A METRIC INDUCED BY A NORM ON NORMED ALMOST LINEAR SPACES

SUNG MO IM AND SANG HAN LEE

In [3,4,5], G. Godini introduced a normed almost linear space(nals), generalizing the concept of a normed linear space. In contrast with the case of a normed linear space, the norm of a nals $(X, ||| \cdot |||)$ does not generate a metric on X (for $x \in X \setminus V_X$ we have $|||x - x||| \neq 0$). G. Godini [5] proved that for a nals X there exists a semi-metric which satisfy some properties. In this paper, we prove that the above semi-metric is a metric if a nals X has a basis. Also, we construct a new metric for such a space in a simpler way and, prove that in the case when a nals X has a basis and splits as $X = W_X + V_X$, then X is complete if and only if V_X and W_X are complete.

We recall some definitions and results used in this paper. All spaces involved in this paper are over the real field \mathbb{R} . Let us denote by \mathbb{R}_+ the set $\{\lambda \in \mathbb{R} : \lambda \geq 0\}$.

An almost linear space (als) is a set X together with two mappings $s: X \times X \to X$ and $m: \mathbb{R} \times X \to X$ satisfying the conditions $(L_1) - (L_8)$ given below. For $x, y \in X$ and $\lambda \in \mathbb{R}$ we denote s(x, y) by x + y and $m(\lambda, x)$ by λx , when these will not lead to misunderstandings. Let $x, y, z \in X$ and $\lambda, \mu \in \mathbb{R}$. $(L_1) x + (y + z) = (x + y) + z$; $(L_2) x + y = y + x$; (L_3) There exists an element $0 \in X$ such that x + 0 = x for each $x \in X$; $(L_4) 1x = x$; $(L_5) \lambda(x + y) = \lambda x + \lambda y$; $(L_6) 0x = 0$; $(L_7) \lambda(\mu x) = (\lambda \mu)x$; $(L_8) (\lambda + \mu)x = \lambda x + \mu x$ for $\lambda \geq 0$, $\mu \geq 0$. We denote -1x by -x, and x - y means x + (-y). For an als X we introduce the following two sets:

$$V_X = \{ x \in X : x - x = 0 \}$$

Received December 24, 1996.

1991 AMS Subject Classification: 46B99, 46A15.

Key words and phrases: Almost linear space, Normed almost linear space.

$$W_X = \{x \in X : x = -x\}.$$

 V_X and W_X are almost linear subspaces of X (i.e., closed under addition and multiplication by scalars) and, in fact, V_X is a linear space. Clearly an als X is a linear space iff $V_X = X$ iff $W_X = \{0\}$. Note that $V_X \cap W_X = \{0\}$ and $W_X = \{x - x : x \in X\}$.

A norm on an als X is a functional $|||\cdot|||: X \to \mathbb{R}$ satisfying the conditions $(N_1)-(N_3)$ below. Let $x,y,z\in X$ and $\lambda\in\mathbb{R}$. $(N_1)|||x-z|||\leq |||x-y|||+|||y-z|||; (N_2)|||\lambda x|||=|\lambda||||x|||; (N_3)|||x|||=0$ iff x=0. An als X together with $|||\cdot|||: X\to \mathbb{R}$ satisfying $(N_1)-(N_3)$ is called a normed almost linear space (nals). Using (N_1) we get $|||x+y|||\leq |||x|||+|||y|||$ and $|||x-y|||\geq ||||x|||-|||y|||$ for $x,y\in X$. By the above axioms it follows that $|||x|||\geq 0$ for each $x\in X$.

A subset B of an als X is called a basis for X if for each $x \in X \setminus \{0\}$ there exist unique sets $\{b_1, b_2, ..., b_n\} \subset B$, $\{\lambda_1, \lambda_2, ..., \lambda_n\} \subset \mathbb{R} \setminus \{0\}$ (n depending on x) such that $x = \sum_{i=1}^n \lambda_i b_i$, where $\lambda_i > 0$ for $b_i \notin V_X$. Clearly, if B is a basis for X then $0 \notin B$.

