CONNECTEDNESS IM KLEINEN AND COMPONENTS IN C(X)

JOO RAN MOON, KUL HUR AND CHOON JAI RHEE

0. Introduction

In 1970's Goodykoontz gave characterizations of connectedness im kleinen and locally arcwise connectedness of 2^X only at singleton set $\{x\} \in 2^X$ [5,6,7]. In [7], we gave necessary conditions for C(X) to be arcwise connected im kleinen at any point $A \in C(X)$.

In this paper, we introduce further necessary conditions for C(X) to be arcwise connected im kleinen at a point $A \in C(X)$.

Moreover we include the following result: If the hyperspace C(X) is connected im kleinen at $A \in \mathcal{A}(a)$, where $\mathcal{A}(a)$ is the admissible fiber at a, then C(X) is connected im kleinen at each subcontinuum B which contains A. In case X has property k and C(X) is not connected im kleinen at a point $A \in C(X)$, C(X) is not connected im kleinen at each subcontinuum of A.

In [7], we gave a characterization for a point $A \in C(X)$ at which C(X) is not connected im kleinen and then we distinguished between the set N of all points at which X is not connected im kleinen and the set N of all points at which C(X) is not connected im kleinen. Furthermore, we proceed to find a one-to-one relation between the components of N and N.

Received October 30, 1996.

¹⁹⁹¹ Mathematics Subject Classification: 54B20.

Key words and phrases: hyperspace, connected im kleinen, metric continuum, admissible.

1. Preliminary

Let 2^X be the collection of all nonempty closed subsets of X and let C(X) be the collection of all subcontinua of X.

Let $A \in 2^X$ and $\epsilon > 0$. Let $N(\epsilon, A)$ be the set of all $x \in X$ such that $d(x, a) < \epsilon$ for some $a \in A$. $N(\epsilon, A)$ is called the ϵ -neighborhood of A. For convenience, we write $N(\epsilon, \{x\}) = N(\epsilon, x)$.

For $A, B \in 2^X$, let $H(A, B) = \inf\{\epsilon > 0 : A \subset N(\epsilon, B) \text{ and } B \subset N(\epsilon, A)\}$. Then H is called the *Hausdorff metric* for 2^X , and we call $(2^X, H)$ and (C(X), H) the *hyperspaces* of closed sets and subcontinua respectively. Also the Hausdorff metric for 2^{2^X} is denoted by H^2 .

There are two special continuous maps:

- (i) [8, p.513.] $2^*: 2^X \to 2^{2^X}$ is a map defined by $2^*(A) = 2^A$, $\forall A \in 2^X$.
- (ii) [8, p.100.] The union map $\sigma: 2^{2^X} \to 2^X$ is defined by $\sigma(\mathcal{A}) = \cup \mathcal{A}, \ \forall \mathcal{A} \in 2^{2^X}$. Furthermore σ is nonexpansive, i.e, $H(\sigma(A), \sigma(B)) \leq H^2(\mathcal{A}, \mathcal{B})$ for $\mathcal{A}, \mathcal{B} \in 2^{2^X}$.

Let D be a subset of X and let $C(D) = \{A \in C(X) : A \subset D\}$ and $2^D = \{A \in 2^X : A \subset D\}$. Let $A \in C(X)$ and $C \subset X$. Let $H(A, C(D)) = \inf\{H(A, B) : B \in C(D)\}$.

2. Connectedness im kleinen and not connectedness im kleinen

DEFINITION 2.1. Let $x \in X$. The space X is said to be connected (arcwise connected) im kleinen at x if for each neighborhood U of x, there is a neighborhood V of x lying in U such that if $y \in V$ then there is a connected (arcwise connected) subset of U containing both x and y.

DEFINITION 2.2. Let X be a metric continuum. For $x \in X$, let $T(x) = \{A \in C(X) : x \in A\}$. T(x) is called the total fiber of X at x. We say that a point $a \in X$ is a k-point of X provided that for each $\epsilon > 0$ there is a $\delta > 0$ if $A \in T(a)$ and b is in the δ -neighborhood of a, then there is an element $B \in T(b)$ such that $H(A, B) < \epsilon$. If each point of X is a k-point, then we say that X has property k.

