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A WEAKLY NEGATIVE STRUCTURE
OF STOCHASTIC ORDERINGY

JONG-IL BAEK

1. Introduction

Lehmann [13] introduced the concept of positive(negative) depen-
dence together with some other dependence concepts. Since then, a
great many works have been studied on the subject and its extensions
and numerous multivariate inequalities have been obtained. For a ref-
erences of available results, see Karlin and Rinott {12], Ebrahimi and
Ghosh (8] and Sampson [14]. Whereas a number of dependence notions
exist for multivariate processes (see Friday [10]), recently, Ebrahimi
[7] introduced some new dependence concepts of the hitting times of
stochastic processes.

Most of the dependence concepts introduced in the literature are
stronger than the positive(negative) dependence. For this reason, Baek
[3] introduced some new weakly quadrant dependence concepts in terms
of the finite-dimensional distributions of the hitting times of the com-
ponents of a vector process. These concepts not only help us to un-
derstand the structure of functionals such as hitting times of the given
vector process but also have the potential for new and useful inequalities
for stochastic processes. Moreover, the concept of dependence is a form
of qualitative bivariate dependence which has led to many applications
in applied probability, reliability, and statistical inference such as anal-
ysis of variance, multivariate tests of hypothesis and sequential testing.
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Since WNQD is a qualitative form of dependence, it would seem diffi-
cult, or impossible to compare different pairs of stochastic processes as
to their “degree of WNQD-ness”. For these reasons, in this paper we
introduce a new notion of a more weakly negative quadrant dependence
of two stochastic processes.

The importance of this paper lies in the fact that this new notion is
weaker than the more negative quadrant dependence. In particular, we
give a partial ordering which permits us to compare pairs of WNQD
bivariate vector processes of interest as to their “degree of WNQD-
ness”.

In Section 2, we develop some definitions and notations of WNQD
ordering processes. In Section 3, we derive useful closure properties
of WNQD ordering. We show that WNQD ordering is closed under
convolution, limit in distribution, compound distribution, a mixture
of certain types, transformations of stochastic processes by univariate
increasing convex functions and convex combination. Finally, in sec-
tion 4, we present several examples of hitting times possessing various
W NQD ordering processes.

2. Notation and definitions

First, in this section, we present notations and basic facts used
throughout the paper. In what follows increasing(decreasing) means
non-decreasing(non-increasing) and positive(negative) means non-nega-
tive (non-positive). Suppose that we are given a bivariate stochastic
processes {(X11(t), X21(2))[t > 0}, {(X12(t), X22(2))|t > 0}. The state
space of (X1;(t), X21(t)) and (X12(t), X22(t)) will be taken to be any
subset, E = E; x E,, of the plane R2.

For any states a; in E;,7 = 1, 2, we define the random times as follows

Ti]—(a,-) = 1nf{t|X1J(t) S a;, 0 S t S OO}, _] = 1,2
In other words, T;;(a;) is the hitting time that the ij th component
process X;;(t) reaches or goes below a; (see [7]). The stochastic pro-
cesses {T;;(a;)|a; € E;} will be referred to as the hitting time processes

of the processes X;;(t), i, = 1,2. If we base the dependence between
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processes on the dependence of their hitting times, we then have the
following definitions.

DEFINITION 2.1.[6]. The bivariate stochastic process {(X12(t), Xa2
(t))|t > 0} is said to be more negatively quadrant dependent than

{(X11(t), Xa1 ()]t > O} if

P(Tlg(a.l) >y, T22(a2) > t2)
< P(Tii(ar) > t1, Toa(ag) > tp) forall i 2 0. a; € By, i =1,2.