Now, we give some propositions needed in the sequel.

PROPOSITION 1 ([3]). Let $(X, ||| \cdot |||)$ be a nals. Then,

- (a) For $x \in X$, $w \in W_X$, $\max\{|||x|||, |||w|||\} \le |||x + w|||$.
- (b) For $x, x_n \in X$, $n \in N$, if $\lim_{n \to \infty} |||x_n + x||| = 0$ then $x \in V_X$.

PROPOSITION 2 ([3]). Let X be an als with a basis B. Then,

- (a) The relations x + y = x + z, $x, y, z \in X$ imply that y = z.
- (b) For each $x \in X \setminus V_X$, there exist unique $b_1, b_2, ..., b_n \in B \setminus V_X$, $v \in V_X$, and $\lambda_1, \lambda_2, ..., \lambda_n > 0$ such that $x = \sum_{i=1}^n \lambda_i b_i + v$.
- (c) There exists a basis B' of X with the property that for each $b' \in B' \setminus V_X$ we have $-b' \in B' \setminus V_X$. Moreover $\operatorname{card}(B \setminus V_X) = \operatorname{card}(B' \setminus V_X)$. We shall call such a basis B' a **symmetric** basis.
- (d) There exists a basis B'' of $W_X + V_X$ with the property that $B'' = B_1 \cup B_2$, where B_1 is a basis for W_X and B_2 is a basis for V_X .

We say that a commutative semigroup X with zero [i.e. satisfying (L_1) - (L_3)] is an abstract convex cone if there is also given a mapping

 $(\lambda, x) \to \lambda x$ of $\mathbb{R}_+ \times X$ into X such that (L_4) , (L_5) , (L_7) and (L_8) hold for $x, y \in X$ and $\lambda, \mu \in \mathbb{R}_+$. X satisfies the *law of cancellation* if the relations $x, y, z \in X$, x+y=x+z imply y=z. A map $T: X \to L$ from an abstract convex cone to a linear space is *positively homogeneous* if $T(\alpha x) = \alpha T(x)$ for $\alpha \in \mathbb{R}_+$.

PROPOSITION 3 ([5,7]). Let X be an abstract convex cone satisfying the law of cancellation. Then there exist a linear space L and a one-to-one additive and positively homogeneous mapping $T: X \to L$ such that $L = T(X) - T(X) = \{T(x) - T(y) : x, y \in X\}$.

Note that such an additive and positively homogeneous mapping T is linear on the subspace V_X .

PROPOSITION 4. Let $(X, ||| \cdot |||)$ be a nals and let $x \in X$. Then for each $\alpha, \beta \in \mathbb{R}$, we have

$$\alpha x + \beta x = (\alpha + \beta)x + w$$

for some $w \in W_X$. Furthermore, for $\alpha_i, \beta_i \in \mathbb{R}, \ x_i \in X, \ (i = 1, 2, ..., n)$, we have

$$|||\sum_{i=1}^{n} (\alpha_i + \beta_i)x_i||| \le |||\sum_{i=1}^{n} \alpha_i x_i + \sum_{i=1}^{n} \beta_i x_i|||.$$

Proof. If $\alpha\beta \geq 0$, then $(\alpha + \beta)x = \alpha x + \beta x$. Let $\alpha\beta < 0$. We may assume that $\alpha < 0 < \beta$, without loss of generality. If $|\alpha| \leq \beta$, we have $\alpha x + \beta x = \alpha x + (-\alpha + \alpha + \beta)x = \alpha x + (-\alpha)x + (\alpha + \beta)x = w + (\alpha + \beta)x$, where $w = \alpha x + (-\alpha)x$. If $|\alpha| > \beta$, we have $\alpha x + \beta x = (\alpha + \beta - \beta)x + \beta x = (\alpha + \beta)x + (-\beta)x + \beta x = (\alpha + \beta)x + w$, where $w = \beta x + (-\beta)x$. Therefore, $\alpha x + \beta x = (\alpha + \beta)x + w$ for some $w \in W_X$. From Proposition 1(a), we have

$$|||\alpha x + \beta x||| = |||(\alpha + \beta)x + w||| > |||(\alpha + \beta)x|||.$$