DEFINITION 2.3. Let X be a metric continuum. Let T(x) be the total fiber at x. An element $A \in T(x)$ is said to be admissible at x in X if for each $\epsilon > 0$, there is $\delta > 0$ such that each point y in the δ -neighborhood of x has an element $B \in T(y)$ such that $H(A, B) < \epsilon$. The collection A(x) of all $A \in T(x)$ which are admissible at x in X is called the admissible fiber of X at x.

Let N be the set of all points $x \in X$ at which X is not connected im kleinen. We call it the \mathcal{N} -set of X. Then N is the union of nondegenerate connected sets [9, (5.12)].

PROPOSITION 2.4.[7]. Let X be a metric continuum having nonempty \mathcal{N} —set N of X. Let N_{α} be a component of N. Then $\overline{N_{\alpha}} \in \mathcal{K}$, i.e., C(X) is connected im kleinen at $\overline{N_{\alpha}}$, where \mathcal{K} is the set of all $A \in C(X)$ at which C(X) is connected im kleinen.

PROPOSITION 2.5.[7]. X is connected im kleinen at x if and only if C(X) is connected im kleinen at $\{x\}$.

For $A \in C(X)$ and $D \subset X$, let $H(A, C(D)) = \inf\{H(A, B) : B \in C(D)\}.$

THEOREM 2.6. Let $A \in C(X)$. If, for each open set U in X containing A and the component C_A of U containing A, there exists $\epsilon > 0$ such that $H(A, C(C_{\alpha})) > \epsilon$ for each component C_{α} of U other than C_A , then C(X) is arcwise connected im kleinen at A.

Proof. Let $0 < \delta < \epsilon$ and \mathcal{U} be the δ -neighborhood of A in C(X). Let $U = N(\frac{\delta}{2}, A)$ and C_A be the component of U containing A. Let \mathcal{V} be the $\frac{\delta}{2}$ -neighborhood of A and $B \in \mathcal{V}$. Then $H(A, B) < \frac{\delta}{2}$ implies that $B \notin C(C_{\alpha})$ for any $C_{\alpha} \neq C_A$. But $B \subset N(\frac{\delta}{2}, A)$ so that it must be contained C_A . Now let β be an order arc in C(X) from B to $\overline{C_A}$ and α be an order arc in C(X) from A to $\overline{C_A}$. Then it is easy to see that $\alpha \cup \beta \subset \mathcal{U}$.

For $A, B \in C(X)$ such that $A \subset B$, let $C(A, B) = \{D \in C(X) : A \subset D \subset B\}$.

THEOREM 2.7. Let X be a metric continuum. Suppose C(X) is connected im kleinen at $A \in \mathcal{A}(a)$. Then C(X) is connected im kleinen at each $B \in C(A, X)$.

Proof. Let U be an open set containing B with the component C_B containing B. Let $\{B_n\}$ be a sequence of subcontinua converging to B. We may assume that $B_n \subset U$ for all n. Let V be an ϵ -neighborhood of A such that $\overline{V} \subset U$. Let C_A be the component of V which contains A and let $\{b_n\}, b_n \in B_n$, such that $\{b_n\}$ converges to a. Since $A \in \mathcal{A}(a)$ there exists a sequence $\{A_n\}$ of subcontinua, $b_n \in A_n$ for each n, which converges to A and there is an integer N such that $A_n \subset C_A$ for all $n \geq N$ by [3, Theorem 2]. Since, for each $n \geq N, b_n \in C_A \subset C_B, C_B$ being the component of U, we have that $B_n \subset C_B$ for each $n \geq N$. Therefore by [3, Therem 2] C(X) is connected in kleinen at B.

From Proposition 2.1 and Theorem 2.7, we can obtain the following resuit:

COROLLARY 2.8. A metric continuum X is connected im kleinen at $x \in X$ if and only if C(X) is connected im kleinen at each point of $C(\{x\}, X)$.

