IMPLICATIVE FILTERS OF LATTICE IMPLICATION ALGEBRAS

Young Bae Jun*

1. Introduction

In order to research the logical system whose propositional value is given in a lattice, Y. Xu [4] proposed the concept of lattice implication algebras, and discussed their some properties in [3] and [4]. Y. Xu and K. Qin [5] introduced the notions of filter and implicative filter in a lattice implication algebra, and investigated their properties. In this paper, in the first place, we give an equivalent condition of a filter, and provide some equivalent conditions that a filter is an implicative filter in a lattice implication algebra. By using these results, we construct an extension property for implicative filter.

2. Preliminaries

DEFINITION 1.1 (Xu [4]). By a lattice implication algebra we mean a bounded lattice $(L, \vee, \wedge, 0, 1)$ with order-reversing involution " \prime " and a binary operation " \rightarrow " satisfying the following axioms:

- (I1) $x \rightarrow (y \rightarrow z) = y \rightarrow (x \rightarrow z)$,
- (I2) $x \rightarrow x = 1$,
- (I3) $x \rightarrow y = y' \rightarrow x'$,
- (I4) $x \rightarrow y = y \rightarrow x = 1 \Rightarrow x = y$,
- (I5) $(x \rightarrow y) \rightarrow y = (y \rightarrow x) \rightarrow x$,
- (L1) $(x \lor y) \to z = (x \to z) \land (y \to z),$
- (L2) $(x \wedge y) \rightarrow z = (x \rightarrow z) \vee (y \rightarrow z),$

Received October 2, 1996.

1991 Mathematics Subject Classification: 03G10, 06B10.

Key words and phrases: lattice implication algebra, (implicative) filter.

^{*}Supported by the LG Yonam Foundation, 1995.

for all $x, y, z \in L$

We can define a partial ordering \leq on a lattice implication algebra L by $x \leq y$ if and only if $x \to y = 1$.

EXAMPLE 2.2 (Xu and Qin [5]). Let $L:=\{0,a,b,c,1\}$. Define the partially ordered relation on L as 0 < a < b < c < 1, and define $x \wedge y := \min\{x,y\}, \ x \vee y := \max\{x,y\}$ for all $x,y \in L$ and " \prime " and " \rightarrow " as follows:

x	x'		
0	1		
a	c		
b	b		
c	а		
1	0		

\rightarrow	0	a	b	c	1
0	1	1	1	1	1
a	с	1	1	1	1
b	b	c	1	1	1
c	а	а	с	1	1
1	0	a	b	c	1

Then $(L, \vee, \wedge, \prime, \rightarrow)$ is a lattice implication algebra.

Observation (Xu [4]). In a lattice implication algebra L, the following hold for all $x, y, z \in L$:

- (1) $0 \to x = 1$,
- (2) $x \le y$ implies $y \to z \le x \to z$ and $z \to x \le z \to y$,
- $(3) (x \rightarrow y) \rightarrow ((y \rightarrow z) \rightarrow (x \rightarrow z)) = 1,$
- $(4) x \to ((x \to y) \to y) = 1.$

A nonvoid subset J of a lattice L is called a filter of L if

- (i) $a \in J$, $x \in L$ and $a \le x$ imply $x \in J$,
- (ii) $a \in J$ and $b \in J$ imply $a \land b \in J$.

In what follows, L would mean a lattice implication algebra unless otherwise specified.

3. Implicative filters

In [5], Y. Xu and K. Qin defined the notions of filter and implicative

filter in a lattice implication algebra.

DEFINITION 3.1 (Xu and Qin [5]). Let $(L, \vee, \wedge, \prime, \rightarrow)$ be a lattice implication algebra. A subset F of L is called a *filter* of L if it satisfies for all $x, y \in L$:

- (F1) $1 \in F$,
- (F2) $x \in F$ and $x \to y \in F$ imply $y \in F$.

A subset F of L is called an *implicative filter* of L, if it satisfies (F1) and

(F3)
$$x \to (y \to z) \in F$$
 and $x \to y \in F$ imply $x \to z \in F$ for all $x, y, z \in L$.

