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A METRIC INDUCED BY A NORM ON
NORMED ALMOST LINEAR SPACES

SUuNG Mo IM AND SANG HAN LEE

In [3,4,5], G. Godini introduced a normed almost linear space(nals),
generalizing the concept of a normed linear space. In contrast with the
case of a normed linear space, the norm of a nals (X, ||| - |||) does not
generate a metric on X (for x € X \ Vx we have |||z — zl]|| # 0). G.
Godini [5] proved that for a nals X there exists a semi-metric which
satisfy some properties. In this paper, we prove that the above semi-
metric is a metric if a nals X has a basis. Also, we construct a new
metric for such a space in a simpler way and, prove that in the case
when a nals X has a basis and splits as X = Wx + Vx, then X is
complete if and only if Vx and Wx are complete.

We recall some definitions and results used in this paper. All spaces
involved in this paper are over the real field R. Let us denote by R
the set {A € R: A > 0}.

An almost linear space (als) is a set X together with two mappings
s: XxX — X and m : RxX — X satisfying the conditions (L;)—(Ls)
given below. For z,y € X and A € R we denote s(z,y) by z + y and
m(A,z) by Az, when these will not lead to misunderstandings. Let
z,y,2€ Xand A, p € R. (L1) 2+ (y+2) = (z+y) +2; (L2) 24y = y+ua;
(L3) There exists an element 0 € X such that z+0 = z for each z € X
(L4) 1z = 2 (Ls) Mz+y) = Ao+ y; (L) 0z = 0; (L7) A(pz) = (Ap)a;
(Ls) (/\+u)x = Az + px for A > 0, p > 0. We denote —1z by —z, and
z —y means  + (—y). For an als X we introduce the following two
sets:

Vx ={zeX:z-2=0}
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Wx={zeX:z=—2}.

Vx and W are almost linear subspaces of X (i.e., closed under addition
and multiplication by scalars) and, in fact, Vi is a linear space. Clearly
an als X is a linear space iff Vxy = X iff Wx = {0}. Note that Vx N
Wx = {0} and Wx = {z —z:z € X}.

A norm on an als X is a functional ||| - ||| : X — R satisfying the
conditions (N1) — (N3) below. Let z,y,2 € X and A € R. (N1) ||z —
201l < eyl +HIly—2lll; (Vo) [lIAzl]] = A lfz]]]; (V) [lle]l] = 0iffz =

0. An als X together with ||| ||| : X — R satisfying (N1)—(NN3) is called
a normed almost linear space (nals). Using (N;) we get |||z + y||| <
llzl[I+1]lyll| and {|lz—y|[| > | [|lz[||~|llyll| | for =,y € X. By the above

axioms it follows that |||z]|| > 0 for each z € X.
A subset B of an als X is called a basis for X if for each z € X \ {0}
there exist unique sets {b;,bs,...,b,} C B, {A1, A2, .., A0} € R\ {0}

(n depending on x) such that z = 2 Aibi, where A; > 0 for b; & Vy.
i=1
Clearly, if B is a basis for X then 0 ¢ B.
Now, we give some propositions needed in the sequel.

ProposiTion 1 ([3]). Let (X, ||| -|||) be a nals. Then,

(a) Forz € X, w e Wx, max{|lfz[|], |||} < |||z + wl||.
(b) For z,7, € X, n€ N, iflim, o |||Zn, + z||| = 0 then z € V.

PROPOSITION 2 ([3]). Let X be an als with a basis B. Then,

(a) The relations z +y =z + z, z,y,z2 € X imply that y = 2.

(b) For each z € X \ Vy, there exist unique by,b3,....,b, € B\
Vx, v € Vx, and A1, Ag, ..., A, > 0 such that z = Sor oAbt

(c) There exists a basis B' of X with the property that for each
Y € B'\ Vx we have —b' € B’ \ Vx. Moreover card(B \Vx) =
card(B’\ Vx ). We shall call such a basis B’ a symmetric basis.

(d) There exists a basis B” of Wx + Vx with the property that
B" = By U By, where B is a basis for Wx and By is a basis for
Vx.

We say that a commutative semigroup X with zero [i.e. satisfying
(L1) - (L3)] is an abstract convez cone if there is also given a mapping
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(A z) = Az of Ry x X into X such that (L4), (Ls), (L7) and (Lg) hold
for x,y € X and A\, u € Ry. X satisfies the law of cancellation if the
relations z,y,2 € X, z+y =z+zimplyy = 2. AmapT : X — L from
an abstract convex cone to a linear space is positively homogeneous if
T(az) = aT(z) for a € R,.