THEOREM 2.9. Let X be a metric continuum with property k. Suppose C(X) is not connected im kleinen at $A \in C(X)$. Then C(X) is not connected im kleinen at each point $B \in C(A)$.

Proof. Let $B \in C(A)$ and $a \in B$ and let U and V be open sets containing A and B respectively such that $V \subset U$. Let C_A be the component of U containing A and let C_B be the component of V containing B. Then $C_B \subset C_A$. Since C(X) is not connected im kleinen at A, there is a sequence $\{A_n\}$ of subcontinua, each A_n is contained in a distinct component of U disjoint from C_A , which converges to A. Let $\{a_n\}, a_n \in A_n$, be a sequence which converges to a. Since $B \in \mathcal{A}(a)$, there is a sequence $\{B_n\}, a_n \in B_n \subset V$, of subcontinua which converges to B. Since the components of V containing a_n are distinct, we have that B_n are not contained in C_B . Hence C(X) is not connected im kleinen at B.

3. Relationship between components in X and components in C(X)

Let X be a metric continuum. Let N be the set of all $x \in X$ at which X is not connected im kleinen, and let \mathcal{N} be the set of all $A \in C(X)$ at which C(X) is not connected im kleinen, let \mathcal{K} be the set of all $A \in C(X)$ at which C(X) is connected im kleinen, and finally let \mathcal{L} be the set of all $A \in C(N)$ at which C(X) is connected im kleinen. We may note here that if $N \neq \emptyset$ then each of the components of N is nondegenerate [9, 5.13]. Let us note that $C(X) := \mathcal{N} \cup \mathcal{K}$ and $\mathcal{L} \subset \mathcal{K}$. At the end of this section, we give an example of a space with $\mathcal{L} \neq \emptyset$.

PROPOSITION 3.1.[7]. Suppose C(X) is not connected im kleinen at $A \in C(X)$ (i.e., $A \in C(X) \setminus \mathcal{K}$). Then $A \subset N$. If $A \in \overline{\mathcal{N}}$ then $A \in C(\overline{N})$.

PROPOSITION 3.2.[7]. If $N \neq \emptyset$, then $C(N) = \mathcal{N} \cup \mathcal{L}$ and $\mathcal{L} \cap \mathcal{N} = \emptyset$.

PROPOSITION 3.3.[7]. Let \mathcal{N}_f be a component of \mathcal{N} . Then $\cup \mathcal{N}_f \subset N_f$, where N_f is a component of N.

THEOREM 3.4. Let N_{α} be a component of N of a metric continuum X. Then $C(N_{\alpha}) \setminus \mathcal{L}$ is a component of \mathcal{N} of C(X).

Proof. Since N_{α} is connected, the set $N_{\alpha}^* = \{\{x\} : x \in N_{\alpha}\}$ is connected subset of \mathcal{N} . Let \mathcal{N}_{α} be a component of \mathcal{N} such that $\cup \mathcal{N}_{\alpha} \subset N_{\alpha}$. We show that $C(N_{\alpha}) \setminus \mathcal{L} = \mathcal{N}_{\alpha}$. Clearly $\mathcal{N}_{\alpha} \subset C(N_{\alpha}) \setminus \mathcal{L}$. Let $A \in C(N_{\alpha}) \setminus \mathcal{L}$. Since $A \in \mathcal{N}$, let U be an open set containing A and $\{C_n\}$ be a sequence of distinct components of U and let $\{A_n\}$ be a sequence of subcontinua of X such that $A_n \subset C_n$ and $LtA_n = A$ by Theorem 3.3 [7]. Then $A \in LtC(A_n)$ and $A^* = \{\{x\} : x \in A\} \subset LtC(A_n)$. Hence $LsC(A_n)$ is connected. Furthermore $LsC(A_n) \subset \mathcal{N}$ by Theorem 3.3 [7]. Since $LsC(A_n) \cap \mathcal{N}_{\alpha}^* \neq \emptyset$, we conclude that $C(\mathcal{N}_{\alpha}) \setminus \mathcal{L}$ is connected. Therefore $C(\mathcal{N}_{\alpha}) \setminus \mathcal{L}$ is contained in a component of \mathcal{N} . Hence $\mathcal{N}_{\alpha} = C(\mathcal{N}_{\alpha}) \setminus \mathcal{L}$.

