CONNECTEDNESS IM KLEINEN AND COMPONENTS IN C(X) JOO RAN MOON, KUL HUR AND CHOON JAI RHEE #### 0. Introduction In 1970's Goodykoontz gave characterizations of connectedness im kleinen and locally arcwise connectedness of 2^X only at singleton set $\{x\} \in 2^X$ [5,6,7]. In [7], we gave necessary conditions for C(X) to be arcwise connected im kleinen at any point $A \in C(X)$. In this paper, we introduce further necessary conditions for C(X) to be arcwise connected im kleinen at a point $A \in C(X)$. Moreover we include the following result: If the hyperspace C(X) is connected im kleinen at $A \in \mathcal{A}(a)$, where $\mathcal{A}(a)$ is the admissible fiber at a, then C(X) is connected im kleinen at each subcontinuum B which contains A. In case X has property k and C(X) is not connected im kleinen at a point $A \in C(X)$, C(X) is not connected im kleinen at each subcontinuum of A. In [7], we gave a characterization for a point $A \in C(X)$ at which C(X) is not connected im kleinen and then we distinguished between the set N of all points at which X is not connected im kleinen and the set N of all points at which C(X) is not connected im kleinen. Furthermore, we proceed to find a one-to-one relation between the components of N and N. Received October 30, 1996. ¹⁹⁹¹ Mathematics Subject Classification: 54B20. Key words and phrases: hyperspace, connected im kleinen, metric continuum, admissible. ### 1. Preliminary Let 2^X be the collection of all nonempty closed subsets of X and let C(X) be the collection of all subcontinua of X. Let $A \in 2^X$ and $\epsilon > 0$. Let $N(\epsilon, A)$ be the set of all $x \in X$ such that $d(x, a) < \epsilon$ for some $a \in A$. $N(\epsilon, A)$ is called the ϵ -neighborhood of A. For convenience, we write $N(\epsilon, \{x\}) = N(\epsilon, x)$. For $A, B \in 2^X$, let $H(A, B) = \inf\{\epsilon > 0 : A \subset N(\epsilon, B) \text{ and } B \subset N(\epsilon, A)\}$. Then H is called the *Hausdorff metric* for 2^X , and we call $(2^X, H)$ and (C(X), H) the *hyperspaces* of closed sets and subcontinua respectively. Also the Hausdorff metric for 2^{2^X} is denoted by H^2 . There are two special continuous maps: - (i) [8, p.513.] $2^*: 2^X \to 2^{2^X}$ is a map defined by $2^*(A) = 2^A$, $\forall A \in 2^X$. - (ii) [8, p.100.] The union map $\sigma: 2^{2^X} \to 2^X$ is defined by $\sigma(\mathcal{A}) = \cup \mathcal{A}, \ \forall \mathcal{A} \in 2^{2^X}$. Furthermore σ is nonexpansive, i.e, $H(\sigma(A), \sigma(B)) \leq H^2(\mathcal{A}, \mathcal{B})$ for $\mathcal{A}, \mathcal{B} \in 2^{2^X}$. Let D be a subset of X and let $C(D) = \{A \in C(X) : A \subset D\}$ and $2^D = \{A \in 2^X : A \subset D\}$. Let $A \in C(X)$ and $C \subset X$. Let $H(A, C(D)) = \inf\{H(A, B) : B \in C(D)\}$. ## 2. Connectedness im kleinen and not connectedness im kleinen DEFINITION 2.1. Let $x \in X$. The space X is said to be connected (arcwise connected) im kleinen at x if for each neighborhood U of x, there is a neighborhood V of x lying in U such that if $y \in V$ then there is a connected (arcwise connected) subset of U containing both x and y. DEFINITION 2.2. Let X be a metric continuum. For $x \in X$, let $T(x) = \{A \in C(X) : x \in A\}$. T(x) is called the total fiber of X at x. We say that a point $a \in X$ is a