For the second statement, let $\alpha_i, \beta_i \in \mathbb{R}, x_i \in X, i = 1, 2, ..., n$. Then

$$|||\sum_{i=1}^{n} \alpha_{i} x_{i} + \sum_{i=1}^{n} \beta_{i} x_{i}||| = |||\sum_{i=1}^{n} (\alpha_{i} x_{i} + \beta_{i} x_{i})|||$$

$$= |||\sum_{i=1}^{n} ((\alpha_{i} + \beta_{i}) x_{i} + w_{i})|||$$

$$\geq |||\sum_{i=1}^{n} (\alpha_{i} + \beta_{i}) x_{i}|||. \quad \Box$$

On every nals $(X, |||\cdot|||)$, Godini introduced a semi-metric ρ . In the case when X has a basis, the construction can be simplified as follows: A nals X with a basis is an abstract convex cone satisfying the law of cancellation. By Proposition 3, there exist a linear space L and a one-to-one additive and positively homogeneous mapping $T: X \to L$ such that L = T(X) - T(X). For $l \in L$ define

$$||l|| = \inf\{|||x||| + |||y||| : l = T(x) - T(y), \ x, y \in X\}.$$

Then $||\cdot||$ is a semi-norm on L and ||T(x)|| = |||x||| for each $x \in X([5; \text{ Theorem } 3.2])$. The semi-metric ρ on X is given by $\rho(x, y) = ||T(x) - T(y)||$ for $x, y \in X([5; \text{ Corollary } 3.3])$ and satisfies the following properties:

(1)
$$\rho(x,v) = |||x-v||| \quad (x \in X, \ v \in V_X),$$

(2)
$$\rho(x+z,y+z) = \rho(x,y) \quad (x,y,z \in X),$$

(3)
$$\rho(\lambda x, \lambda y) = |\lambda| \rho(x, y) \quad (x, y \in X, \ \lambda \in \mathbb{R}),$$

$$(4) \qquad ||||x||| - |||y||| | \le \rho(x,y) \le |||x - y||| \quad (x,y \in X),$$

(5)
$$\lim_{\lambda \to \lambda_0} \rho(\lambda x, x) = \rho(\lambda_0 x, x) \quad (x \in X, \ \lambda_0 > 0).$$

We prove that the semi-metric is a metric in the case when X has a basis.

THEOREM 5. If a nals $(X, |||\cdot|||)$ has a basis, then G. Godini's semimetric is a metric on X.

Proof. Let B be a basis for a nals X. We shall show that $||\cdot||$ is a norm on L.

Let $l \in L$. Choose $x_0, y_0 \in X$ so that $l = T(x_0) - T(y_0)$. Using our basis B, we can write x_0 and y_0 as

$$x_0 = \sum \alpha_i b_i + \sum \beta_j b_j + \sum \gamma_k b_k + \sum \delta_l b_l,$$

$$y_0 = \sum \alpha_i' b_i + \sum \beta_j' b_j + \sum \gamma_k' b_k + \sum \delta_l' b_l$$

where

$$b_i, b_j \in V_X \cap B, \ b_i \neq b_j, \ \alpha_i \geq \alpha'_i, \ \beta_j < \beta'_j$$

and

$$b_k, b_l \in B \setminus V_X, \ b_k \neq b_l, \ \gamma_k \geq \gamma_k' \geq 0, \ 0 \leq \delta_l < \delta_l'.$$

Since T is additive and positively homogeneous (so T is linear on V_X), we have

$$T(x_0) - T(y_0) = \sum_{l} (\alpha_i - \alpha'_i) T(b_i) + \sum_{l} (\gamma_k - \gamma'_k) T(b_k)$$
$$- \left(\sum_{l} (\beta'_j - \beta_j) T(b_j) + \sum_{l} (\delta'_l - \delta_l) T(b_l) \right)$$
$$= T \left(\sum_{l} (\alpha_i - \alpha'_i) b_i + \sum_{l} (\gamma_k - \gamma'_k) b_k \right)$$
$$- T \left(\sum_{l} (\beta'_j - \beta_j) b_j + \sum_{l} (\delta'_l - \delta_l) b_l \right).$$