COROLLARY 3.5. Let N_{α} be a component of N and let \mathcal{N}_{α} be the component of \mathcal{N} containing an element $C(N_{\alpha})$. Then $C(N_{\alpha}) \setminus \mathcal{L}' = \mathcal{N}_{\alpha}$, where \mathcal{L}' is the set of all $B \in C(N_{\alpha})$ at which C(X) is connected im kleinen.

EXAMPLE. An example of the space for which $\mathcal{L} \neq \emptyset$ is given in the plane. Let p = (0,0) q = (0,1) r = (-1,-2) and s = (1,-2). For each positive interger n, let $p_n = (\frac{-1}{n},1)$ $q_n = (\frac{1+1}{n},-2)$ $t_n = (\frac{-1}{n},0)$ and $s_n = (\frac{1}{n},0)$. Let pq, pr and ps be the segment joining respectively p and q, p and r, p and s and for each n, let $p_n t_n$, $t_n r$, qs_n and $s_n q_n$ be segment joining respectively p_n and t_n , and t_n and r, q and s_n and s_n and q_n . Let $X = pq \cup pr \cup ps \cup (\bigcup_{n=1}^{\infty} (p_n t_n \cup t_n r)) \cup (\bigcup_{n=1}^{\infty} (qs_n \cup s_n q_n))$. Then the space X is a continuum. The set N of all point x at which X is not connected im kleinen is $pq \cup ps \cup (pr \setminus \{r\})$. Let $p' = (\frac{1}{2}, -1)$ and let pp' be the segment joining p and p'. Let $A = pq \cup pp'$. Then $A \in C(N)$. Hence by applying Theorem 2 in [3], we see that C(X) is connected im kleinen at A.

References

- Borsuk, K. and Mazurkiewicz, S., Sur l'hyperspace d'un continu, Comptes Rendus des Seances de la Societe des Sciences et des Letters de Varsovie 24 (1931), 149-152.
- [2] Goodykoontz, J. T., Jr., Connectedness im kleinen and local connectedness in 2^X and C(X), Pacif. J. Math. 53 (1974), 387-397.
- [3] _____, More on connectedness im kleinen and local connectedness in C(X), Proc. Amer. Math. Soc. **65** (1977), 357-364.
- [4] _____, Local arcwise connectedness in 2^X and C(X), Houston J. Math. 4 (1978), 41-47.
- [5] Hocking, J. G and Young, G. S., Topology, Addison-Wesley Publishing Co., 1961.
- [6] Kuratowski, Topology, Volume 1, Academic Press, Inc, 1968.
- [7] Moon, J. R., Hur, K., and Rhee, C. J., Connectedness im kleinen and components in C(X), Honam Math. J. 18 (1996), 113-124.
- [8] Nadler, S. B., Jr., Hyperspaces of sets, Marcel Dekker, Inc., 1978.
- [9] _____, Continuum Theorey, an Introduction, Marcel Dekker, Inc., 1992.
- [10] Nishiura, T and Rhee, C. J., Cut points of X and the hyperspace of subcontinua C(X), Proc. Amer. Math. Soc. 82 (1981), 149-154.
- [11] Vietoris, L., Kontinua zweiter ordnung, Monatshefte für Mathematik und Physik 33 (1923), 49-62.

Joo Ran Moon

DEPARTMENT OF MATHEMATICS, WONKWANG UNIVERSITY, IKSAN 570-749, KOREA

Connectedness im kleinen and components in C(X)

KUL HUR

DEPARTMENT OF MATHEMATICS, WONKWANG UNIVERSITY, IKSAN 570-749, KOREA E-mail: kulhur@wonnms.wonkwang.ac.kr

CHOON JAI RHEE

DEPARTMENT OF MATHEMATICS, WAYNE STATE UNIVERSITY, DETRIOT, MICHIGAN 48202, U.S.A.

E-mail: rhee@math.wayne.edu