k-point of X provided that for each $\epsilon > 0$ there is a $\delta > 0$ if $A \in T(a)$ and b is in the δ -neighborhood of a, then there is an element $B \in T(b)$ such that $H(A, B) < \epsilon$. If each point of X is a k-point, then we say that X has property k. DEFINITION 2.3. Let X be a metric continuum. Let T(x) be the total fiber at x. An element $A \in T(x)$ is said to be admissible at x in X if for each $\epsilon > 0$, there is $\delta > 0$ such that each point y in the δ -neighborhood of x has an element $B \in T(y)$ such that $H(A, B) < \epsilon$. The collection A(x) of all $A \in T(x)$ which are admissible at x in X is called the admissible fiber of X at x. Let N be the set of all points $x \in X$ at which X is not connected im kleinen. We call it the \mathcal{N} -set of X. Then N is the union of nondegenerate connected sets [9, (5.12)]. PROPOSITION 2.4.[7]. Let X be a metric continuum having nonempty \mathcal{N} —set N of X. Let N_{α} be a component of N. Then $\overline{N_{\alpha}} \in \mathcal{K}$, i.e., C(X) is connected im kleinen at $\overline{N_{\alpha}}$, where \mathcal{K} is the set of all $A \in C(X)$ at which C(X) is connected im kleinen. PROPOSITION 2.5.[7]. X is connected im kleinen at x if and only if C(X) is connected im kleinen at $\{x\}$. For $A \in C(X)$ and $D \subset X$, let $H(A, C(D)) = \inf\{H(A, B) : B \in C(D)\}.$ THEOREM 2.6. Let $A \in C(X)$. If, for each open set U in X containing A and the component C_A of U containing A, there exists $\epsilon > 0$ such that $H(A, C(C_{\alpha})) > \epsilon$ for each component C_{α} of U other than C_A , then C(X) is arcwise connected im kleinen at A. Proof. Let $0 < \delta < \epsilon$ and \mathcal{U} be the δ -neighborhood of A in C(X). Let $U = N(\frac{\delta}{2}, A)$ and C_A be the component of U containing A. Let \mathcal{V} be the $\frac{\delta}{2}$ -neighborhood of A and $B \in \mathcal{V}$. Then $H(A, B) < \frac{\delta}{2}$ implies that $B \notin C(C_{\alpha})$ for any $C_{\alpha} \neq C_A$. But $B \subset N(\frac{\delta}{2}, A)$ so that it must be contained C_A . Now let β be an order arc in C(X) from B to $\overline{C_A}$ and α be an order arc in C(X) from A to $\overline{C_A}$. Then it is easy to see that $\alpha \cup \beta \subset \mathcal{U}$. For $A, B \in C(X)$ such that $A \subset B$, let $C(A, B) = \{D \in C(X) : A \subset D \subset B\}$. THEOREM 2.7. Let X be a metric continuum. Suppose C(X) is connected im kleinen at $A \in \mathcal{A}(a)$. Then C(X) is connected im kleinen at each $B \in C(A, X)$. Proof. Let U be an open set containing B with the component C_B containing B. Let $\{B_n\}$ be a sequence of subcontinua converging to B. We may assume that $B_n \subset U$ for all n. Let V be an ϵ -neighborhood of A such that $\overline{V} \subset U$. Let C_A be the component of V which contains A and let $\{b_n\}, b_n \in B_n$, such that $\{b_n\}$ converges to a. Since $A \in \mathcal{A}(a)$ there exists a sequence $\{A_n\}$ of subcontinua, $b_n \in A_n$ for each n, which converges to A and there is an integer N such that $A_n \subset C_A$ for all $n \geq N$ by [3, Theorem 2]. Since, for each $n \geq N, b_n \in C_A \subset C_B, C_B$ being the component of U, we have that $B_n \subset C_B$ for each $n \geq N$. Therefore by [3, Therem 2] C(X) is