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LIE DERIVATIVES ON HOMOGENEOUS
REAL HYPERSURFACES
OF TYPE A IN COMPLEX SPACE FORMS

Jung-HwaN KwoN AND YOUNG JIN SuH

ABSTRACT. The purpose of this paper is to give some characteriza-
tions of homogeneous real hypersurfaces of type A in complex space
forms Mn(c), c¢#0, in terms of Lie derivatives.

1. Introduction

A complex n-dimensional Kaehler manifold of constant holomorphic
sectional curvature c is called a complex space form, which is denoted
by M,(c). The complete and simply connected complex space form
is isometric to a complex projective space P, (C), a complex Euclidean
space C™, or a complex hyperbolic space H,,(C) accordingasc > 0, ¢ =
0 or ¢ < 0 respectively. The induced almost contact metric structure of
a real hypersurface M of M,,(c) is denoted by (¢,&,7,9).

Now, there exist many studies about real hypersurfaces of M,(c),
c¢#0. One of the first researches is the classification of homogeneous
real hypersurfaces of a complex projective space P,,(C) by Takagi [13],
who showed that these hypersurfaces of P,,(C) could be divided into
six types which are said to be of type A;, A2, B,C,D and E, and in
[3] Cecil-Ryan and in [8] Kimura proved that they are realized as the
tubes of constant radius over Hermitian symmetric spaces of compact
type of rank 1 or rank 2. Also Berndt [1], [2] showed recently that
all real hypersurfaces with constant principal curvatures of a complex
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hyperbolic space H,(C) are realized as the tubes of constant radius
over certain submanifolds when the structure vector field ¢ is principal.

On the other hand, Okumura [12] and Montiel and Romero [11]
proved the followings respectively.

THEOREM A. Let M be a real hypersurface of P,(C), n>2. If it
satisfies

(1.1) A — pA =0,

then M is locally congruent to a tube of radius r over one of the fol-
lowing Kaehler submanifolds:

(A1) a hyperplane P,,_1(C), where 0 < r < s
(A2) a totally geodesic Px(C) (1 <k <n—2), where 0 < r < 3

THEOREM B. Let M be a real hypersurface of H,(C), n>2. If it
satisfies (1.1), then M is locally congruent to one of the following hy-
persurfaces:

(Ao) a horosphere in H,(C), i.e., a Montiel tube,
(A1) atube of a totally geodesic hyperplane Hy,(C) (k=0 orn— 1),
(A2) a tube of a totally geodesic Hx(C) (1 < k < n — 2).

Now hereafter, unless otherwise stated, the above kind of real hyper-
surfaces in Theorem A or in Theorem B are said to be of real hypersur-
faces of type A.

From two decades ago there have been so many investigations for real
hypersurfaces of type A in M,(c), c#0 and several characterizations of
this type have been obtained by many differential geometers (See [1],
(3], [7], [11] and [12]). But until now in terms of Lie derivatives only
a few characterizations are known to us. From this point of view we
have paid our attention to the works of Okumura [12] and Montiel and
Romero [11] as in Theorem A and in Theorem B respectively. They
showed that a real hypersurface M in P,(C) or in H,(C) is locally
congruent to a real hypersurface of type A if and only if the structure
vector £ is an infinetesimal isometry, that is L¢g = 0, which is equivalent
to (1.1), where L, denotes the Lie derivative along the structure vector

€.
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Being motivated by these results Ki, Kim and Lee [4] proved that
the Lie derivatives L¢g = 0, L¢¢p = 0 or LA = 0 are equivalent to each
other, where A denotes the second fundamental tensor of M in M,(c).

In this paper we want to generalize these results and to investigate
further properties of real hypersurfaces of type A in terms of the ten-
sorial formulas concerned with the Lie derivatives along the structure
vector field £ as follows:

THEOREM. Let M be a real hypersurface of M,(c), ¢ # 0, n = 3.
Assume that the structure vector £ of M satisfies one of the followings

) Leg = fg  for the induced Rimannian metric g,

) Lep = f¢ for the structure tensor ¢,

) Legp = fA  for the second fundamental tensor A,

) Lep = fAd  for the certain tensor A¢ of type (1,1) or,
(5) Le¢p = fpA  for the certain tensor A of type (1,1),

where f denotes any differentiable function defined on M. Then M is
locally congruent to a real hypersurface of type A.

(1
(2
(3
(4

In section 2 the theory of real hypersurfaces in complex space forms
is recalled and in section 3 we will prove the first part of the Theorem
when £ becomes an infinitesimal conformal transformation. In section
4 we will give the complete proof of the latter parts of the Theorem in
above. Namely, some characterizations of real hvpersurfaces in M, (c)
will be given in terms of the tensorial formulas concerned with the Lie
derivatives L¢¢.

