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MORAVA K- THEORY OF THE DOUBLE LOOP
SPACES OF QUATERNIONIC STIEFEL MANIFOLDS

Younagai CHoIl

ABSTRACT. In this paper we get the Morava K- theory of the double
loop spaces of quarternionic Stiefel manifolds for an odd prime p by
computing the Atiyah — Hirzebruch spectral sequence. We also get
the homology with Z/(p) coefficients and analyze p torsion in the
homology with Z coefficients.

1. Introduction

Let MU be the Thom spectrum for the unitary group. Quillen con-
structed a multiplicative idempotent map of ring spectra ¢ : M Up
MUy by localizing the spectrum MU at a prime p [5]. Then for a
space X, the image of ¢, in MU,(X), becomes a natural direct sum-
mand of MU,(X), and satisfies all the axioms for a generalized homol-
ogy theory. So by the Brown’s representability theorem in [2] it has the
representing spectrum. This representing spectrum is denoted by BP
with 7,(BP) = BP, = Z)[v1,v2,...], deg v; = 2(p* — 1). The spectra
k(n) can be obtained from the spectrum BP by killing certain bordism
classes (p,v1,... ,¥n-1,Vn41,-..) in BP, via Bass-Sullivan construction
in [1]. These k(n) are the spectra for the connective Morava K -theories.
The spectra K(n) = li_r+n 2“2’(’) "D k(n) are the representing spectra
for Morava K-theories where m,(K (n)) = Z/(p)[vn, vy 1].

So there is a sequence of homology theories for each n. Morava K—
theories satisfy many nice properties. Since K(n), is the graded field in
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the sense that every graded module over K (n), is free, ToriK (- (K(n).
(X),K(n).(Y)) = 0 for all spaces X, Y. Hence from the Kiinneth
formula,

K(n).(X x Y) = K(n).(X) & K(n), ().

For the case n = 0, K(0).(X) = H,(X;Q) and K (1),(X) is one of
P — 1 isomorphic summands of mod p complex K —theory for all p.

In this paper we study the Morava K-theory for an odd prime p of
the double loop spaces of the quaternionic Stiefel manifolds by comput-
ing the Atiyah-Hirzebruch spectral sequence with the structure of the
Morava K-theory of the double loop spaces of the spheres in [7].

Besides the rational homology and the mod p complex K-theory,
we get the homology with Z/(p) coefficients. Owing to the identi-
fication between the Atiyah-Hirzebruch spectral sequence with Ky =
H.(X;Z/(p)) ® k(m), and the Bockstein spectral sequence which an-
alyzes the v, torsion in k(m).(X), we analyze the torsion in the con-
nective Morava K-theory and the p torsion in the homology with Z
coefficients from the actions of the higher order Milnor operators and
the actions of the higher order Bockstein operators on the homology
with Z/(p) coefficients. As a special case, the Morava K—theory of the
double loop space of the symplectic group can be obtained from above
results.

We consider only the odd primary cases so that the spectra K (n)
are commutative ring spectra. Hence in this paper p always denotes an
odd prime.

2. Main contents

Let E(z) be the exterior algebra on z and P(z) be the polynomial
algebra on « and I'(z) be the divided power algebra on z. Let Q"X be
the space of all pointed continuous maps from S™ to a space X. Let
Vin—k be the space of all n — k frames in H" where H is the algebra
of quaternionic. Then we call V,, ,,_x the quaternionic Stiefel manifold
which can be identified with Sp(n)/Sp(k). Throughout this paper the
subscript of an element always means the degree of an element.

We have the following well known fact [6], [7]. For an odd prime p,
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Morava K- theory of the double loop spaces

K(m)(QS4F%) = B2 (4 y0)pi -1 1 0< i <m) ® Tn(Yant2ypio2 3 2 1)

where T, (y) denotes the truncated polynomial algebra on y of height
p™, that is, P(y)/(y*").
First we calculate the homology of the triple loop space of Sp/Sp(n).

THEOREM 2.1.
H.(2°Sp/Sp(n +1); Z/(p)) = P(Yan+tai+a : i > 0).