connected in kleinen at B. From Proposition 2.1 and Theorem 2.7, we can obtain the following resuit: COROLLARY 2.8. A metric continuum X is connected im kleinen at $x \in X$ if and only if C(X) is connected im kleinen at each point of $C(\{x\}, X)$. THEOREM 2.9. Let X be a metric continuum with property k. Suppose C(X) is not connected im kleinen at $A \in C(X)$. Then C(X) is not connected im kleinen at each point $B \in C(A)$. Proof. Let $B \in C(A)$ and $a \in B$ and let U and V be open sets containing A and B respectively such that $V \subset U$. Let C_A be the component of U containing A and let C_B be the component of V containing B. Then $C_B \subset C_A$. Since C(X) is not connected im kleinen at A, there is a sequence $\{A_n\}$ of subcontinua, each A_n is contained in a distinct component of U disjoint from C_A , which converges to A. Let $\{a_n\}, a_n \in A_n$, be a sequence which converges to a. Since $B \in \mathcal{A}(a)$, there is a sequence $\{B_n\}, a_n \in B_n \subset V$, of subcontinua which converges to B. Since the components of V containing a_n are distinct, we have that B_n are not contained in C_B . Hence C(X) is not connected im kleinen at B. # 3. Relationship between components in X and components in C(X) Let X be a metric continuum. Let N be the set of all $x \in X$ at which X is not connected im kleinen, and let \mathcal{N} be the set of all $A \in C(X)$ at which C(X) is not connected im kleinen, let \mathcal{K} be the set of all $A \in C(X)$ at which C(X) is connected im kleinen, and finally let \mathcal{L} be the set of all $A \in C(N)$ at which C(X) is connected im kleinen. We may note here that if $N \neq \emptyset$ then each of the components of N is nondegenerate [9, 5.13]. Let us note that $C(X) := \mathcal{N} \cup \mathcal{K}$ and $\mathcal{L} \subset \mathcal{K}$. At the end of this section, we give an example of a space with $\mathcal{L} \neq \emptyset$. PROPOSITION 3.1.[7]. Suppose C(X) is not connected im kleinen at $A \in C(X)$ (i.e., $A \in C(X) \setminus \mathcal{K}$). Then $A \subset N$. If $A \in \overline{\mathcal{N}}$ then $A \in C(\overline{N})$. PROPOSITION 3.2.[7]. If $N \neq \emptyset$, then $C(N) = \mathcal{N} \cup \mathcal{L}$ and $\mathcal{L} \cap \mathcal{N} = \emptyset$. PROPOSITION 3.3.[7]. Let \mathcal{N}_f be a component of \mathcal{N} . Then $\cup \mathcal{N}_f \subset N_f$, where N_f is a component of N. THEOREM 3.4. Let N_{α} be a component of N of a metric continuum X. Then $C(N_{\alpha}) \setminus \mathcal{L}$ is a component of \mathcal{N} of C(X). Proof. Since N_{α} is connected, the set $N_{\alpha}^* = \{\{x\} : x \in N_{\alpha}\}$ is connected subset of \mathcal{N} . Let \mathcal{N}_{α} be a component of \mathcal{N} such that $\cup \mathcal{N}_{\alpha} \subset N_{\alpha}$. We show that $C(N_{\alpha}) \setminus \mathcal{L} = \mathcal{N}_{\alpha}$. Clearly $\mathcal{N}_{\alpha} \subset C(N_{\alpha}) \setminus \mathcal{L}$. Let $A \in C(N_{\alpha}) \setminus \mathcal{L}$. Since $A \in \mathcal{N}$, let U be an open set containing A and $\{C_n\}$ be a sequence of distinct components of U and let $\{A_n\}$ be a sequence of subcontinua of X such that $A_n \subset C_n$ and $LtA_n = A$ by Theorem 3.3 [7]. Then $A \in LtC(A_n)$ and $A^* = \{\{x\} : x \in A\} \subset LtC(A_n)$. Hence $LsC(A_n)$ is connected. Furthermore $LsC(A_n) \subset \mathcal{N}$ by Theorem 3.3 [7]. Since $LsC(A_n) \cap \mathcal{N}_{\alpha}^* \neq \emptyset$, we conclude that $C(\mathcal{N}_{\alpha}) \setminus \mathcal{L}$ is connected. Therefore $C(\mathcal{N}_{\alpha}) \setminus \mathcal{L}$ is contained in a component of \mathcal{N} . Hence $\mathcal{N}_{\alpha} = C(\mathcal{N}_{\alpha}) \setminus \mathcal{L}$. COROLLARY 3.5. Let N_{α} be a component of N and let \mathcal{N}_{α} be the component of \mathcal{N} containing an element $C(N_{\alpha})$. Then $C(N_{\alpha}) \setminus \mathcal{L}' = \mathcal{N}_{\alpha}$, where \mathcal{L}' is the set of all $B \in C(N_{\alpha})$ at which C(X) is connected im kleinen. EXAMPLE. An example of the space for which $\mathcal{L} \neq \emptyset$ is given in the plane. Let p = (0,0) q = (0,1) r = (-1,-2) and s = (1,-2). For each positive interger n, let $p_n = (\frac{-1}{n},1)$ $q_n = (\frac{1+1}{n},-2)$ $t_n = (\frac{-1}{n},0)$ and $s_n = (\frac{1}{n},0)$. Let pq, pr and ps be the segment joining respectively p and q, p and r, p and s and for each n, let $p_n t_n$, $t_n r$, qs_n and $s_n q_n$ be segment joining respectively p_n and t_n , and t_n and r, q and s_n and s_n and q_n . Let $X = pq \cup pr \cup ps \cup (\bigcup_{n=1}^{\infty} (p_n t_n \cup t_n r)) \cup (\bigcup_{n=1}^{\infty} (qs_n \cup s_n q_n))$. Then the space X is a continuum. The set N of all point x at which X is not connected im kleinen is $pq \cup ps \cup (pr \setminus \{r\})$. Let $p' = (\frac{1}{2}, -1)$ and let pp' be the segment joining p and p'. Let $A = pq \cup pp'$. Then $A \in C(N)$. Hence by applying Theorem 2 in [3], we see that C(X) is connected im kleinen at A. ### References - Borsuk, K. and Mazurkiewicz, S., Sur l'hyperspace d'un continu, Comptes Rendus des Seances de la Societe des Sciences et des Letters de Varsovie 24 (1931), 149-152. - [2] Goodykoontz, J. T., Jr., Connectedness im kleinen and local connectedness in 2^X and C(X), Pacif. J. Math. 53 (1974), 387-397. - [3] _____, More on connectedness im kleinen and local connectedness in C(X), Proc. Amer. Math. Soc. **65** (1977), 357-364. - [4] _____, Local arcwise connectedness in 2^X and C(X), Houston J. Math. 4 (1978), 41-47. - [5] Hocking, J. G and Young, G. S., Topology, Addison-Wesley Publishing Co., 1961. - [6] Kuratowski, Topology, Volume 1, Academic Press, Inc, 1968. - [7] Moon, J. R., Hur, K., and Rhee, C. J., Connectedness im kleinen and components in C(X), Honam Math. J. 18 (1996), 113-124. - [8] Nadler, S. B., Jr., Hyperspaces of sets, Marcel Dekker, Inc., 1978. - [9] _____, Continuum Theorey, an Introduction, Marcel Dekker, Inc., 1992. - [10] Nishiura, T and Rhee, C. J., Cut points of X and the hyperspace of subcontinua C(X), Proc. Amer. Math. Soc. 82 (1981), 149-154. - [11] Vietoris, L., Kontinua zweiter ordnung, Monatshefte für Mathematik und Physik 33 (1923), 49-62. Joo Ran Moon DEPARTMENT OF MATHEMATICS, WONKWANG UNIVERSITY, IKSAN 570-749, KOREA ### Connectedness im kleinen and components in C(X) #### KUL HUR DEPARTMENT OF MATHEMATICS, WONKWANG UNIVERSITY, IKSAN 570-749, KOREA E-mail: kulhur@wonnms.wonkwang.ac.kr ### CHOON JAI RHEE DEPARTMENT OF MATHEMATICS, WAYNE STATE UNIVERSITY, DETRIOT, MICHIGAN 48202, U.S.A. E-mail: rhee@math.wayne.edu