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ON ASYMPTOTIC BEHAVIOR
OF A RANDOM EVOLUTION

NHANSOOK CHO

1. Introduction

In this paper, we study the asymptotic behavior of a random evolu-
tion. Some examples of random evolution can be found in Chapter 12
of [2].

In [4][5], Kurtz and Protter worked also on an approximation of solu-
tions of SDE applying their Theorem 5.4 in the same paper. Motivated
by theorems by Kurtz and Protter, we now consider a sequence of sto-
chastic differential equations. This study dates back at least to Khas-
minskii [3], who studies the behavior of trajectory of stochastic process
defined by the differential equation with a rapidly varying components,

% =eF(z,t,w), z(0)=z,
over a lenth of time of order O(1) as ¢ — 0.

Let E be a separable metric space, Z be an E—valued ergodic Markov
process with stationary distribution y. We assume that F': RxE — R
is bounded and has bounded and continuous first order partial deriva-
tives such that [ F(z,y)u(dy) = 0.

Let X,,, n=1,2,---, satisfy;

(1.1) dXn(t) = nF(X,(t), Z(n?t))dt
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We shall consider the limit behavior of solution processes, X,, in an
extension of the results of Wong and Zakai [6]: that certain naive ap-
proximations of semimartingale differentials lead to a lack of continuity
of the corresponding solutions of stochastic differential equations. You
may refer this kind of results to [4], [5].

We assume the following hypotheses:

There exists an operator A which is the generator of Z such that
(letting R(A) be the range of A and D(A) be the domain of A) L% (k)
is genetrated by 1 and R(A), and D(A) is an algebra.

A has the eigenvectors {fx} with eigenvalues {\;} which satisfy;

CONDITION 1.1.
1) For each T' > 0 there exists a Mo > 0 such that supg<,<r E[fx
(Z(s))] < My for every k. -
2) fo=1, [ fi-fidp=0if i # j, and [ fA(x)dp(z) = 1ifi=1,2, -
3) kto 3y <
) R(A) = (L fu, for- o for o) = L (1),
where (1, f1, f2,---,) is the smallest space generated by 1, fy, fa,---.

Now we expand F(z,-) in L% (u) with f. Let

g () = / F(z,9) f)u(dy) = (F,0), fe@))n k=12,
(1.2)

go(z) = / F(z,y)1u(dy) =0

Then -

F(z,y) =Y g() fi(y)
k=0

By Bessel’s inequality,
> lar(@)? < / F(z,y)*u(dy) < .
k=0
Then, (1.1) can be rewritten as

(13)  Xn(t) = Xn(0) +n- / (3 g(Xn(s)) - fu(Z(n2s))ds,

0 k—o
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where the stochastic integral is just a Stieltjes integral and consequently
needs no special definition. Finally, we need to assume that there exist
%, k=1,2,--- such that

1
14 sup |gk(z)| < —, — < 00.
(1.4) uplgi(a)| < — Z |77k|2

EXAMPLE 1.1. Let Z(s) be Brownian Motion with state space [0, 7],
which reflects at both end points. Then

A= {5,511 € G0, £0) = £ (x) = 0}

is the generator of Z(s). The eigenvectors of A are fi(z) = \/g coskz, k

= 1,2--- and the eigenvalues A\, = —k2. Then our {fx} and {)\x}
satisfies the assumptions.
1){ fx(x)} is uniformly bounded.
2)3 vy l,\lkl =Y g <o
3)A(f2) = 2 cos 2k, A(fE) = —2 cos 2kz

Furthermore let F: Rx [0 7] — R be a bounded and even function.
Then F(z,z) can be expanded

[ ] g
F(z,z) = Z gk(z)coskz, gr(z)= \/g/ F(z,z)coskzdz
k=0 0

and ||gklloo < IFllco - %
Choosing nx = k we can see g satisfies the assumption (1.4). O

2. Main theorem

Define Wk(t), Y%(t) and Zk(t) such that
k - n n S
WE(t) = /0 fe2( / fol2
(2.1) YE(t) = ~n—ikfk(Z(n2t)) + 5/0 A(/\—kfk)(Z(s))ds
25(0) = - R(2(n0)
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Then Wk(t) = Y,*(¢t) + ZE(t), and (1.1) can be expressed;
(2.2)

Xn(t) = Xn(0) +n / F(Xn(s), Z(n?s))ds
+Z / 91 (Xa(s))dWE (5)
= X, (0)+Z / 91X (5))dYE(5) +Z / 91(Xn(5))dZH(5)

= Xn(0) + (*) + (%)

Before we state our main theorem, we first see the limit behavior of
Y k=12

LeMMA 2.1. Let

AR (1) = 1/ A, fJ)(Z()) fJA(”‘)(Z())- (f’>(Z<s>>ds

n2

for any k,j =1,2,--- and let

_[ 24 _ 2 e
Cuy = [~ () = oy ik =

=0 ifk#j
Then .
AMI(t) - t.Ck;, as.
and
2t
. L

Proof. Since Z(s) is ergodic with stationary distribution u
ARI(t) — t - Ck; a.s. .
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Note that Y;*(t)Y?(t) — A% (t) is a martingale and hence,
E[Y;, Y]], = E[A7(t)]

k 1 nt 1 2 2fk2
EYY;, = — — Z -
Yile= 5 [ BlyzAUZ6) - - (Z()ds
2t
AT
| Ak]
as n — oc. O
LEMMA 2.2. For every d,d = 1,2,--- there exists a process ¥ =

(Yl,...,Y?) with sample paths in Cga [0, 00) such that (Y,l, - ,Y,3) =
(Yl,..- .Y andY?, Y'Y?—-Ci;, i,j = 1,2, ,d are martingales with
respect to {FY }. The process Y has independent Gaussian increments.