PROPOSITION 3 ([5,7]). Let X be an abstract convex cone satisfying
the law of cancellation. Then there exist a linear space L and a one-
to-one additive and positively homogeneous mapping T : X — L such
that L=T(X)-T(X)={T(z) - T(y): z,y € X}.

Note that such an additive and positively homogeneous mapping T
is linear on the subspace Vx.

PROPOSITION 4. Let (X, ||| - |||) be a nals and let x € X. Then for
each a, 3 € R, we have

ar+ Bz = (a+ Bz +w

for some w € Wy . Furthermore, for a;, 8; € R, z, € X, (i =1,2,...,n),
we have

n n 1
11D (e + Bl < D cumi + > Bl
i=1 [E=3 i=:1

Proof. If a8 > 0, then (a + 8)z = az + Bz. Let af < 0. We may
assume that o < 0 < 3, without loss of generality. If |a| < 3, we have
ar+f0r = ar+(~at+a+B)r = ax+(—a)r+(a+8)z = w+ (a+ )z,
where w = az+(—a)z. If |a| > 3, we have az+8r = (a+5-8)z+ 8z =
(a+B)z+(—0F)z+8r = (a+B)z+w, where w = Jz+(—3)x. Therefore,
az + fz = (o + B)z + w for some w € Wx. From Proposition 1(a), we
have

llaz + Bz|l| = [[|[(a+ B)x + wll| = (e + B)z|ll.
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For the second statement, let a;,8; € R, z; € X, i = 1,2,...,n. Then

11 cimi+ " Bzl = 1D " (oumi + Bex)| |
i=1 2==1 i=1
= || Z((ai + Bi)zi + wi)|

> {[1) (s + Bzl O
i=1

On every nals (X, |||}, Godini introduced a semi-metric p. In the
case when X has a basis, the construction can be simplified as follows:
A nals X with a basis is an abstract convex cone satisfying the law
of cancellation. By Proposition 3, there exist a linear space L and a
one-to-one additive and positively homogeneous mapping 7" : X — L
such that L = T(X) — T(X). For | € L define

1] = ||l + [llylll - 1 = T(2) - T(y), z,y € X}.

Then || - || is a semi-norm on L and |[T(z)|| = |||z||| for each z €
X ([5; Theorem 3.2]). The semi-metric p on X is given by p(z,y) =
[T(z) =T (y)|| for z,y € X([5; Corollary 3.3]) and satisfies the following
properties:

(1) plz,v) = lllz —vll] (z€X, veVy),

(2) ple+z,y+2)=plz,y) (2,92 € X),

3) p(Az, Ay) = [Ap(z,y) (z,y€ X, AeR),

(4) [l =1yl < ple,y) < lle—ylll (2,9 € X),
(5) Jim p(Az,2) = p(hoz,2) (z € X, Ao >0).

We prove that the semi-metric is a metric in the case when X has a
basis.
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THEOREM 5. Ifanals (X, |||-|||) has a basis, then G. Godini’s semi-
metric is a metric on X.

Proof. Let B be a basis for a nals X. We shall show that || - || is a
norm on L.

Let I € L. Choose zg,yp € X so that [ = T'(z¢) — T'(yo). Using our
basis B, we can write zg and yp as

Ty = Zaibi + Zﬁjbj + Z'kak + Z5zbz,
Yo = aibi+ Y Bibi+ Y vhbe+ > b

bi,bj eVxNB, b #bj, a; Za;, ﬂj <B;

where

and
bi,by € B\ Vx, b # by, ve =7, >0, 0< 8 < 4.

Since T is additive and positively homogeneous (so T is linear on Vx),
we have

T(zo) — T(yo) = Y (o — ai)T(b:) + Y (v — 7%)T(bx)
- (326 - 8T + 36 - 0)Tw)
=T (Z(ai —a)bi + Y (v - WL)bk)
-T (Z(f’} ~B)bi + Y (6 - 5!)51) -

Let
To=p (ai—aDbi+ Y (W —1)be= D &by
P
Jo= Y (B = Bi)bi+ Y (6 — )b =Y _ (b,
q

Note that all the coefficients are positive; that is, £,,(; > 0 for all p, g.
Moreover, the subsets {b,} and {b,} of B, appearing in Zy and yp, are
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mutually disjoint. The above equalities also show that T(zo)~T(yo) =
T(zo) — T(yo). We shall try to denote general elements in terms of
these particular elements g, Yo.