Denote by $\mathcal{F}(L)$ (resp. $\mathcal{F}_I(L)$) the set of all filters (resp. implicative filters) of L.

The following proposition is clear.

PROPOSITION 3.2. Every filter F of L has the following property:

$$x \leq y$$
 and $x \in F$ imply $y \in F$.

PROPOSITION 3.3 (Xu and Qin [5]). In a lattice implication algebra, every implicative filter is a filter, but not converse.

In the first place, we give an equivalent condition of a filter.

THEOREM 3.4. Let F be a non-empty subset of L. Then $F \in \mathcal{F}(L)$ if and only if it satisfies for all $x, y \in F$ and $z \in L$:

(F4)
$$x \leq y \rightarrow z$$
 implies $z \in F$.

Proof. Necessity follows from Proposition 3.2 and (F2). Suppose F satisfies (F4). Since $x \leq x \to I$ for all $x \in F$, we have $I \in F$ by (F4). Let $x \to y \in F$ and $x \in F$. Using (4) and (F4), we get $y \in F$, whence $F \in \mathcal{F}(L)$. This completes the proof.

THEOREM 3.5. Let
$$F$$
 be a filter of L such that

(i) $x \to (y \to (y \to z)) \in F$ and $x \in F$ imply $y \to z \in F$ for all $x, y, z \in L$. Then $F \in \mathcal{F}_I(L)$.

Proof. Let $x \to (y \to z) \in F$ and $x \to y \in F$ for all $x, y, z \in L$. Using (I1) and (3) we have

$$x \to (y \to z) = y \to (x \to z) \le (x \to y) \to (x \to (x \to z)).$$

It follows from Proposition 3.2 that $(x \to y) \to (x \to (x \to z)) \in F$. Since $x \to y \in F$, we get $x \to z \in F$ by (ii). Therefore $F \in \mathcal{F}_I(L)$. This completes the proof.

We give an equivalent condition that a filter is an implicative filter.

THEOREM 3.6. Let $F \in \mathcal{F}(L)$. Then the following are equivalent:

- (i) $F \in \mathcal{F}_I(L)$.
- (ii) $x \to (x \to y) \in F$ implies $x \to y \in F$.
- (iii) $x \to (y \to z) \in F$ implies $(x \to y) \to (x \to z) \in F$.

Proof. (i) \Rightarrow (ii) Let $F \in \mathcal{F}_I(L)$ and let $x \to (x \to y) \in F$. Since $x \to x = 1 \in F$, it follows from (F3) that $x \to y \in F$, which proves (ii).

(ii) \Rightarrow (iii) Suppose (ii) holds and let $x \to (y \to z) \in F$. Using (I1),

$$(2)$$
 and (3) , we have

$$x \to (y \to z) \le x \to ((x \to y) \to (x \to z)).$$

Thus, by Proposition 3.2 and (I1), we get

$$x \to (x \to ((x \to y) \to z)) = x \to ((x \to y) \to (x \to z)) \in F.$$

It follows from (ii) and (I1) that

$$x \to ((x \to y) \to z) = (x \to y) \to (x \to z) \in F.$$

(iii) \Rightarrow (i) Assume that (iii) holds and let $x \to (y \to z) \in F$ and $x \to y \in F$. By (iii), we have $(x \to y) \to (x \to z) \in F$ and $x \to y \in F$. It follows from (F2) that $x \to z \in F$. Thus $F \in \mathcal{F}_I(L)$, ending the proof.

Let F be a non-empty subset of L and let $a \in L$. Define

$$F_a := \{ x \in L | a \to x \in F \}.$$

Note that if $F \in \mathcal{F}(L)$, then $F_1 = F$ and $1 \in F_a$.

REMARK 3.7. Let $F \in \mathcal{F}(L)$. Then there exists $a \in L$ such that $F_a \notin \mathcal{F}(L)$.