Proof. Foreachi,j=1,2--- Y'Y,J — A%(t) is an F*-martingale and
AH(t) — Cyj(t). So, by the martingale central limit theorem (Th.7.1.4
[2]) we get the conclusion. O

We shall show that the sequence of solution to equation (1.5), {Xn}
is relatively compact and get a possible limit. In fact, in (2.2) we show
that () and (**) are relatively compact in Dg[0, 00). Then {X,} is also
relatively compact, since the limits are continuous. If we apply Theorem
2.2 [4] we can see the limit of (*) and using the ergodic theorem, we
will see the limit of (*x).

THEOREM 2.1. Let Z(s) be an ergodic process with generator A and
stationary distribution p satisfying the above hypotheses. If X,(0) =
X(0), then {X,} is relatively compact and any limit point X satisfies

X(t)=X©0)+Y / g (X (5))dY*(5)
k=070

0o t 1 )
3 | [ 3o X @)@ (X (o), u(az)ds

where Y* k = 1,2 .- are martingale processes with Gaussian indepen-
dent increments.
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Proof. First, for convenience, let’s denote
Z / gk (Xn(s))dY%(s)
24
(2:4) Z / 9x(Xn(5))dZE (s)
X.(t) = Xn(o) + X (t) + X (t),

where Y,*(t) = — o fe(Z(n2 (1) +1 f (Z(s))ds. We shall show
the relative compactness for X (t) in (2. 4) Stepl To show the relative
compactness of {X,} according to (1.4), choose 7 > 0 such that

1 1
su k(Xn(s))| < — forevery n and — < 00
S Lok (Xa(s)] < >

Then for all n

[|X',,(t)|2]
< 5] Z [} st tater e+ B [ on oy (e, 130
k#j
<3 EWE s T ROt [ o}
k=0 Tk k#j
(2'5) by Kunita-Watanabe inequality
o~ 1 2t 2t 1
2; 2 )§ - (|_)Tlc—|) n—(ﬁ) by (2.3)
1 1
=Cg - t, = 2( —_ —)
° ;;) niIAkl Py Ak 2 n5|A;12

Hence, for each n > 0,

lim P{XA(0] > ()2} < i HTOH, o

n—¥oo n—o0
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= 1
for every n. Choose I';, ; = B(0, (—C;f)i), then

lim P{X,(t) €Tne} 21—

n— o0

To see the other criteria for relative compactness for {X,(t)},

E[|Xn(t +u) — Xn(t)|* | 7]
t+u

< ZEH / Xo(s))dYE(s))?
t+u i t+u ) N
+3 / R (Xnls)dY) E( / R (Xn(s)d[Y2])}] 7]

< BY o (¥Elers— AN

k=0 'k
LB S (Y ra = 03 2 (Ve — (VI
Py Mk 15
Let
() =3 %([Y:]M — [¥Fs)
k=0
+ 3 L (s — VI (e — 710

pary Tk

Then, we have for 0 <t < T, 0<u <4,
E[| Xt +u) — X, |F] < Efvn(8) | F)

and since Y*(¢)YJ (t)— A (t) is a martingale and Y;¥(¢)Y,J () - [Y,, VI,
is also a martingale.

o0

1 26
lim supE[Vn(5)] —}E}}) nkl k| Zﬁ—n—a—I/\k/\ k
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Step2 To show {3 50 Jo 9k(Xn(s ))dZk(s)} is relatively compact, fix
T > 0. Since (X, X,]: = 0 and [gx(X,), ZX]): = 0, by integration parts

/ 0x(Xn())dZE(5) = g1 (X (£)) ZE () — g(X(0)) Z5(0)
- /0 0 (Xn(5)) Z5 (5)dXon(5)
- /0 0k (Xn(5))dZ% (5)

Since

oF
19kllo < 1Flloos llgilloo < Nl 5~ oo,

we have for0<t<T,

Eu / 0k (X (5))dZ5(3)|

= E[|ge(Xn(8)) Z5(2) ~ 95(Xn(0)Z5(0) -/0 9k(Xn(8))Z5(s)dXn(s)]

< lgeoo I EED 4 LEOD g iy [ 2T

1 2M, 1 2M, aF Moyt
< =224 2 gk FlloMot (£ —— + | 5=+ Flloo——),
k Ak oz Ak

where supg< <1 E[fk(Z(s))] < Mg for all k by Condition 1.1.
Hence for every n > 0, let I', , = B(0, % Sho oy L = || gk F l| oo Mot).

