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IMPLICATIVE FILTERS OF
LATTICE IMPLICATION ALGEBRAS

YoOuNG BAE Jun*

1. Introduction

In order to research the logical system whose propositional value is
given in a lattice, Y. Xu [4] proposed the concept of lattice implication
algebras, and discussed their some properties in [3] and [4]. Y. Xu and
K. Qin [5] introduced the notions of filter and implicative filter in a
lattice implication algebra, and investigated their properties. In this
paper, in the first place, we give an equivalent condition of a filter, and
provide some equivalent conditions that a filter is an implicative filter
in a lattice implication algebra. By using these results, we construct an
extension property for implicative filter.

2. Preliminaries

DEFINITION 1.1 (Xu [4]). By a lattice implication algebra we mean a
bounded lattice (L, v, A, 0,1) with order-reversing involution “ 7 ” and
a binary operation “ — ” satisfying the following axioms:

M) z—(y—2)=y—(z—2),

(I12) z -z =1,

I1B3) z—-y=y — o,

4) z—y=y—zc=1=zc=y,

15) z—y)oy=(y—2)—a,

(L1) (&Vy) = 2= (z— 2) A (y — 2),

(L2) (zAy) mz=(z—2)V(y — 2),
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for all z,y,z € L

We can define a partial ordering < on a lattice implication algebra
Lbyz<yifandonlyifz - y=1.

EXAMPLE 2.2 (Xu and Qin [5]). Let L := {0,a,b,c,1}. Define the
partially ordered relation on L as 0 < a < b < ¢ < 1, and define
z Ay = min{z,y}, ¢Vy := max{z,y} for all z,y € L and “/ ”and ©

— " as follows:

I x’! = 0 a b c 1
0] 1 o r]1y1]11 |1
a c a | ¢ |1 1 1 1
b |l b bl bjc] 1111
c a c | ala c 1 1
190 11 0]ajbdb|c]l

Then (L, V,A,t,—) is a lattice implication algebra.

OBSERVATION (Xu [4]). In a lattice implication algebra L, the fol-
lowing hold for all z,y,z € L:
1) 00—z =1,
(2) z<yimpliesy »z2<z—zandz—z <z -y,
B) a—y)—>((y—2)— (x—2) =1,
4 z—-((z—y)—y =1
A nonvoid subset J of a lattice L is called a filter of L if
(i) aeJ,ze Landa <z imply z € J,
(i) ae Jand be J implyanbe J.
In what follows, L would mean a lattice implication algebra unless
otherwise specified.

3. Implicative filters

In 5], Y. Xu and K. Qin defined the notions of filter and implicative
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filter in a lattice implication algebra.

DEFINITION 3.1 (Xu and Qin [5}). Let (L,V,A,/,—) be a lattice
implication algebra. A subset F of L is called a filter of L if it satisfies
for all z,y € L:

(F1) 1€ F,

(F2) z€ Fand z >y € F imply y € F.

A subset F of L is called an implicative filter of L, if it satisfies (F1)
and

(F3)z—>(y—z)eFandz —-y€ Fimplys - 2€ F
for all z,y,z € L.

Denote by F(L) (resp. Fj(L)) the set of all filters (resp. implicative
filters) of L.

The following proposition is clear.

PROPOSITION 3.2. Every filter F' of L has the following property:

x<yandze€ F implyyec F.

PRrROPOSITION 3.3 (Xu and Qin [5]). In a lattice implication algebra,
every implicative filter is a filter, but not converse.

In the first place, we give an equivalent condition of a filter.

THEOREM 3.4. Let F be a non-empty subset of L. Then F € F(L)
if and only if it satisfies for all z,y € F and z € L:
(F4) ¢ <y — z implies z € F.

Proof. Necessity follows from Proposition 3.2 and (F2). Suppose F
satisfies (F4). Since ¢ < z — I for all z € F, we have I € F by (F4).
Let z > y € F and z € F. Using (4) and (F4), we get y € F, whence
F € F(L). This completes the proof. O

THEOREM 3.5. Let F' be a filter of L such that

z—o(y—(y—2)€eFandxec Fimplyy—z€F
for all z,y,z € L. Then F € Fi(L).
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Proof. Let ¢ — (y - 2) € Fandz — y € F for all z,y,2 € L.
Using (I1) and (3) we have

2= (y—2)=y—(e—2)<(z—>y) > (- (z—2).