EXAMPLE 3.8. Let L be a lattice implication algebra as in Example 2.2. Consider $\{1\} \in \mathcal{F}(L)$. Then $\{1\}_b = \{b, c, 1\} \notin \mathcal{F}(L)$, since $b \to a = c \in \{1\}_b$, but $a \notin \{1\}_b$.

By using F_a , we provide an equivalent condition that a filter is an implicative filter.

THEOREM 3.9. Let $F \in \mathcal{F}(L)$. Then the following are equivalent:

- (i) $F \in \mathcal{F}_I(L)$.
- (ii) $F_a \in \mathcal{F}(L)$ for all $a \in L$.

Proof. Let $F \in \mathcal{F}_I(L)$ and let $x, x \to y \in F_a$ for all $a \in L$. Then $a \to (x \to y) \in F$ and $a \to x \in F$. Since $F \in \mathcal{F}_I(L)$, it follows that $a \to y \in F$, i.e., $y \in F_a$. This proves that $F_a \in \mathcal{F}(L)$ for all $a \in L$.

Conversely, suppose $F_a \in \mathcal{F}(L)$ for all $a \in L$. Let $x \to (y \to z) \in F$ and $x \to y \in F$. Then $y \to z \in F_x$ and $y \in F_x$, which imply that $z \in F_x$, i.e., $x \to z \in F$. Hence $F \in \mathcal{F}_I(L)$. This completes the proof.

COROLLARY 3.10. Let $F \in \mathcal{F}_I(L)$ and $a \in L$. Then F_a is the least filter of L containing F and a.

Proof. By Theorem 3.9, $F_a \in \mathcal{F}(L)$. Let G be a filter of L containing F and a. If $x \in F_a$, then $a \to x \in F \subseteq G$. It follows that $x \in G$, whence $F_a \subseteq G$. This completes the proof.

Finally, we give an extension property for implicative filter.

THEOREM 3.11. (Extension property for implicative filter) Let $F \in \mathcal{F}_I(L)$. If $G \in \mathcal{F}(L)$ contains F, then $G \in \mathcal{F}_I(L)$.

Proof. Let $x \to (y \to z) \in G$. Then

$$x \to (y \to ((x \to (y \to z)) \to z))$$

$$= (x \to (y \to z)) \to (x \to (y \to z))$$
 [by (I1)]
$$= 1 \in F.$$
 [by (I2)]

Since $F \in \mathcal{F}_I(L)$, it follows from Theorem 3.6(iii) that

$$(x \to y) \to (x \to ((x \to (y \to z)) \to z)) \in F$$

whence

$$(x \to (y \to z)) \to ((x \to y) \to (x \to z))$$

$$= (x \to y) \to ((x \to (y \to z)) \to (x \to z))$$

$$= (x \to y) \to (x \to ((x \to (y \to z)) \to z)) \in F \subset G.$$
 [by (I1)]

Since $x \to (y \to z) \in G$ and $G \in \mathcal{F}(L)$, we have $(x \to y) \to (x \to z) \in G$. Thus, by Theorem 3.6, we know that $G \in \mathcal{F}_I(L)$. This completes the proof.

References

- [1] N. Ajmal and K. V. Thomas, Fuzzy lattices, Inform. Sci. 79 (1994), 271-291.
- [2] Y. B. Jun and Y. Xu, Fuzzy filters of lattice implication algebras, submitted.
- [3] Y. Xu, Homomorphisms in lattice implication algebras, Proc. of 5th Many-Valued Logical Congress of China (1992), 206-211.
- [4] _____, Lattice implication algebras, J. of Southwest Jiaotong Univ. 1 (1993), 20-27.
- [5] Y. Xu and K. Qin, On filters of lattice implication algebras, J. Fuzzy Math. 1 (1993), 251-260.
- [6] B. Yuan and W. Wu, Fuzzy ideals on a distributive lattice, Fuzzy Sets and Systems 35 (1990), 231-240.

Department of Mathematics Education, Gyeongsang National University, Chinju 660-701, Korea

E-mail: ybjun@nongae.gsnu.ac.kr