2. Preliminaries

Let M be a real hypersurface of a complex n-dimensional complex
space form M,,(c), ¢ # 0, n 2 3 and let C be a unit normal vector field
on a neighborhood of a point « in M. We denote by J an almost com-
plex structure of M, (c). For a local vector field X on a neighborhood
z in M, the transformation of X and C under J can be represented as

JX = ¢X +7(X)C, JC =--¢,
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where ¢ defines a skew-symmertic transformation on the tangent bun-
dle TM of M, while  and ¢ denote a 1-form and a vector field on
a neighborhood of z in M, respectively. Moreover it is seen that
9(&, X) = n(X), where g denotes the induced Riemannian metric on
M. By properties of the almost complex structure J, the set (0,€,m,9)
of tensors satisfies

(2.1) ¢ =-I+n®& ¢£=0, n(gX)=0, n€) =1,

where I denotes the identity transformation and X denotes any vector
field tangent to M. Accordingly, this set (¢,£,7, g) defines the almost
contact metric structure on M. Furthermore the covariant derivative of
the structure tensors are given by

(2.2) (Vx@)Y =n(Y)AX - g(AX,Y)¢, Vxi=¢AX,

where V is the Riemannian connection of ¢ and 4 denotes the shape
operator with respect to the unit normal C on M. Since the ambient
space is of constant holomorphic sectional curvature ¢, the equations of
Gauss and Codazzi are respectively given as follows :

(2.3)
RIX,Y)Z = L{g(Y. 2)X = g(X, Z)Y + (oY, 2)oX — g(¢X, Z)8Y
- 29(¢X,Y)9Z} + g(AY, Z)AX - g(AX, Z)AY,

(24) (VxA)Y = (VyA)X = L{n(X)oY = n(Y)$X — 20(¢X.Y )¢},

where R denotes the Riemannian curvature tenscr of M and V xA
denotes the covariant derivative of the shape operator A with respect
to X.

Now, in order to get our result, we introduce a lemma which was
proved by Ki and Suh [6] as follows:

LEMMA 2.1. Let M be a real hypersurface of a complex space
form M, (c). If Ap + ¢pA = 0, then ¢ = 0.
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3. The infinitesimal conformal transformations

Before going to prove our assertion in Case (1), let us introduce a
slight weaker condition than an infinitesimal isometry.

A vector field X on a Riemannian manifold is said to be an infinitesi-
mal conformal transformation if the metric tensor g satisfies Lxg = fg,
where L x denotes the Lie derivative with respect to the vector field X
and f denotes a differentiable function defined on M.

Let M be a real hypersurface of M,(c), ¢ # 0, n = 3, whose struc-
ture vector £ is an infinitesimal conformal transformation. Then the
metric tensor g on M satisfies

(Legh(X,Y) = g((pA — A9)X.Y)
- fg(Xv Y)’
where X and Y are any vector fields tangent to M. It yields that
(A — Ad)X = fX

for any differentiable function f on M. From this, putting X = £, we
have

(3.1) PAL = f€.
So, from applying the operator ¢ we have
(3.2) A = af,

where o denotes g(AE, £). By virtue of the latter two formulas (3.1) and
(3.2) we know that f identically vanishes. This means the structure
vector { becomes an infinitesimal isometric transformation. Thus by
Theorems A and B in the introduction, we have completed the proof of
our Theorem in Case (1).

4. Some characterizations of real hypersurfaces in terms of

Leo

In this section let us prove the latter part of our main Theorem.
Namely, we will give some characterizations of real hypersurfaces of
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type A in terms of the Lie derivatives of the structure tensor ¢ along

the structure vector £.

Let M be a real hypersurface of M,,(c), ¢ # 0, n = 3 whose structure
vector £ on M satisfies

Lep = fT,

where f is a differentiable function and 7T is a tensor field of type (1, 1)
defined on M. By the definition of the Lie derivative and (2.2) we have

(4.1) Lep=¢"A— ¢Ap+ AE @1~ E@n(A) = [T,
from which together with (2.1), it follows that
(4.2) A—-AL®n+¢Ap=—fT.

Operating the linear transformation (4.2) to the structure vector £ and
taking account of (2.1), we have

(4.3) fre=o.

Next, operating ¢ to (4.2) to the left and using (2.1), we have
(4.4) Ap — 9A+ AL ®n— £ @ N(AB) = f¢T.

Operating ¢ to (4.2) to the right and making use of (2.1), we have
(4.5) PA — Ap — AL ®@n = fT¢.