DEFINITION 2.2.[1]. The bivariate stochastic process {(X12(t), X22
()|t > 0} is said to be weakly negative quadrant dependent of the first
type (WNQD1) if

o0 o0
/ / P(NZ_ Tia(a;) > t1)dtadty
T Cx::g -
< / / I12_, P(Tip(a;) > t;)dtadty for allt; > 0, a; € E;, i =1,2.
x Xy

DEFINITION 2.3.[1]. The bivariate stochastic process {(X12(t), X22

(t))|t > 0} is said to be weakly negative quadrant dependent of the
second type (WNQD?2) if

/ / = 1T12 az) > t1)dtadty

< / / H?zlP(T,-g(ai) > t,‘)dtgdtl forallt; >0, a; € B, i =1,2.
0

Moreover, {(X12(t), X22(t))|t > 0} (or the distribution H) is said to
be weakly negative quadrant dependent (W NQ@D) if they satisfy both
WNQRD1 and WNQD?2.

Before we state more definitions, we let 3 = B(F, G) denote the class
of bivariate distribution function H having specified marginal distribu-
tion functions F and G, where F and G are nondegenerate, and we
then consider 31, a subclass of 3, defined by
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BT = {H(t1,t2)|H is WNQD, H(t1,00) = F(t1), H(c0, t3) = G(t2)}.
When H; and H; belong to 8", we may now define the following
definitions.

DEFINITION 2.4. The bivariate distribution H is said to be more
weakly negative quadrant dependent of the first type than H; if

/ / P(T12(a1) > t, T22(a2) > tz)dtldtg
T2

2.1 Rl e
(2.1) < / / P(T11(a1) > t1, Tor(az) > to)dtydts

for all ¢; >0, i =1,2. We write H, > (WNQD1)H,

DEFINITION 2.5. The bivariate distribution H, is said to be more
weakly negative quadrant dependent of the second type than H if

/ / T12 a1 > tl,Tzz(ag) > tz)dtldtz

(22) < / f P(T]](al) > tl,Tzl(ag) > tz)dtldtg
0 0

forallt; >0, i =1,2. We write Hy > (WNQD2)H,

Moreover, the bivariate distribution H, is said to be more weakly
negative quadrant dependent than H, if they satisfy both H, > (WNQ
D1)H; and H; > (WNQD2)H,. We write H, > (WNQD)H,;.

From the Definition 2.1, 2.4 and 2.5 we then have the following The-
orem 2.6.

THEOREM 2.6. Let H; and Hy be bivariate distribution with spec-
ified marginals F' and G. Assuine that the bivariate distribution H, is
more negatively quadrant dependent than Hy. Then H, is more weakly
negative quadrant dependent than H.
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3. Closure properties of (3%, > (WNQD))

In this section, we establish preservation of the WNQD ordering
under convolution, limit in distribution, compound distribution, mix-
ture of a certain type, transformations of univariate increasing con-
vex functions, and convex combination. First note that by theorem of
Alzaid [1], (2.1) and (2.2) are equivalent to E(f(T12(a1))g(T22(a2))) <
E(f(T11(a1))g9(T21(az))) for all increasing positive convex functions f
and g.

Below, we show that the ordering is preserved under convolution.
We need the following Lemma 3,1 which is of independent interest.

LEMMA 3.1. Let (a) {(X11(t), X21(t))|t > 0} and {(X12(t), X22(t))
|t > 0} have distributions Hy and Hy, where Hy, H> belong to B*, (b)
{(X12(2), X22 (1))t > 0} > (WNQD){(X11(t), (X21(2))|t > 0}, and (c)
(Z1, Z2) with an arbitrary W NQD distribution function H independent
of both Of{(Xll(t),le(t))lt 2 0} and {(Xlz(t), Xzz(t))lt _>_ 0}
Then (Xm(t) + 241, ng(t) +Z2) > (WNQD)(XH (t) + 71, Xo1 (t) + ZQ)
Proof. First, we will show that (X12(t)+2Z1, Xo2(t)+2Z2) s WNQD1
(WNQ@D?2). Consider any hitting times W;;(a;) given by W;(a;) =
inf{t|Xij(t) +Z; <ayt> 0},Z,j =1,2.
Then,

Cov(f(Wiz(a1)), 9(Waa(az2)))

= Cov(f(Ti2(a1 — Z1)), 9(T22(az — Z2)))

= Cov(E(f(Th2(ar — Z1))|21, Z2), E(g(Ta2(a2 — Z2))| 21, Z2))
+ E(Cov(f(T12(a1 — Z1)), 9(Taz(az — Z21)|Z1, Z2)) = 0.