Proof. Consider the following fibration:
Sp(n+1) —— Sp —— Sp/Sp(n+1)

It is well-known that
H*(Sp(n); Z/(p)) = E(@4i43:0< i <n—1)
PHasivs) = (1P D2 (M ag; 515561y

where P7 is the Steenrod operation. Note that Pz = zP for z € H2",
So we get

H*(Sp/Sp(n +1); Z/(p)) = E(asntaitr : i > 0)
PI(aaiss) = (~1E D2 (" Ny 500561y -

We have the Eilenberg—Moore spectral sequence of the Steenrod
module converging to H*(QSp/Sp(n + 1); Z/(p}) with

E2=TOI‘H'(sp/sp(n+1);Z/(p))(Z/(P}‘w Z/(p))
:TorE'(a4n+4i+7:'iZO) (Z/(p)’ Z/([)))
=I'(bsntaise6 : 2> 0).

Since E7 is even—dimensional, Ey = E,, and

. Lo 2t +1
P (baiy2) = (—1)® 1)/2< i >b4i+2+2j(p—1)-
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Hence b, _, = P2+ (by;,5) = (—1)FHDE=1/2p ;o). So we have the
choices of generators ¢; such that

H*(QS5p/Sp(n +1); Z/(p)) = Plcantairs 15 > 0).

Consider the Eilenberg—~Moore spectral sequence again converging to
H*(Q2Sp/Sp(n + 1); Z/(p)) with

Ey=Tory-(asp/spn+1):2/))(Z/ (P), Z/(p))
:TOIP(C4H+4i+65iZO)(Z/(p)7 Z/(p))
=FE(24n+ait5 11> 0).

This spectral sequence is the spectral sequence of a Hopf algebra so that
the source of the first non trivial differential should be indecomposable
and the target should be primitive. Since the target must be even-
dimensional and every primitive element of E, is odd-dimensional, Ey =
E. Hence we get

H*(Q%Sp/Sp(n +1); Z/(p)) = E(zantaiys : i > 0).

Now we apply the Eilenberg-Moore spectral sequence again converging
to H.(23Sp/Sp(n + 1); Z/(p)) with

Er=Exty-(a2sp/5p(m+1):2/00) (Z2/ (), Z/ (D))
:EXtE(Z4n+4i+5Ii20) (Z/(p)’ Z/(p))
=P(Ysnt4it4 : 1> 0).

Since Ej is even-dimensional, E, = E,, and we get
H,(Q°Sp/Sp(n+1); Z/(p)) = P(Tan-taisa : i > 0).
O
Now consider the inclusion map ¢ : Sp(n)/Sp(k) — Sp/Sp(k). We
can convert this map to a homotopy equivalent fiber map by using the
fact that Sp(n)/Sp(k) is homotopy equivalent to the space of all paths
in Sp/Sp(k) with initial points in Sp(n)/Sp(k) under a homotopy which

retracts all paths back to their initial points. Let Sp,k be the fiber of
this fiber map. So we have the following fibration up to homotopy:

Sng — Sp(n)/Sp(k) —— Sp/Sp(k)
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COROLLARY 2.2.

H (Sni15;Z/(p)) = P(Yantdira 11> 0).

Proof. We have the map of the fibrations:

Q28p/Sp(n+1) —— QSp(n+1) —_— QSp

| ! !

QSn+1,k —— 8p(n +1)/Sp(k) —— QSp/Sp(k)

| l l

* — Sp(k) —  Sp(k)
So we have the fibration:
Q2Sp/Sp(n+1) —— QSpi1p — *
Hence Q28,1 x is homotopy equivalent to 23Sp/Sp(n + 1). O
COROLLARY 2.3.
K (m).(Q°Sp/Sp(n + 1)) = K(m)s(Sni1k) = P(yan+4i44 11> 0)

where P(Yan+4it4 1 ¢ > 0) means K(m).[Yantaisq : ¢ > 0].

Proof. We consider the Atiyah-Hirzebruch spectral sequence con-
verging to K(n),(Q3Sp/Sp(n + 1)) with

Ey=H.(2°Sp/Sp(n + 1); K (m),)
=H.(Q°Sp/Sp(n +1); Z/(p)) ® K(m),.

Since H,(S2*Sp/Sp(n + 1); Z/(p)) is even dimensional, the spectral se-
quence collapses from the Ey-term. O

From now on, the element y45,44;14 in H*(Q2Sn+1,k) or K(m),(22Sn111)
will be denoted by yp+1,4n+4it4-
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For each odd number j with j # 0 mod p, let t(n + 1,5), n > k, be
the non negative integer satisfying the following condition:

2k 4+ 1 < jptPHtLi=1 < 9 4 1 < jptn+lad)

and let ¢(k,j) be the smallest non negative integer satisfying the fol-
lowing condition: 2jp**3) —2 > 4k 4- 3 which implies jpt*%) > 2k 41
and let

tn+1,k,5) =t(n+1,5) — t(k,j).