Taking the inner product of (4.2) with the structure vector £, we have
for any X in TM

(4.6) 9(AX, &) —an(X) + fg(TX,£) = 0.

Then from (4.4) and (4.5) we have
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LEMMA 4.1.  Let M be a real hypersurface of M, (c), ¢ # 0, n 2 3.
Assume that the structure vector { satisfies L¢¢p = fT', where f is a
differentiable function and T is a tensor field of type (1,1). If the
structure vector £ is principal, then it satisfies

(4.7) foT + fT¢ =0, 2(Ad—¢A)=f(¢T —T¢).
Case (2): T = ¢

Assume that T' = ¢. In this Case (2) the formula (4.6) yields the
structure vector £ is principal. Then, by Lemma 4.1 we have A¢—¢pA =
0. So by virtue of Theorems A and B, we have our assertion under this
case.

Case (3): T = A.
We assume that T = A. By (4.4) and (4.5), we have

(4.8) Ad— (1+ f)opA+ ¢AL ®n — £ @ n(Ad) =0,
A — (14 f)Ad— AL @ N =0.

Acting the structure vector £ to the linear transformation (4.8), we get
(4.10) foAE =0.
Taking an inner product (4.9) with the structure vector £, we have
(4.11) 1+ floAE =0.
From (4.10) and (4.11) we have

AL =0,

that is, £ is the principal curvature vector with principal curvature a.
Then by Lemma 4.1 we have

(4.12) f(Ad + pA) =0,
(4.13) (2+ f)(Ad — pA) = 0.
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Let us denote by M; a subset of M consisting of points at which
f(z) # 0. Now let us assume M; is not empty. Then, by (4.12), we
see that A¢p + ¢A = 0 on M;, and hence ¢ = 0 on M; by Lemma 2.1.
This makes a contradiction. So M; is empty. Therefore the function f
vanishes identically on M. Then (4.13) together with Theorems A and
B we have our assertion in Case (3).

Case (4): T = A¢
Next, we assume that T = A¢. Then, by (4.6), we have
(4.14) A€ — af = — fPAE.

Applying ¢ to (4.14) and using (2.1) and (4.14), we have (1+ f?)pA¢ =
0, that is, £ is the principal curvature vector with principal curvature
o. From this and (4.5) we have

(4.15) PA—Ap+ f(A—an®&) =0.

Operating ¢ to (4.15) to the right and using (2.1) and the fact £ is
principal, we get

(4.16) pAp+ fAP+(A—an® &) =0

from which together with (4.15), it follows

(4.17) ¢A— (14 fHAd — fpAP = 0.

Next, operating ¢ to (4.16) to the left and using (2.1), we get
(4.18) ¢A — Ap + fpAgp = 0.

From (4.15) and (4.18), we find

(4.19) foAp— f(A—an®§) =0.

From this, operating ¢ to the left and using (2.1) and the fact £ is
principal, we have

(4.20) f(Ag+ pA) =0.
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Let M; be an open set consisting of points z in M such that f(z) # 0.
If M; is not empty, then, by (4.20), we see that A¢ + ¢pA = 0 on M,
and hence ¢ = 0 on M; by Lemma 2.1. This makes a contradiction.
Hence M; is empty. Therefore the function f vanishes identically on M.
From this, together with (4.15), we have ¢A = A¢. So by Theorems A
and B, we have our assertion in this case.

Case (5): T =¢A

Finally, we assume that T' = ¢ A. Then, by (4.6), the structure vector
¢ is principal curvature vector with principal curvature «. From this
together with (4.5) we have

(4.21) GA — Ap = FOAS.

From this, applying ¢ to the left and using (2.1) and £ is principal, we
get

(4.22) AP+ (A—an®§) = fA¢.
Next, operating ¢ to (4.22) to the right and using (2.1), we find
(4.23) Ap— A+ fF(A—an®§) =0,
from which together with (4.21) and (4.22) it follows
(4.24) 2(A¢p — pA) + f2Ap = 0.
Operating ¢ to (4.23) to the left and using (2.1) and also the fact £ is
principal, we have

¢Ad + fPA+ (A—an®E) =0,
from which together with (4.23) it follows
(4.25) Ap — ¢A = fPpAP + f2PA.
From (4.21) and (4.25) we have

2(4¢ - 9A) = f9A,
from which together with (4.24) it follows
f2(A¢ + ¢A) = 0.

Let us also denote by M; an open set consisting of points x in M such
that f(z) # 0. Then by the same argument as in above, we know that

such an open subset M; do not exist. So f vanishes identically on M.
Thus we also have our assertion in Case (5).
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