Note that the first and second terms are greater than or equal to zero for
all functions f and g such that f is increasing positive convex(negative
concave) and g is decreasing negative concave(positive convex)function.
Thus by Theorem 3 of Alzaid(1990), (X12(t) + Z1, Xa22(t) + Z2) is
WNQD. Similarly we can show that (X11(t) + Z1,X21(t) + Z2) is
also WNQD.

Next, we will show that (X12(t)+21, Xo2(t)+2Z2) > (WNQD)(X11(t)
+Z1, X21(t) + Z2) e,
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E(f(Thzlar — 21))g(Taz(az — Z2))) < E(f(Tu1(ar — Z1))g(Tor (a2 —
Z3))) for any increasing positive convex functions f and g.
Now,

E(f(Thz(a1 — Z1))g(Ta2(az — Z2)))
= E(E(f(Ti2(a1 — Z1))g9(To2(a2 — Z2))| 21, Z5))
= E(E(f(Th2(a1 — Z1)g(T2a(az — Z3))))
S B(E(f(Tu(a1 — Z1)g(Tai (a2 — Z2))))
= E(f(Tu(a1 — Z1))g(To1(az — Z2))).

The inequality follows from the assumption that (Xi2(t), Xa2(t)) >
(WNQD)(X11(t), X21(t)). O

THEOREM 3.2. Suppose that the stochastic process (a) {(X12(t), Xo2
(t))|t > 0} is more weakly negative quadrant dependent than {(X;
(1), X21(t))|t > 0}, (b) {(Y12(t), Y2 (¢))|t > 0} is more weakly neg-
ative quadrant dependent than {(Yu (), Y21(t))|t > 0}, and (c) let
{(X12(t), X22(t))[t > 0} and {(Y12(t), Y22(t))|t > O} be independent
processes, {(X11(t), (X21(2))|t > 0} and {(Y11(¢), Y21 (¢))|t > O} be in-
dependent processes. Then {(X12(t) + Yi2(t), Xoo(t) + Yoo (2))|t > 0} >
(WNQD){(X11(t) + Y11(t), X21(¢) + Ya1(2))|t > 0}

Proof. By assumption, (X12(t), X22(t)) > (WNQD)(X11(t), Xa1(2)).
Specifying (Z;(t), Z2(t)) to be (Yi2(t), Yaa(t)), we apply Lemma 3.1 to
obtain

(X12(8) + Y12(t), X22(t) + Yao(t))

(3.1) > (WNQD)(X11(t) + Y12(t), X21(t) + Yoz (t))

Next, we use the assumption (Y12(t), Y22(t)) > (WNQD)(Y11(t), Yo1
(t)), specifying (Z,(t), Z2(t)) to be (X11(t), X21(t)), and again use Lem-
ma 3.1 yielding

(X11(8) + Y12(t), Xo1(t) + Yao(t))

3.2) > (WNQD)(X11(t) + Y1 (t), Xa1(t) + Yar(2)).
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By combining (3.1) and (3.2),

(X12(2) + Y12(t), Xa2(t) + Y22(t))
> (WNQD)(Xn(t) + le(t),le (t) -+ Y22(t))
> (WNQD)(X]_l(t) + Y11(t), X (t) -+ Yo (t))

Thus (Xlz(t) + le(t), Xao (t) + Ygg(t)) > (WNQD) (X11 (t) + Yll(t),
Xo1 (t) + Yo (t))
This completes the proof. O

The next theorem demonstrates that, under suitable conditions, lim-
its of the W NQ D ordering processes inherit the W NQD ordering struc-
ture.