It follows from Proposition 3.2 that (z — y) — (z — (z — 2)) € F.
Sincex — y € F, we get  — z € F by (ii). Therefore F € F;(L). This
completes the proof. E]

We give an equivalent condition that a filter is an implicative filter.

THEOREM 3.6. Let F € F(L). Then the following are equivalent:
(i) F e Fi(L).

(ii)  — (z — y) € F impliest — y € F.

(ili) z — (y — z) € F implies (x > y) — (z — 2) € F.

Proof. (i) = (ii) Let F € Fy(L) and let z — (= — y) € F. Since
z —x =1¢€F, it follows from (F3) that ¢ — y € F’, which proves (ii).

(ii) = (iii) Suppose (ii) holds and let « — (y — z) € F. Using (I1),
(2) and (3), we have

= (y—z)<e—((z—y) - (z—2).
Thus, by Proposition 3.2 and (I1), we get
o (@—-(z-y)—2))=r—>(z—oy —(z—o2)€EF
It follows from (ii) and (I1) that
- ((z—y)—2)=(—-y) (-2 €EF

(iii) = (i) Assume that (iii) holds and let £ — (y — z) € F and
z — y € F. By (iii), we have (t - y) > (r - z2) e Fandz — y € F.
It follows from (F2) that ¢ — 2z € F. Thus F € F;(L), ending the
proof. O

Let F' be a non-empty subset of L and let a € L. Define
F,:={z€Lla—ze€F}
Note that if F € F(L), then F; = F and 1 € F,.

196



Implicative filters of lattice implication aigebras

REMARK 3.7. Let F € F(L). Then there exists a € L such that
Fo ¢ F(L).

ExXAMPLE 3.8. Let L be a lattice implication algebra as in Example
2.2. Consider {1} € F(L). Then {1}, = {b,¢,1} ¢ F(L), since b — a =
c€ {1}y, but a ¢ {1}s.

By using F,, we provide an equivalent condition that a filter is an
implicative filter.

THEOREM 3.9. Let F € F(L). Then the following are equivalent:
(i) F e Fi(L).
(ii) F, € F(L) for alla € L.

Proof. Let F € Fy(L) and let z,z — y € F, for all a € L. Then
a — (x> y) € Fanda — z € F. Since F € Fy(L), it follows that
a —yeF, ie,y¢c F,. This proves that F, € F(L) forall a € L.

Conversely, suppose F, € F(L) foralla € L. Let x — (y — 2) € F'
and z — y € F. Theny — z € F, and y € I, which imply that
z € F,, ie.,z — z € F. Hence F € F;(L). This completes the proof.
O

COROLLARY 3.10. Let F € F;(L) and a € L. Then F; is the least
filter of L containing F' and a.

Proof. By Theorem 3.9, F, € F(L). Let G be « filter of L containing
Fanda. Ifz € F,, thena — z € F C G. It follows that € G, whence
F, C G. This completes the proof. O

Finally, we give an extension property for implicative filter.

THEOREM 3.11. (Extension property for implicative filter) Let F' €
Fi(L). IfG € F(L) contains F, then G € F;(L).

Proof. Let ¢ — (y — z) € G. Then

z—(y—((z—(y—2)—2)
=@@—(—2)—@—Y—2) [by (I1)]
=1€PF. by (12)]
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Since F' € Fy(L), it follows from Theorem 3.6(iii) that
-y - @E—-(z—W—2)—2)€F
whence

(2= @W—-2)=({(z—~y) - (z—2))
=@—-y) = (z—-(y—2)— (z—2) [by (I1)]
=($—>y)—>(:1:——+((:L'H(y——»z))——)z))ngG_

Since ¢ — (y — 2) € G and G € F(L), we have (z — y) — (z — 2) €
G. Thus, by Theorem 3.6, we know that G € F;(L). This completes
the proof. a
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