Bull. Korean Math. Soc. 34 (1997), No. 2, pp. 287-293

STABILITY IN DISTRIBUTION FOR A
CLASS OF DIFFUSIONS WITH JUMP!

YOUNGMEE KWON

1. Introduction

We consider a diffusion {X®(¢);t > 0} on R! satisfying the following
stochastic differential equation.

X(t) =z + /0 (X% (s))dB(s) + /0 b(X%(s))ds
+ /0 / (X% (s), w)i(du, ds)

where o and b are Lipschitz continuous functions on R!, ¢ is a mea-
surable function on R2?, {B(t);t > 0} is a standard 1l-dimensional
Brownian motion and 7 is a compensated Poisson random measure
on R, x R. That is, there is a o-finite measure 7 on R!\ {0} such that
7([0,t) x A) = v([0,t) x A) — tw(A) where v is a Poisson random mea-
sure on Ry x R with E[v([0,t) x A)] = tn(A) for any Borel set A of R!.
Let p(t, z,dy) denote the transition probability of the diffusion. First,
we introduce the following definitions applying to general diffusions.

DEerFINITION 1. A diffusion is stabie in distribution if its transition
probability p(t,z,dy) converges weakly to some probability measure
m(dy) as t — oo, for every z.
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DEFINITION 2. The stochastic flow {X*(¢);¢t > 0,z € R} is asymp-
totically flat (in probability) uniformly on compacts if

(2) Sup P(IX*(t) — X¥(t)] > ¢) — 0

as t — oo for every € > 0 and every compact set K.

It is simple to check that stability in distribution follows from the
following (ref. [3]):

(i) tightness of {p(¢,z,dy);0 <t < oo} and

(ii) asymptotic flatness (definition 2).

Now (2) can be derived by the following property.

DEFINITION 3. The stochastic flow {X*(t);t > 0,z € R} is a asymp-
totically flat in the second mean if every compact set K in R,

(3) lim sup E[X®(t) - X¥(t)]? =0.

t—o0 z,yeK

REMARK 1. The exponent 2 in (3) can be changed to any § > 0 to
imply the Definition 2.

In this paper, we consider the question:under what conditions on
o,b,c and v, is the diffusion tight or stable in distribution? In the
next section, we have some sufficient conditions for this even though
it is very special. If ¢ = 0, then X*(¢) is continuous a.s. and in that
case, there are lots of literature including the above question ([1], [5],
[2]). But with nonzero c(z, u), X*(t) is right continuous with left limit.
Sufficient conditions that X*(t) exists uniquely are well known ([4])
and those are given in the following section. We primarily follow the
idea in [1] to have some conditions that z? is a Liapunov function for
the generator of the process (1).

2. Main results

Consider the following conditions for o, b, and e.
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There is a constant M such that for all z € R,

(4) o?(z) + b*(z) + /c(m,u)zw(du) < L{1 +z%).

Lipschitz conditions; there exist positive constants Ao, A1 and A2
such that for all z,y

(5) l0(z) — ()| < Dolz — ¥l

© b@) ~ bW < Mile 3l b < —h <0,
and

(7) [ 1et@ ) ~ ety wiPn(dn) < ol — ol

With above conditions (4)-(7), the diffusion exists uniquely and E| X7 |?
< oo for all t and z. (cf. [4] part II, ch.2). And without (5) and (6),
but if ¢,b are continuous, X, in (1) exists. (cf: [6])

THEOREM 1.
(1) Assume conditions (4)-(7). If there exists a constant 3 > 0 such
that

—2M +

2
U(;)-*-)\zS"ﬁ
T

for all sufficiently large |z|, there exists an invariant probability.

(2) Assume the conditions (4)-(7). If there exists a constnat a > 0
such that —2A\; + A3 + A2 < —a, then the diffusion (1) is stable in
distribution.

REMARK 1. Note that

o%(z) = (o(z) — a(0) + 0(0))?
= (o(z) — 0(0))* + 0(0)? + 20(0) (o (z) ~ 0(0))
< X222 + 5(0)2 + 2]0(0)| ol]-
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Hence

)\0!3)'

—2)\; + -+ 2|o(0)|—— 22

, ,
0
"m(f)ww\2 (=22 + A+ ag) + 2 ()

—( 2)\1+/\0+)\2)+0('.’13)

as |z| — oo and we see that (2) in Theorem 1 implies (1).