THEOREM 3.3. Let (a) {( n1(t)y Xn2(@)|t > 0%, {(Yn1(t), Yo (t))|t >
0} have distributions H,, H,," for every n and H,, > (WNQD)H,,', (b)
{(X1(t), X2(t)|t > 0} {(Y1(t), Ya(t))|t > 0} have distributions H, H
(c) {(Xn1(t), Xn2(t))|t > O}, {(Yn1(t), Yaz(2))[t = O}, {(X1(2), Xa2(t))It =
0} and {(Y1(t),Y2(t))|t > 0} have all sample paths and they are right
continuous on [0, 00) with finite left limits at all t, and (d) H, — H and
H, — H' be weakly as n — oo, respectively. Then H > (WNQD)H

Proof. Denote by C(H) and C(H') the sets of continuity points of
H and H', respectively. Let D = C(H)NC(H'). It follows from our
assumptions that H(t;,t2) > H (t1,t2) for all (t1,t2) € D. Since D is
a dense set in R, H > (WNQD)H'.

The following theorem is another application of Theorem 3.2 which
is very important in recognizing W NQD ordering in compound distri-
butions which arise naturally in stochastic processes. ]

THEOREM 3.4. Let (a) (Y1, S1), (Y2, 52), -+ be independent random
processes, (b) (X1, K1), (X2, K2),--- be independent random processes,
(c) (Y;,S;) and (X;, K;),i = 1,2,---n are WNQD random process (d)
(Y;,S:) > (WNQD)(X,,K;),s = 1,2,---, and (e) N(t) be a Poisson
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process which is independent of (Y3, 5;) and (X;, K;),i = 1,2,---. Then
N(t)

(Z1a(t Z Y, Zaa(t) Z S:)

N(t) N(t)

> (WNQD)(Z11 (¢ Z X, Zoy (¢ Z K;)

Our next result deals with the preservation of the WN QD ordering
under mixture. In order to motivate our definition of a subclass of 3+
in which the WNQD ordering is preserved under mixture we need a
definition and a similar result of Ebrahimi and Ghosh [8].

DEFINITION 3.5.[8]. A stochastic process {Xa2(#)|t > 0} is stochas-
tically increasing(decreasing) in {X12(t)|t > 0} if E(f(T22(a2))|Ti2(a1)
= t1) is increasing(decreasing) in ¢; for all a; € E;,i = 1,2, and positive
increasing convex function f.

We shall use the abbreviation ST and SD for stochastically increasing
and decreasing respectively.

REMARK 1. A stochastic process {(X12(t), X22(t))[t > 0}, given a
scalar A, is WNQD1I(W NQD?2) if and only if Cov[f(Ti2(a1)), 9(Taz(az)
)IA] > 0 for all functions f and g such that f is non-decreasing, non-
negative(non-positive concave), and g is non-increasing, non-positive
concave(non-negative convex).

THEOREM 3.6. Let (a) {(X12(t), X22(¢))|t > 0} given a scalar ), a
stochastic process be conditionally WNQD, and (b) {X12(¢)|t > 0} be
ST and {X3;(t)|t > 0} be SD in A, or (b'){X12(t)|t > 0} be SD and
{X22(t)|t > 0} be ST in A. Then{(X2(t), X22(t))|t > 0} is WNQD.

The next theorem deals with the preservation of the W NQD order-
ing under mixture. We may now define the class 5) by
B = {H\|H(t1,00|\) = F(t1|)), H(co, t3|A) = G(tz|\), Ha|NisWN —
QD,F is SD and G is SI in A, or F is SI and G is SD in A}.

Now consider (3, > (WNQD)). The following theorem shows that

if two elements of 35 are ordered according to > (WNQD), then after
mixing A, the resulting element in 31 preserves the same order.
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PROPOSITION 3.7. Let the stochastic processes (X12(t), X22(t)) and
(X11(t), X21(¢)), given a scalar X, belong to B, respectively and ((X12
(t), Xa22(t)IA) > (WNQD)((X11(t), X21(t))|) for all \. Then, uncon-
ditiOI]&Hy, (Xlz(t),Xzz(t)), (Xn(t),Xgl(t)) belong to ,3+ and (Xlz(t),
X22(t)) > (WNQD)(X11(¢), X21(2)).