Let

$$egin{aligned} \widetilde{x}_0 &= \sum (lpha_i - lpha_i') b_i + \sum (\gamma_k - \gamma_k') b_k = \sum_p \xi_p b_p \ \widetilde{y}_0 &= \sum (eta_j' - eta_j) b_j + \sum (\delta_l' - \delta_l) b_l &= \sum_q \zeta_q b_q. \end{aligned}$$

Note that all the coefficients are positive; that is, $\xi_p, \zeta_q > 0$ for all p, q. Moreover, the subsets $\{b_p\}$ and $\{b_q\}$ of B, appearing in \widetilde{x}_0 and \widetilde{y}_0 , are

mutually disjoint. The above equalities also show that $T(x_0) - T(y_0) = T(\widetilde{x}_0) - T(\widetilde{y}_0)$. We shall try to denote general elements in terms of these particular elements $\widetilde{x}_0, \widetilde{y}_0$.

Let $x,y\in X$ be general elements such that l=T(x)-T(y). Then $T(x)-T(y)=T(\widetilde{x}_0)-T(\widetilde{y}_0)$. Since L is a linear space, $T(x)+T(\widetilde{y}_0)=T(y)+T(\widetilde{x}_0)$. By additivity of T, $T(x+\widetilde{y}_0)=T(y+\widetilde{x}_0)$. Since T is one-to-one, $x+\widetilde{y}_0=y+\widetilde{x}_0$; i.e., $x+\sum \zeta_q b_q=y+\sum \xi_p b_p$. Recall that $\xi_p,\zeta_q>0$ for all p,q, and the subsets $\{b_p\}$ and $\{b_q\}$ of B, appearing in \widetilde{x}_0 and \widetilde{y}_0 , are mutually disjoint. We conclude there exists $u\in X$ such that

$$x = \widetilde{x}_0 + u, \quad y = \widetilde{y}_0 + u.$$

Suppose

$$0 = ||l|| = \inf\{|||x||| + |||y||| : l = T(x) - T(y), \ x, y \in X\}.$$

There exist sequences $(x_n), (y_n) \in X$ such that

$$l = T(x_n) - T(y_n)$$

for each n, and

$$\lim_{n \to \infty} (|||x_n||| + |||y_n|||) = 0.$$

However, as we observed earlier, for each n, there exists $u_n \in X$ so that

$$x_n = \widetilde{x}_0 + u_n, \quad y_n = \widetilde{y}_0 + u_n.$$

Moreover

$$\lim_{n\to\infty} |||\widetilde{x}_0 + u_n||| = 0 \quad \text{and} \quad \lim_{n\to\infty} |||\widetilde{y}_0 + u_n||| = 0.$$

By Proposition 1(b), we have $\widetilde{x}_0, \widetilde{y}_0 \in V_X$. Note that $T|_{V_X}$ is a linear operator. Thus $l = T(\widetilde{x}_0) - T(\widetilde{y}_0) = T(\widetilde{x}_0 - \widetilde{y}_0) \in T(X)$, so we have

$$0 = ||l|| = ||T(\widetilde{x}_0 - \widetilde{y}_0)|| = |||\widetilde{x}_0 - \widetilde{y}_0|||,$$

where the last equality holds since $\widetilde{x}_0 - \widetilde{y}_0 \in X$. Therefore $\widetilde{x}_0 - \widetilde{y}_0 = 0$. Thus $l = T(\widetilde{x}_0 - \widetilde{y}_0) = T(0) = 0 \in L$. We have shown that $||\cdot||$ is a norm on L. Thus ρ is a metric. \square

We construct a new metric on X which is simpler than G. Godini's. This does not involve construction of L.