Proof of Theorem 1. (1) Since p(t,z,dy) is Feller continuous (ref:
Theorem 1 p.276 and Lemma 2 p.284 of [4]), it is sufficient to show that
sup;>o E|X{|* < oo and for this, by the following Lemma 1, it is enough
to show that for some constant 8’ > 0, L¢(y) < —3'y? for large enough

T e LA
(XF)? =22+ /O i 2X,0(X%)dB,
v t [z + et w)? - (X0))(du, ds)
+ /0 t / (2XIB(XZ) 4 0%(XT))ds
# [0 etz - (02 - 22 WX (s
—a? 4 / 2 X7o(X?)dB,
//2c (XZ,u)X? + (X2, u))i(du, ds)
/0 (2X7B(XZ) + 02(XT) + / A (X, u)r (du))ds.
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Then by the conditions (4), (6) and (7),
200) + () + | ew,wPn(du)
= 2y(b(y) ~ b(0)) + 2yb(0) + o> (y) + / (cly, u) — e(0, u) + (0, u)) 7 (du)
g—mw%uwmnm%w+Mf+M+2/M%m-dmmmqmﬂM)
< (=27 + (y)
( )
y?

(0) + M + 2(MAay?) /2

< (—27 + 222 4 a0 + O(lyl) < -B'y

for large enough |y|. Hence by the following Lemma 1, sup,»q E|XF|? <
0o. Therefore there exists an invariant probability.
(2) Define for a given pair (z,y) with z # y,

.Yy __ T Y
Z,7 = X! - X;
t

=e—y+ [ 00) - bxds + [ (o(x2) - o(x2)a,

+/Ot/(c(X;”,u)—c(Xg’,u))l"/(du,ds)
+/0tf(s)ds+/ s)dB, ]/ s, u)P(du, ds).

Let 7o := inf{t > 0 : Z®¥(t) = 0}. By Ito formular applied to
2

Z,Y\2 T — 2 ‘ T,y . ;
(Z2Y)2 = (2 — y) +/02z3 .dB
+ / / (259 + g(s, w))? — (Z2%)2)(du, ds)
+ [ Loroxs, xas
0
where L(¢)(XZ, X¥) = 222V f(s) + 7(s)* + [ g(s, u)*m(du). Now

(@ - 1)(b(z) — b(y)) = /0 (z —y)? (y + 8(z — ))df < —M(z — 1)’
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by (6). Hence
L(@)(XZ,XY) < (=221 + A2 + X)(Z2V)2 < —a(Z3V)2.

Hence we have
tATo
E(Z%Y(t A To))2 < (z - y)2 — aE(/ (Z:’y)zds).
0

Notice that Z;"¥ = 0 a.s. for all t > 7. Therefore E(Z;Y)? < e~ %(z —
y)? for all ¢ > 0. Hence E(Z¥)? — 0 ast — oo for any z, y in compact
set and it implies the asymptotic flatness of the second mean. Hence
by Remark 1, the process of (1) is stable in distribution. 0

LEMMA 1. If ¢(y) = y* and for some B > 0, Lé(y) = 2yb(y) +
o2(y) + [ c(y,u)?n(du) < —By? for all large |y|, then for the process
X7 of (1), we have sup,»q E(X{)? < oo for any z.

Proof. Take N large enough so that L¢(y) < —By? if |y| > N. Then
take expectation on (8) using usual truncation (p.275 of [4]), we have

t
E(X*)? =22 + / EL¢(X%)ds
0

since with the conditions (4)-(7), we can take constant C such that
Lo(y) < C(1 + y?) for all y, hence fot EL¢(XT)ds < oo and stochastic
integrals with respect to B and © are martingales. Therefore we have
4 F(X7)? = EL$(X{) and we can take positive constants My, M such
that

d T T
giE(Xf)z = E(Lo(X¥)L(xz1<n)) + E(LO(XT) (1 x21>N))

< My - BE((X7)*1ixz1>N)
= My — BE(X])* + BE((XF)*1)xz <N)
< My + My — BE(X})>.

Hence by routine calculation, sup, E(X¥)? < oo. O

REMARK 2. Without any difficulty, we can extend Theorem 1 to
multidimensionl case under the same condition of the components of
coefficients and |z|? instead of x2.
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