Proof. From Theorem 3.6, (X12(t), X22(t)) and (X11(t), X21(t)) are

WNQD.
Now,
E(f(T12(a1))g9(T22(a2))) = Ex(E(f(T12(a1))9(T22(a2))|))
< Ex(E(f(Th1(a1))9(T21(a2))|A))
= E(f(T11(a1))9(T21(az2))).

The inequality comes from the fact that (X12(¢), X22(¢))|A > (WNQD)
(X11( ) X21( ))|/\ for all A

Next, we show that the WNQD ordering is invariant under trans-
formations of stochastic processes by increasing convex functions. [

THEOREM 3.8. Let (a) {(Xu;(t), Xi; )]t > 0}, =1,2,3,--- ,n
be n-independent pairs from a bivariate distribution H; with contin-
uous incrasing sample paths, 7 = 1,2, (b) Hy and Hs belong to 8%
such that Hy > (WNQD)H,, and (c) g1 and g, are positive convex
functions and they are increasing in each of their arguments when
all other arguments are fixed. Then the processes (Y12(t), Yo2(t)) >
(WNQD)(YH( ), Y21(t)) given by Yi(t ) =g1(X1.(t), -, Xni(t)),
Yai(t) = ga(X 14(8), ni(t)), 1 =1,2.

Proof. First, we will show that the WNQD]1 ordering holds. The
proof will be given for the case n = 2. For the general n, the proof
is similar. Fix ¢; > 0,7 = 1,2 and introduce the variables V; =
Xoi(t:),V; = Xai (t:),Ui = supge ey, (91(X1i(s). Xai(s))), and U; =
SUDPp<s<t, (g2(X1i (s), Xa2i (5))),% = 1,2, where for simplicity, t,, ¢, have
been—suppressed in Vi,Vil,Ui and Ui'. Consider any hitting times of
3:11‘(8) = g1(X1:(s), X2i(s)), Yai(s) = g2(X1i (5), X2: (s)),i = 1,2 given

d Wij(a:) = inf{s|Y;;(s) <a;,s > 0},4,7 =1,2.
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It suffices to show that

/ / P(Wia(a1) > t1, Waa(ag) > t3)dt1dts
< / / P(Wi1(ar) > t1, War(az2) > t2)dtrdta,i = 1,2.

Note the facts that U; = suppc,«., (1(X1i(8), Vi), U; = SUPg< st
(gz(Xli'(s),Vi/)),i = 1,2, and that, by the hypothesis, random vari-
ables (V,V2') and (Vi,V;') are satisfied the following

(Vo, o) > (WNQD1) (W1, V).

Now, we obtain

/ / P(ng(al) > t, sz(az) > t2)dt1 dts

= / / P(U1 <ai,Up < az)dtldtz
.’c;o mzo ’

= / / E[P(Ul < ay,Up < 02|V2,V2 )]dtldtz
I T2

< [ EPW: < a1|Va)]dts / E[P(Us < aa|Vy Ydtz

T

o0 lo o] ,
< / E[P(U1 < a1,Uz < ap|V1, V1 )|dtidts
xr

b0 poo
= / / P(Wn(al) > t1, Wor (az) > tz)dtldtz
T o
The proof of the WNQD2 ordering is similar. O

Next, we now turn our attention to a simple but important property
of the class 8.

THEOREM 3.9. Theclass 7 = {H|H (t1,t2) is WNQD, H(t;,00) =
F(t)), H(oo,t3) = G (t2)} is convex.
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Proof. Let Hy, Hs in B%and for a in (0,1), H = aH; + (1 — a)H,.
Then we will show that H is convex combination of Hy; and H,. Since
each of the H; and H, € g1,

oo poo
/ / PH(le(al) > tl, T22(a2) > tz)dtldtz
x 0012 o
=a/ / PHI (le(al) > 14, ng(ag) > tg)dtldtz
x, T

o0 o0
+(1-a) / / Pa, (Tua(ar) > t1, Taa(as) > to)dtrdts
(3.3) o1 vz

< Ot/ / PH(le(al) > tl)PH(ng(az) > tz)dtldtg
+ (1 — a)/ / PH(le(al) > tl)PH(TQQ(ag) > tz)dtldtz

00 poO
=/ / PH(T12(0,1) > tl)PH(ng(az) > tz)dtldtz.
x) T2

Hence H is WNQD1. The proof of the WNQ D2 ordering is similar to
the proof of the WNQD1. a

Moreover,

(3.4) tlli_rpoo H(t1,t2) = aG(t2) + (1 — a)G(t2) = G(t2),
and

(3.5) t}gnm H(ty,t2) =aF(t1)+ (1 —a)F(t1) = F(t1)

It follows from (3.3), (3.4), (3.5) that H € 8%. Thus #7 is convex.