THEOREM 6. For a nals $(X, |||\cdot|||)$ with a basis, there exists a metric d on X satisfying the properties of ρ in (1) - (5).

Proof. Let B be a symmetric basis for X. For $x,y,z\in X$, we may assume that $x=v_x+\sum_{i=1}^n\alpha_ib_i,\,y=v_y+\sum_{i=1}^n\beta_ib_i,\,z=v_z+\sum_{i=1}^n\gamma_ib_i,$ where $v_x,v_y,v_z\in V_X,\,b_i\in B\setminus V_X,\,\alpha_i,\beta_i,\gamma_i\geq 0,\,\,i=1,2,...,n.$

Define $d: X \times X \to \mathbb{R}$ by

(6)
$$d(x,y) = |||v_x - v_y + \sum_{i=1}^n (\alpha_i - \beta_i)b_i||| \quad (x,y \in X).$$

From Proposition 4 and the triangle inequality, we have

$$\begin{aligned} d(x,y) + d(y,z) &= |||v_x - v_y + \sum_{i=1}^n (\alpha_i - \beta_i)b_i||| \\ &+ |||v_y - v_z + \sum_{i=1}^n (\beta_i - \gamma_i)b_i||| \\ &\geq |||v_x - v_z + \sum_{i=1}^n (\alpha_i - \beta_i)b_i + \sum_{i=1}^n (\beta_i - \gamma_i)b_i||| \\ &\geq |||v_x - v_z + \sum_{i=1}^n (\alpha_i - \gamma_i)b_i||| \\ &\geq d(x,z). \end{aligned}$$

Thus $d(x,y)+d(y,z) \ge d(x,z)$ for $x,y,z \in X$. Clearly, we have d(x,y)=d(y,x) and d(x,y)=0 if and only if x=y for each $x,y \in X$. Therefore d is a metric on X.

It is easy to show that d satisfies (1) - (5) except for (3) when $\lambda < 0$. To show this, let $\lambda < 0$. Then $\lambda x = \lambda v_x + \sum_{i=1}^n (-\lambda \alpha_i)(-b_i)$, $\lambda y = 0$

 $\lambda v_y + \sum_{i=1}^n (-\lambda \beta_i)(-b_i)$. Hence we have

$$\begin{split} d(\lambda x, \lambda y) &= |||\lambda v_x - \lambda v_y + \sum_{i=1}^n (-\lambda \alpha_i - (-\lambda \beta_i))(-b_i)||| \\ &= |||\lambda (v_x - v_y) + \sum_{i=1}^n \lambda (\alpha_i - \beta_i)b_i||| \\ &= |\lambda| \ |||v_x - v_y + \sum_{i=1}^n (\alpha_i - \beta_i)b_i||| \\ &= |\lambda| d(x, y). \end{split}$$

Therefore $d(\lambda x, \lambda y) = |\lambda| d(x, y)$ for $x, y \in X$, $\lambda < 0$. The proof of the theorem is complete. \square

A metric induced by the norm on a normed linear space X satisfies (2) and (3). Also, the metric d defined by (6) satisfies (2), (3), and d(x,y) = |||x-y||| if $X = V_X$. This shows that (6) generalizes the notion of the metric induced by the norm on a normed linear space X.

EXAMPLE 7. Let \mathbb{R}^2 be endowed with the Euclidean norm $||\cdot||$ and let $e_1=(1,0),\ e_2=(0,1).$ Let $X=\{\alpha e_1+\beta e_2:\alpha\geq 0,\ \beta\geq 0\}.$ Define $s(x,y)=x+y,\ m(\lambda,x)=|\lambda|x$ for $x,y\in X,\ \lambda\in\mathbb{R}.$ Then $V_X=\{0\}$ and $W_X=X.$ Define |||x|||=||x|| for $x\in X.$ Then $(X,|||\cdot|||)$ is a nals. And $\{e_1,e_2\}$ is a basis for X. Let ρ be a metric on X defined by G. Godini and d a metric on X defined by (6). We have