Let z,y € X be general elements such that | — T(x) - T(y). Then
T(z)—T(y) = T(Zo) — T(%o). Since L is a linear space, T'(z) +T(yo) =
T(y) + T(Zo). By additivity of T, T'(z + §o) = Ty + Fo). Since T is
one-to-one, r + Yo = y + To; i.e., 4+ 3 (b, =y + > &b, Recall that
&p, Cg > 0 for all p, ¢, and the subsets {bp} and {b,} of B, appearing in
To and gy, are mutually disjoint. We conclude there exists u € X such
that

T=To+u, y=7y—+u

Suppose
0= [lti = inf{{llzlll + lllyll| : | = T(x) ~ T(y), z,y € X}.
There exist sequences (z,,), (y,) € X such that
l=T(zn) - T(yn)

for each n, and
Jim (|[iznfl] + lly=]ll) = 0.

However, as we observed earlier, for each n, there exists u,, € X so that
Tn =20+ Un, Yn = Yo + Uy.
Moreover

Jim {130 +ull| =0 and  lim (|G + unlfl = 0

By Proposition 1(b), we have Zp, Jy € Vy. Note that T|y, is a linear
operator. Thus | = T'(zy) — T'(g0) = T(F — Yo) € T(X), so we have
0= 1lt] = IT(Zo — o)I| = |l|Zo — Folll,

where the last equality holds since Fy — i € X. Therefore Zo — 7o = 0.
Thus I = T(Zp — go) = T(0) = 0 € L. We have shown that l|-]] is a
norm on L. Thus p is a metric. [J

We construct a new metric on X which is simpler than G. Godini’s.
This does not involve construction of L.
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THEOREM 6. For a nals (X, |||-]||) with a basis, there exists a metric
d on X satisfying the properties of p in (1) — (5).

Proof. Let B be a symmetric basis for X. For z,y,2 € X, we may
assume that z = vy + > o by, y = v+ oy Bibi, z = v+ Yibi,
where v, vy, v; € Vx, b € B\ Vx, 03,8, >0, i=1,2,...,n

Define d: X x X — R by
©  dey) —I!lvz—vwz ~ bl (z.y € X).

From Proposition 4 and the triangle inequality, we have

n

d(z,y) +d(y, 2) = [llve — vy + D (s — Bl

i==1

+H|vy—vz+z ) bil |

ke3

> |lve — v + Z(ai — Bi)bi + Z(ﬂi — Ya)bill|

=1

>H|vx—vz+z — 7i)b ||

= d(z, 2).

Thus d(z,y)+d(y, z) > d(z, z) for z,y, z € X. Clearly, we have d(z,y) =
d(y,z) and d(z,y) = 0 if and only if x = y for each z,y € X. Therefore
d is a metric on X.

It is easy to show that d satisfies (1) - (5) except for (3) when A < 0.
To show this, let A < 0. Then Az = Av, + > (—Aa)(=by), Ay =

121



Sung Mo Im and Sang Han Lee

Avy + 377 (=AB;)(—b;). Hence we have

d(Az, Ay) = ||| Ave — Aoy + D " (=Aa; — (=A8,))(=bs)]|

i=1

= 1wz = vy) + > Ao — Bi)bs]|]
i=1

= Al [[lve = vy + > (o — B)bil|
i=1

= |Ald(z, y)-

Therefore d(Az, Ay) = |A|d(z,y) for z,y € X, A < 0. The proof of the
theorem is complete. [

A metric induced by the norm on a normed linear space X satisfies
(2) and (3). Also, the metric d defined by (6) satisfies (2), (3), and
d(z,y) = ||z — yll|| if X = Vx. This shows that (6) generalizes the
notion of the metric induced by the norm on a normed linear space X.

EXAMPLE 7. Let R? be endowed with the Euclidean norm || - || and
let e1 = (1,0), e2 = (0,1). Let X = {ae; + Bez: a > 0, 8 > 0}. Define
s(z,y) =z +y, m(Az) = |A|z for z,y € X, A € R. Then Vy = {0}
and Wx = X. Define |||z||| = ||z|| for € X. Then (X, || - ||| is a nals.
And {e;, ez} is a basis for X. Let p be a metric on X defined by G.
Godini and d a metric on X defined by (6). We have

der, e2) = |lle1 — e2ll] = [|[ex + eafl| = V2.
But
pler, e2) = [lex]l] + lle2]|| = 2.
Indeed, if T : X — L = T(X) — T(X) is the positively homogeneous
map used in defining the semi-metric p, and if T'(e;) — T'(es) = T(z) —
T'(y) for some z,y € X, then = e; + u, Yy = ey + u for some u € X.