THEOREM 2.4,
K (m),(Q2%Sp(n + 1)/Sp(k)) =
E(.’L‘ijt(k,j)+i_1 tjrodd, Pty 0<i< tin+1,k,5)(m + 1))
OT i (nt1,k,5)m (Yospitentin o+ j:odd, Ptj, i>0).
Proof. Consider the following map of the fibrations:
BSni ———  QSp(n)/Sp(k) —— Q2Sp/Sp(k)

oo ! |

Q2Sni1k — Q2Sp(n+1)/Sp(k) —— Q28p/Sp(k)

I I l

QQ S4n+3 —_— 925477.—}—3 %

Now we will illustrate the behavior of the composite of f,,’s. Consider
the following map of the fibrations:

PGy —— x —— QS

o l H

QQSI+1,k — 25U+ QSl,k
From Morava K-theory K (m) of Q2543 we get

K (m)«(fis-1) (Ue, a1+ 2)pi+m —2)=Um (Y41, (a142)p3 —2)7 5 J > 1
K(m).(fi+1)(yr.i)=y1+1 for the other degrees.
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Consider the map of the fibrations:

2
S iepp — * — Wy
g | | |
2 2 o(4l+2)p+1

From Morava K-theory K(m) of Q2S@#+2)p+1 e get
K(m)*(flp+m£—l)(y1p+z);—1,(4l+2)pj+"‘—2) = Um (ylp+E:2L]—,(4l+2)pJ—2)p ) .7 2 2.
Then

K(m)*(flp+&%i 00 fiyz © fir1)(Yn (a2)pirem o)
= ’Um(vm(ylp_k#,(4l+2)pju2)p )p"‘

= Uglm+1(91p+ﬂtgl,(4z+2)pj_2)p J22

Similarly we have
K(m)*(fzp2+ri2u -0 frp1)(yr, i 2)pitom_2)
= v{fm+p'"+1(ylp2+iéu,(4l+2)pj_2) i>a

Note that in the image of the composite map. the power of v, de-
pends on the number j of the lowest dimensional element of form

Yip+ 2L (al42)pi—2°
Let f = fny10 fn--- 0 fkr1. We have the map of the fibrations:

Q%Sp/Sp(k) —— x ——— Q*Sp/Sp(k)
d | |
BSniie —— Q2Sp(n+1)/Sp(k) ——— Q2Sp/Sp(k)

Consider the Atiyah-Hirzebruch spectral sequence converging to K (n),
(Q2Sp(n +1)/Sp(k)) with

Ey=H.(92Sp/Sp(k); K (m)..(22Spi14))
=H.(2°Sp/Sp(k); Z/(p)) @ K (m).(Q2Sn114) .
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Note that Q25,1 x is 4n + 3 connected and H,(Q2Sp/Sp(k); Z/(p)) =
E(%4k+4i41 19 > 0). Let j be the odd number and j # 0 mod p and i be
the non-negative integer such that 2jp*—1 > 4k+1, that is, jp* > 2k+1
sot > t(k,7).

Note that ¢(n + 1, j) is defined to satisfy the following condition:

4k < 2jpt(n+1,j)~1 —2<dn+3< 2jpt(n+-l,j) _2

which implies 2k + 1 < jp!("thid—1 < 9p 1 1 < jpt+14) . Since
02Sn11k is 4n + 3 connected, Ynt1,2jptnt1.0) o 15 the lowest degree
element of the form yn41 95pt—2 in K(m).(22S,,111). Then we have

K(m)*(f)(ykygjpi+t(n+l,j)+t(n+l,k,j)m)
_ Up(t(n-f-l,k,j)—l)m+p(t(n+l,k,j)~2)m+._.prn+1

m
t(n+1,k,5)m

(yn+1,2jpi+t(n+1,j>_2)p , 120
K(m).(f)(yk,i) = yny1,; for the other degrees.

By the naturality, we have the following differentials
d(w2jpi+t(n+1.j)+t(n+l,k,j)m‘1)

p(l<"+1,k,j)—1)m+p(t(n+l,kvj)'2)m+,,,pm+1
m

B (nt1k)m
(yn+1,2jpi+‘("+laj)—2)pt T ;02> 0,

d(T25pi—1) = 0 for 0 < < t(n+1,5) +t(n+1,&, j)m, i > t(k,7)

d(x;) = Ynt1,:-1 for the other degrees.