$$d(e_1, e_2) = |||e_1 - e_2||| = |||e_1 + e_2||| = \sqrt{2}.$$

But

$$\rho(e_1, e_2) = |||e_1||| + |||e_2||| = 2.$$

Indeed, if $T: X \to L = T(X) - T(X)$ is the positively homogeneous map used in defining the semi-metric ρ , and if $T(e_1) - T(e_2) = T(x) - T(y)$ for some $x, y \in X$, then $x = e_1 + u$, $y = e_2 + u$ for some $u \in X$. Hence $|||e_1||| \le |||x|||$ and $|||e_2||| \le |||y|||$ since $u \in X = W_X$. Therefore $||T(e_1) - T(e_2)|| = |||e_1||| + |||e_2||| = 2$.

From now on, every nals X with a basis is assumed to have a metric d given by Theorem 6.

A metric induced by a norm on normed almost linear spaces

THEOREM 8. If a nals X has a basis, then V_X and W_X are closed in X.

Proof. Let (v_n) be a sequence in V_X such that

$$\lim_{n \to \infty} d(v_n, x) = 0$$

for some $x \in X$. Since

$$d(0, x - x) = d(v_n - v_n, x - x)$$

$$\leq d(v_n - v_n, x - v_n) + d(x - v_n, x - x)$$

$$= d(v_n, x) + d(-v_n, -x)$$

$$= d(v_n, x) + |-1|d(v_n, x)$$

$$= 2d(v_n, x)$$

for each $n \in \mathbb{N}$, we have d(0, x - x) = 0. Hence x - x = 0. Therefore $x \in V_X$.

Let (w_n) be a sequence in W_X such that

$$\lim_{n \to \infty} d(w_n, x) = 0$$

for some $x \in X$. Since

$$d(x, -x) \le d(x, w_n) + d(w_n, -x)$$

= $d(x, w_n) + d(-w_n, -x)$
= $2d(x, w_n)$

for each $n \in N$, we have d(x,-x) = 0. Hence x = -x. Therefore $x \in W_X$. \square

Thus, if a nals X with a basis is complete, then V_X and W_X are complete. However, if a nals X is not split, then the converse does not hold as shown in the following Example:

Example 9. Let \mathbb{R}^2 be endowed with the Euclidean norm $||\cdot||$ and let $e_1=(1,0),\ e_2=(0,1).$ Let $X=\{\alpha e_1+\beta e_2:\alpha,\beta\in\mathbb{R},\ \beta\geq 0\}.$ Define s(x,y)=x+y for $x,y\in X$ and $m(\lambda,x)=(\lambda\alpha)e_1+(|\lambda|\beta)e_2$ for $x=\alpha e_1+\beta e_2\in X$ and $\lambda\in\mathbb{R}.$ And define |||x|||=||x|| for $x\in X.$ Then $(X,|||\cdot|||)$ is a nals with a basis $B=\{e_1,e_2\}.$ Also, $V_X=\{\alpha e_1:\alpha\in\mathbb{R}\}$ and $W_X=\{\beta e_2:\beta\geq 0\}.$ Hence $X=W_X+V_X.$ Let $x=\alpha_1 e_1+\beta_1 e_2$ and $y=\alpha_2 e_1+\beta_2 e_2.$ Then $d(x,y)=|||\alpha_1 e_1-\alpha_2 e_1+(\beta_1-\beta_2)e_2|||=||\alpha_1 e_1-\alpha_2 e_1+(\beta_1-\beta_2)e_2||=||\alpha_1 e_1+\beta_1 e_2)-(\alpha_2 e_1+\beta_2 e_2)||=||x-y||.$ Hence X is complete.

Let $Y = \{\alpha e_1 + \beta e_2 \in X : \alpha, \beta \in \mathbb{R}, \beta > 0\} \cup \{(0,0)\}$. Then Y is an almost linear subspace of X which has no basis. $V_Y = \{0\}$, $W_Y = \{\beta e_2 : \beta \geq 0\}$, and $Y \neq W_Y + V_Y$. Clearly, W_Y and V_Y are complete but Y is not complete.