Ak Nk
Then,
Jm PY || an(Xalnazi) e Tyey 21—
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Also,
Rnlt + ) — Xa(t)]
< 3 g6(Xalt + u) ZE(t + u) — ge(Xu(D)ZE(0)]
k=0
/ Xo(5)) 25 (5)dXn(5))
> 2Mg Mou
kg'—)\“ “ kFHoo k
Let
(@) = 3 20 1 gt o,
k=0 "k

Then, for 0 <t <T,0<u<é
E[|Xn(t +u) — Xa(®)||F] < Eln(9) | 7]

and

> Myd
. . IRT ’ 709
ggx})llm:upE[vn(5)]—§E)‘%,k§_o: gk Flleo = = =0

Hence {X, = Y5y N gk (Xn(s))dZ%(s)} is relatively compact. So far,
we have seen that {X,(t)} is relatively compact.
Since for all n

Z/ |9k (Xn(5))dZ% (s)] < o0

according to (2.7), the limit of the series,

[ g (Xa(s))dZE ()
k2:=0‘/0 gk
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is the same as the sum of limits of each term. From (2.7)

3 t S k S
> /0 0(Xn(5))dZ(s)
(28) = ) 250 ~ 0 XKa0)Z50)

—Z/%m (8)dXn(s)
It is obvious as n — o0,
9k(Xn(E))Z5(t) — g(X(0))Z5(s) — 0.

O
The following lemma is to get a limit of the second series of (2.8)

LEMMA 2.3. Let X be a limit point of X,,. Then along the appro-
priate subsequence

/ G(Xn(5)) Z5(5)d X (5)

= / / L (X () fe(2) F(X(s), 2)pu(de)ds

Proof. For B C E, let
t
I'.([0,t] x B) = / Ig(Z(n%s))ds
0
t
00,8 % B) = [ Ia(Z(s)du(a)
0
By the ergodicity of Z(s), ', = I" a.s. as n — oo. Let

Untt) = [ (o) I 6, 5, 207

/

= [ [ DA (X5, 2T ),
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and let X (t) be a weak limit of X,(t). Since X is continuous on [0, ]
and (X,,[,) = (X,T), we get Uy,(t) = U(t), where

U(t) = /0 [E S (XN DX (), du(a)ds

Finally, we shall show the limit of (*) in (2.2)

LEMMA 2.4. Let X be a limit point of X,,. Then along the appro-
proate subsequence

Z/ 9k (Xn(s))dY¥ s)=>Z/ gr(X (s))dY*(s)

Proof. Let X be a limit of X,, and we have in Lemma 1.2
Y,f=>Yk fork=1,2,--.
Applying the Skorohod representation theorem again, we can assume

that
(Xn,Yn) — (X,Y) a.s. Note that we have

E[Zl/ 9e(Xn(8))dY(s)]| < Z ——Mot)2 < o0,
k=0 “0

uniformly in n, s0 Y pe, fot gk (Xn(s))dY*(s) converges with probability
1 uniformly in n, by the generalized Borel-Cantelli lemma. Since for
any €, we can choose N s.t.

Z / 0k (Xn(s))dY (s Z / gh(X(5))dY*(s)]] < €2,

we have
Z'/ n())dY,S(s) - ngk $))AYE(s) =€) < e
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Now, for each k, (x) implies that Y;* satisfies the Condition 2.2(1) [4]
and hence, (X,,Y*) = (X,Y*) implies that

N t N t
> [ axutenarte) = Y- [ ax()arts
k=070 k=00

by Theorem 2.2 [4]. It impiles that

D

ExXAMPLE(continued). Let Z(s) be Brownian motion with state space
[0, ], which reflects at both end points. Then
A= {(f,1f"I\f € C?*[0,x],f(0) = f'(m) = O} is the generator of
Z(s). The eigenfunctions of A are fi(z) = 2cosk(z),k =1,2,--- and
the eigenvalues Ay = —k2. Then our {fx(z)} and {\x} satisfys the
assumptions. Let F : R x [—7,n] — R be a bounded function. Assume
for each fixed z € R, F(x,-) € C[0,7] and is even function. Since
fy F(z,2)dz =0, F(z,z) can be expanded

> [2 1
F( ’z): - ( ) kz, (x):_
T kZ:O ng x)coskz, gk 7r/

- 2
F(z,2)y/ —coskzdz
7

kit

And the Feller semigroup {S(t)} on C'(R) generated by A has a unique
stationary distribution g, which is %dw ,dz is the Lebesgue measure.
Consider an equation,

dXn(t) = nF(X,(t), Z(n’t))dt
Then {X,(t)} is relatively compact and any limit point X (¢) satisfies

X(t) = [ (X (s))dY*(s)
kEZ:O/O 9k

N %EZ /0 /0 ' %QL(X (8))95(X (5)) f(2) f;(z)dzds

k=0j=1

> X ($NAY(s) = 3 77 [ kX (aNar(X (s))ds
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» i . -
since %fo cos kx cos jxdxr = O ; Here, Y,k = 1,2,--- are Brownian
motions with covariance Cy;,

Crj =0 ifk+#j
2 . .
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