Then z3;,:_; survives permanently for t(k,j) <i < t(n+1,5) + t(n +
1,k,7)m and (ynﬂysziﬂ(nﬂ,j)_Q)e also survives permanently for i > 0
and 0 < ¢ < pfFLRD™ - Qince t(n + 1,k,5) = tin+ 1,5) — t(k,j),
Tojprckn+ig survive for 0 <i < t(n+1,k,5)(m + 1). O

COROLLARY 2.5.

H,((2*Sp(n +1)/Sp(k); Q) = K(0).(Q2Sp(n -+ 1)/Sp(k)) =
E(zoj 1:2k+1<j<2n+1,jodd, j # Omodp).
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Proof. Since m = 0, the truncated polynomial algebra Tj disappear.
Let n be fixed. Note that Theorem 2.4 holds for any odd prime number
p. Since t(n + 1,7) is the integer satisfying the condition:

2k +1 < jptn il < op 1 < gptntld)

t(n + 1,7) is 1 for a sufficiently large odd prime number p- Hence
2k+1<j<2n+1. []

Now we turn to the mod p homology.

THEOREM 2.6.

H,(2°Sp(n + 1)/Sp(k); Z/(p)) = E(xgjpecknsi. : §:0dd, Pt j, i > 0)
®P(y2jp‘+1(ﬂ+1,j)_2 : jrodd, Ptj, i>0).

Proof. In the proof of Theorem 2.4, we computed the Atiyah~Hirzebr-
uch spectral sequence converging to K (m).(Q22Sp(n + 1))/Sp(k) with

Ey=H.(Q%Sp/Sp(k)) ® K (m).(2S,.41.4)
=H,(Q*Sp/Sp(k)) ® H.(Q2Sni1,4) ® K (m).

and we got the following differentials

(T pittnt1 04tttk 50m _q )
— vgr(‘t(n+l,k,j)~])m+p(t(n f»l,k,j)—2)7n+“.pm—h_1
t(n+1l,k,j)m
(Un+1,25pi 1 +1.9)_2)P 12> 0,
d(xgjpi-1) =0, t(k,§) < i< t(n+1,5) +tln+ 1,k j)m

d(2;) = Yn+1,i—1 for the other degrees.
For each element x;;,:_; of any fixed j and t, if we choose m to be
large enough that t(n + 1,7) + t(n + 1,k, j)m is larger than ¢, then
we have d(z2j,:-1) = 0. Now we consider the Serre spectral sequence
converging to H,(Q?Sp(n + 1))/Sp(k) with
Bz = H.(QSp/Sp(k)) ® Hu(Q2S i1 k),
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then we have
{ d(z2jpi—1) =0, i > t(k, j)
d(%;) = Yn41,i—1 for the other degrees.
So Tjpttk.i+i_1 Survives permanently for all ¢ > 0 and (yn_}_l’iji_z)

survives permanently for s > t(n + 1, j). Therefore we get the conclu-
sion. 0

Now we consider the connective Morava K theory.

COROLLARY 2.7.
k(m). (Q2Sp(n + 1)/Sp(k))/ (vF) =
E(zgpen+iy: jrodd, Py, 0<i<t(n+ Lk, j)m+1))
®Tt(n+lyk‘j)m(y2jpi+t(n+l,j)_2 1 7 odd, p)(j, 1> 0) .

Here we denote (viY) = U5, (v},) and (v) = {z £ k(m).(Q2Sp(n +
1)/Sp(k))|vy,z = 0}.

In the Atiyah-Hirzebruch spectral sequence which converges to k(m).
(X) with

E; = H,(X; k(m).),

as the classical K—theory, the first non-trivial differential in k(m) theory

is determined by the Milnor operation Q,, in [4], where Q,, is defined
inductively as the commutator for
Qozﬁ, .
Qk+1=[Qk, PY |
where 3 is the mod p homology Bockstein operation. Let Q%) be the
r-th order Milnor operation defined by the relations Om %"1) =0
where deg ol = =2r(p™—-1) - 1.

In particular, the differentials in the Atiyah-Hirzebruch spectral se-
quence for k(m).(X) are given by the k-invariants of k(m) [3], so all
the higher order non-trivial differentials are determined by the higher
order Milnor operations given by dor(pm—1)+1( Rl ) = CQ%):C QvitT,
¢ # 0 mod p. That means that there is the identification between the
Atiyah-Hirzebruch spectral sequence with E; = H.(X; Z/(p)) ® k(m),
and the Bockstein spectral sequence which analyzes the v,, torsion in

k(m).(X).
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COROLLARY 2.8. Let s = plt(ttLk1)=)m 4 pit(ntlk)=2)m . pm
1. Then vy, annihilates all the vy, torsions in k(m.).(Q2Sp(n-+1)/Sp(k)).