When X splits as $X = W_X + V_X$, Theorem 8 yields the following

THEOREM 10. If a nals X has a basis and splits as $X = W_X + V_X$, then X is complete if and only if V_X and W_X are complete.

Proof. By Proposition 2(d), there exists a basis B for W_X . Suppose that V_X and W_X are complete. Let (x_n) be a Cauchy sequence in X. Let $x_n = v_n + \sum_{i=1} \alpha_{n_i} b_i$, where $v_n \in V_X$, $b_i \in B$, $\alpha_{n_i} \geq 0$, and \sum_i denote a finite sum. By Proposition 1(a), we have

$$|||v_n - v_m||| \le |||v_n - v_m + \sum_i (\alpha_{n_i} - \alpha_{m_i})b_i||| = d(x_n, x_m)$$

and

$$|||\sum_{i}(lpha_{n_{i}}-lpha_{m_{i}})b_{i}|||\leq |||v_{n}-v_{m}+\sum_{i}(lpha_{n_{i}}-lpha_{m_{i}})b_{i}|||=d(x_{n},x_{m}).$$

Thus (v_n) is a Cauchy sequence in V_X , and $(\sum_i \alpha_{n_i} b_i)$ is a Cauchy sequence in W_X . Since V_X, W_X are complete, there exist $v \in V_X$, $w = \sum_i \alpha_i b_i \in W_X$ such that

$$\lim_{n\to\infty} d(v_n,v) = 0 \text{ and } \lim_{n\to\infty} d\left(\sum_i \alpha_{n_i} b_i, \sum_i \alpha_i b_i\right) = 0.$$

Put $x = v + \sum_{i} \alpha_i b_i \in X$. Then, since

$$\begin{split} d(x_n,x) &= d\left(v_n + \sum_i \alpha_{n_i} b_i, v + \sum_i \alpha_i b_i\right) \\ &\leq d\left(v_n + \sum_i \alpha_{n_i} b_i, \sum_i \alpha_{n_i} b_i + v\right) \\ &+ d\left(\sum_i \alpha_{n_i} b_i + v, v + \sum_i \alpha_i b_i\right) \\ &= d\left(v_n, v\right) + d\left(\sum_i \alpha_{n_i} b_i, \sum_i \alpha_i b_i\right), \end{split}$$

we have

$$\lim_{n\to\infty}d(x_n,x)\leq \lim_{n\to\infty}d(v_n,v)+\lim_{n\to\infty}d\left(\sum_i\alpha_{n_i}b_i,\sum_i\alpha_ib_i\right)=0.$$

Hence (x_n) converges to $x \in X$. Therefore X is complete. \square

References

- [1] M. M. Day, *Normed linear spaces*, Berlin-Göttingen-Heidelberg, Springer-Verlag (1962).
- [2] N. Dunford and J. Schwartz, Linear operators. Part I, Pure and applied Mathematics, 7., New York, London, Interscience (1958).
- [3] G. Godini, An approach to generalizing Banach spaces: Normed almost linear spaces, Proceedings of the 12th Winter School on Abstract Analysis (Srni 1984). Suppl. Rend. Circ. Mat. Palermo II. Ser. 5 (1984), 33-50.
- [4] ______, A framework for best simultaneous approximation: Normed almost linear spaces, J. Approx. Theory 43 (1985), 338-358.
- [5] _____, On Normed Almost Linear Spaces, Math. Ann. 279 (1988), 449-455.
- [6] S. H. Lee, Reflexivity of normed almost linear spaces, Comm. Korean Math. Soc. 10 (1995), 855-866.
- [7] H. Radstrom, An embedding theorem for spaces of convex sets, Proc. Amer. Math. Soc. 3 (1952), 165-169.

DEPARTMENT OF MATHEMATICS, COLLEGE OF NATURAL SCIENCE, CHUNGBUK NATIONAL UNIVERSITY, CHEONGJU 360-763, KOREA