Hence |||e1]|| < [||z||| and ||le2]|| < |||yl]| since u € X = Wy. Therefore
17(ex) = T(e2)l] = |llenll| + lllez|]| = 2.

From now on, every nals X with a basis is assumed to have a metric
d given by Theorem 6.
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THEOREM 8. If a nals X has a basis, then Vx and Wx are closed
in X.

Proof. Let (v,) be a sequence in Vx such that

lim d(v,,z) =0

n—o0

for some z € X. Since

d(0,z — z) = d(vp, — Un, T — T)
< d(Vp — Vn, T —vp) +d(x — vp, T — )
= d(vn, z) + d(—vp, —1)
= d(vp, z) + | = 1|d(vn, z)
= 2d(vp, x)

for each n € N, we have d(0,z — z) = 0. Hence z — z = 0. Therefore
T € Vy.
Let (wy,) be a sequence in Wx such that

lim d(w,,z) =0
n—00

for some z € X. Since

d(l‘, —.’E) < d(x7wn) + d(wna '—'T)
= d(z,wn) + d(—wn, --z)
= 2d(z,wy)
for each n € N, we have d(z,—z) = 0. Hence ¢ = —z. Therefore

reWyx. O

Thus, if a nals X with a basis is complete, then Vx and Wx are
complete. However, if a nals X is not split, then the converse does not
hold as shown in the following Example:
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EXAMPLE 9. Let R? be endowed with the Euclidean norm [[-]] and
let e; = (1,0), e2 = (0,1). Let X = {ae; + Bes : a,8 € R, 8 > 0}.
Define s(z,y) = z +y for z,y € X and m(\, 2) = (Aa)e; + (I1A|B)ez for
z = ae; +fe; € X and A € R. And define |||z]|| = ||z|| for z € X. Then
(X, [l 11]) is a nals with a basis B = {e}, e;}. Also, Vy = {ae; e R}
and Wx = {Bes : 8 > 0}. Hence X = Wx + Vyx. Let z = arey + Bresg
and y = ase; + fF2ez. Then d(z,y) = |||arer — aze; + (61 — Ba)es||| =
llarer —azer + (81— Ba)ez|| = ||(are1+Bre2) — (aner + faes)|| = [Jz—y]|.
Hence X is complete.

Let Y = {ae; +PBex € X : a,8 € R, 8 > 0} U {(0,0)}. Then
Y is an almost linear subspace of X which has no basis. Vy = {0},
Wy = {Bez : 3 > 0}, and Y # Wy + Vy. Clearly, Wy and Vy are
complete but Y is not complete.

When X splits as X = Wx + Vx, Theorem 8 yields the following

THEOREM 10. If a nals X has a basis and splits as X = Wx + Vx,
then X is complete if and only if Vx and Wy are complete.

Proof. By Proposition 2(d), there exists a basis B for Wy. Suppose
that Vx and Wx are complete. Let (z,,) be a Cauchy sequence in X.
Let zy, = v, + 3,4 ap,b;, where v, € Vx, b, € B, Qp, 20, and ),
denote a finite sum. By Proposition 1(a), we have

llon = vmll] < {llvn — v + Z(O‘m — an)billl = d(@n, 2m)

and

il Z(am = am )ill| < |lvp — v, + Z(ani — am )bl = d(Zns Trn ).

Thus (v,) is a Cauchy sequence in Vy, and (>_; an;bi) is a Cauchy
sequence in Wy . Since Vx, Wy are complete, there exist v € Vx, w=
> 0:b; € Wx such that

nlgrolo d(vn,v) = 0 and nlgr;od <Z O, by, Z aibi> =0.
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Put £ =v+ ), a;b; € X. Then, since

d(.’L‘n,.’L‘) =d Un + Zanibi,v + Zaibi
<d vn+Zambi,Zambi+v
+d Zanibi +v,v+ Za,-bi

=d (vn,v) +d Zanibi,zaibi ,

we have

N—r00 n—o0 0O

lim d(z,,z) < lim d(v,,v)+ lim d Zanib,-,Zaibi =

Hence (z,,) converges to z € X. Therefore X is complete. [J

[
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