Proof. As we mentioned, there is the identification between the Atiy-
ah-Hirzebruch spectral sequence with Fy = H,(X;Z/(p)) ® k(m), and
the Bockstein spectral sequence. We can interpret the Atiyah-Hirzebru-
ch spectral sequence for Theorem 2.4 as the Atiyah-Hirzebruch spectral
sequence with Ey = H,(Q*Sp(n+1))/Sp(k); Z/(p)) ® k(m),. From the
proof of Theorem 2.4, the sets (vf,it(nﬂ'k'j)ul)m“’(t(n“'k'”"2)m+"'7’m+1)
are non—empty. For example, there are elements of degree (2jp' —
2)ptmtLRID™ > t(n + 1, 5) of vy, torsion of order plt(PHLk)~1)m |
pltntLkg)=2ym L .. pm 41 Since maz{t(n+1,k,7): j} =t(n+1,k,1),

(t(n+l,k,1)—1)m (t{n+1,k,1)=-2)ym . m Yy . .
vP, TP +P7+1 annihilates all the vy, torsions. [J

COROLLARY 2.9. There exist nontrivial actions of the higher order
Milnor operators Q' on H.(Q2Sp(n + 1)/Sp(k): Z/(p)) such that

(p(t("+1'k'j)*1)7"+p(t("+1qk,j)“Q)m+___pm+1) _
m ((x2jpi+"'("+1d)+t(n+l,k,j)m_l) =
t(n+1l,k,d)m
(Yojpitetnir_g)P .1 > 0.

From above information we analyze the p torsion in the homology
with Z coefficients.

COROLLARY 2.10. p‘("*1*1) annihilates all the p torsion in H, (2
Sp(n +1)/Sp(k); Z). That is, if we let p"~! < 2n+1 < p” and s be
the smallest integer satisfying the condition: p® ! < 2k +1 < p®, then
p"~* annihilates all the p torsions in H,(Q2Sp(n + 1)/Sp(k); Z).

Proof. k(0),(22Sp(n + 1)/Sp(k)) consists of the torsion free part
and the torsion part. The torsion free part is that k(0).(Q2Sp(n +
1)/Sp(k))/(v§°) = E(zj-1:2k+1 < j <2n+1, jodd, j # 0modp).
We have already computed in Theorem 2.4 :

\
K(m)*(f)(yk,iji+t(n+l,j)+t(n+1,k,g)m/r'
p(t(n+l,k,j)—1)m+_p(t(n+l,k‘j)—2)m,+_upm+l
m

t(n+1,k,3)m .
(yn+1,2j,,i+t(n+1,j>_2)7’ , 120

K(m)«(f)(Yr,i) = Yn+1,; for the other degrees.
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We know that £(0).(X) = H.(X; Z)(,) with vy = p. From above we
get that

1,k,j .
k(o)*(f)(yk,iji“("Hrj)) = v(t)(n+ ])(yn+1,2jp""‘("+1»j)—2)’ >0

t k,j ;
= p( (Tl+11 ’])(yn+1,2jpi+‘(“+1vj)—2)’ 2 2 0

k(0)+(f)(Uk,s) = Yn+1.4 for the other degrees.

Owing to the identification between the Atiyah-Hirzebruch spectral se-
quence and the Bockstein spectral sequence, we have the nontrivial
higher order differentials 5% in H,(Q2Sp(n + 1)/Sp(k); Z/(p)) such
that

Bt(n+1’k’j)($2jpi~1) = Y2jpi—2 for ¢ > t(n + 1,])

Hence in H,(22Sp(n + 1)/Sp(k); Z) we have the elements of degree
(2jp* —2) for i > t(n+1,7) of the p torsion of order t(n+1,k, 7). Since
maz{t(n + 1,k,j) : j} =t(n+1,k,1), t(n +1,k,1) annihilates all the
p torsions in H,(Q2Sp(n + 1)/Sp(k); Z). O

COROLLARY 2.11. There exist nontrivial higher order Bockstein ac-
tions 33 on H,(Q2Sp(n + 1)/Sp(k); Z/(p)) such that Gi(n+1.kj)
(Tajpi—1) = Y2jpi—2 fori > t(n + 1, 7).
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