the structure vector ξ is principal curvature vector with principal curvature α . From this together with (4.5) we have $$(4.21) \phi A - A\phi = f\phi A\phi.$$ From this, applying ϕ to the left and using (2.1) and ξ is principal, we get $$(4.22) \phi A \phi + (A - \alpha \eta \otimes \xi) = f A \phi.$$ Next, operating ϕ to (4.22) to the right and using (2.1), we find $$(4.23) A\phi - \phi A + f(A - \alpha \eta \otimes \xi) = 0,$$ from which together with (4.21) and (4.22) it follows $$(4.24) 2(A\phi - \phi A) + f^2 A\phi = 0.$$ Operating ϕ to (4.23) to the left and using (2.1) and also the fact ξ is principal, we have $$\phi A\phi + f\phi A + (A - \alpha\eta \otimes \xi) = 0,$$ from which together with (4.23) it follows $$(4.25) A\phi - \phi A = f\phi A\phi + f^2\phi A.$$ From (4.21) and (4.25) we have $$2(A\phi - \phi A) = f^2 \phi A,$$ from which together with (4.24) it follows $$f^2(A\phi + \phi A) = 0.$$ Let us also denote by M_1 an open set consisting of points x in M such that $f(x) \neq 0$. Then by the same argument as in above, we know that such an open subset M_1 do not exist. So f vanishes identically on M. Thus we also have our assertion in Case (5). # References - [1] J. Berndt, Real hypersurfaces with constant principal curvature in a complex hyperbolic space, J. Reine Angew Math. 395 (1989), 132-141. - [2] , Real hypersurfaces with constant principal curvatures in complex space forms, Geometry and Topology of Submanifolds II, Avignon, 1988, World Scientific, (1990), 10-19. - [3] T. E. Cecil and P. J. Ryan, Focal sets and real hypersurfaces in complex projective space, Trans. Amer. Math. Soc. 269 (1982), 481-498. - [4] U-H. Ki, S. J. Kim and S. B. Lee, Some characterizations of a real hypersurface of type A, Kyungpook Math. J. 31 (1991), 73-82. - [5] U-H. Ki, S. Maeda and Y.J. Suh, Lie derivatives on homogeneous real hypersurfaces of type B in a complex projective space, Yokohama Math. J. 42 (1994), 121-131. - [6] U-H. Ki and Y. J. Suh, On real hypersurfaces of a complex space form, Math. J. Okayama Univ. 32 (1990), 207-221. - [7] _____, On a characterization of type A in a complex space form, Canadian Math. Bull. 37 (1994), 238-244. - [8] M. Kimura, Real hypersurfaces and complex submanifolds in a complex projective space, Trans. Amer. Math. Soc. 296 (1986), 137-149. - [9] J.-H. Kwon and H. Nakagawa, A note on real hypersurfaces of a complex projective space, J. Austral. Math. Soc.(A). 47 (1989), 108-113. - [10] Y. Maeda, On real hypersurfaces of a complex projective space, J. Math. Soc. Japan 28 (1976), 529-540. - [11] S. Montiel and A. Romero, On some real hypersurfaces of a complex hyperbolic space, Geom. Dedicata 20 (1986), 245-261. - [12] M. Okumura, Real hypersurfaces of a complex projective space, Trans. Amer. Math. Soc. 212 (1975), 355-364. - [13] R. Takagi, On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math. 10 (1973), 495-506. #### JUNG-HWAN KWON Department of Mathematics Education, Taegu University, Taegu 705-714, Korea ### Young Jin Suh DEPARTMENT OF MATHEMATICS, KYUNGPOOK NATIONAL UNIVERSITY, TAEGU 701-701, KOREA E-mail: yjsuh@bh.kyungpook.ac.kr