4. Examples

EXAMPLE 4.1. Consider bivariate processes {(Xp1,Yn1)ln > 1},
{(an,Ynz)ln Z 1} such that (Xu,Yn), (le,Yzl), -+ are indepen—
dent and (X2, Y12), (X22,Y22), - - are independent processes. Then it
is easy to check that (X2, Y,2) > (WNQD)(Xp1, Yn1),n > 1 whenever

(Xi2,Y;:2) > (WNQD)(Xil,Y;:l), for each ¢ = 1,2, s
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ExAMPLE 4.2. Consider a system with four components which is
subjected to shocks. Let N(t) be the number of shocks received by time
t and {(Xk, Sk)lk =1,2,---} and {(Y&, Lx)|k = 1,2, } are sequences
of damages to components 1, 2, 3 and 4 by shock k, respectively. Define
the compound Poisson processes by

N(t) N(t) N(t) N(t)

Zn (t ZYk,Zm Zxk,zm t)—ZLk,Zm(t > S
k=1

This follows by application of Theorem 3.4 implies (Z12(t), Zoa(t)) >
(WNQD)(Z11(t), Z21(t)) for every t > 0 whenever (X;, S;) > (WNQD)
(Y;, L), foreach i = 1,2,3,---

ExaMpLE 4.3. Let Zj = (le,sz) and Wj = (le,sz),j >
0 be a sequence of Li.d. bivariate vectors such that (Z10, Z20) >
(WNQD)(Wyg, Wyo) random variables with marginal uniform distri-
bution on the interval [0, 1], respectively. Consider the sequences
(X1n(t), Xon(t)) and (Yin(t),Y2,(¢))(in n > 1) of bivariate processes
defined by

Xn(t) = (X1n(t), X2n(t) = (VR(F1a(t) — 1), Vn(Fen(t) — 1)),
Yn(t) = (Yln(t)vY2n(t)) = (\/;;(Gln(t) - t), \/77(021:(75) - t))vt € [07 1]7

where for ¢ = 1,2, Fi,,(t) = n~1 Z?::l I(Z;; < 1),Gin(t) = nt Z] 1
I(W;; > t) are usual empirical c.d.f. of the i.i.d random variables
Zit, Zig, ++  Zin and Wiy, Wi, - -+, Wy, respectively. Note that X,,(t)
and Y, (t) are simply the combination of the two(dependent )one-dimen-
sional empirical processes, respectively. Such processes have been used
by Goel and Ramallingam(1987) to study matching problems. Fix i =
1,2, then for all real ay, it is easy to verify that the hitting times T;(a;) =
inf{¢[X;,(t) < a;} and S;(a;) = inf{¢|Yin(t) < a;} are increasing func-
tions of Z;y,- -+, Zin, Wi1, - - -, Win, respectively. In view of this fact, if
we fixed n > 1, then we can argue (see Tong(1980)), p. 84) that for all
a;,t = 1,2,(T1(a1), Tz(az)) > (WNQD)(S1(a;), S2(az)) random vari-
ables. We conclude that (X1,(t), Xon(t)) > (WNGED)(Y1n(t), Yan(t)),
for each n > 1. It is easy to check that (X1,(t) X2.(t)) converges
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weakly to (X;(t), X2(t)) and (Y1,(t), Yan(t)) converges weakly to (Y1(t),
Y>(t)) as n — oo on the time interval {0,1]. Hence, using the Theorem
3.3, we can obtain that (X, (t), X2(t)) > (WNQD)(Y1(t), Y2 (2)).
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