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CONVERGENCE OF APPROXIMATE
SEQUENCES FOR COMPOSITIONS OF
NONEXPANSIVE MAPPINGS IN BANACH SPACES

JONG S00 JUNG AND TAE Hwa Kim

1. Introduction

Let C be a nonempty closed convex subset of a Banach space F and
let 71, -+ Ty be nonexpansive mappings from C into itself (recall that
a mapping T' : C — C is nonezpansive if | Tz — Ty|| < ||z — y| for
all z, y € C). We consider the fixed point problem for nonexpansive
mappings : find a common fixed point, i.e., find a point in N, Fiz(T}),
where Fiz(T;) := {x € C : ¢ = T;z} denotes the set of fixed points of
T;.

The most straightforward attempt to solve the fixed point problem
for nonexpansive mappings is to iterate the mapping cyclically :

Co2xp— 19 =Tixgr— - TN =TNnTn_1

1

(1) e = Tian -

For convenience, we set T,, := T, jn0q N, Where we let the mod N
function take values in {1, ---,N}. Then we can rewirte (1) more
compactly :

(1) Tpy1 = In+1x, foralln>0and zp € C.
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Unfortunately, iteration scheme (1) can fail to produce a norm con-
vergent sequence {z,} even if N = 1 and 7] is firmly nonexpansive,
since Genel and Lindenstrauss [4] presented an example where {zn}
converges only weakly.

By approximating each nonexpansive mapping by Banach contrac-
tions, we can obtain the following modified version of (1): for a sequence
An in [0,1) converging to 0,

Cozpr—x:=Ma+ (1 - A)Tzp— -
oy = Ava+ (1= An)Tvey -
F— TN+ = Avpa+ (1= A1) ey — -
Or more compactly
(2) Tni1 = Anpra+ (1= A1) Tnp1z,  for all m > 0 and a, xg € C.

In 1967, Halpern [8] suggested iteration scheme (2) for N = 1; see also
Browder [2]. Ten years later, Lions [9] investigated the general case in
Hilbert space under more restrictive condition on {\,}. In 1983, Reich
[11] gave iteration scheme (2) for N = 1 in the case when F is uniformly
smooth and A, = n™* with 0 < a < 1. Since then, Wittmann (13]
studied iteration scheme (2) for N = 1 in the case when E is a Hilbert
space and {\,} satisfies

00 oo
0< A, <1, nli»n;o/\n =0, z—%)‘n = oo and Z:OP\TH-I */\nl < 00.

Shioji and Takahashi [12] improved Wittmann’s result to Banach spaces
under the assumption that each nonempty closed convex subset of C'
possesses the fixed point property for nonexpansive mappings.

Very recently, Bauschke [1] generalized Wittmann’s result [13] to the
case NV > 1 in Hilbert space.

In this paper, we establish the strong convergence of {z,} defined
by (2) in a unformly smooth Banach space with a weakly sequentially
continuous duality mapping, which generalizes Bauschke’s result 1] to
a Banach space setting. Our main result also improves Wittmann’s
result [13] for N = 1 to Banach spaces and partially generalizes a result
by Lions [9].

94



Convergence of approximate sequences
2. Preliminaries

Let E be a real Banach space with norm || - | and let E* be its dual.
The value of z* € E* at z € E will be denoted by (z,z*). When {z,}
is a sequence in E, then z,, — z (resp. z, — x, =, — z) will denote
strong (resp. weak, weak™) convergence of the sequence {z,} to z.

The norm of E is said to be Gdteauz differentable (and E is said to
be smooth) if

t—0 i
exists for each z, y in its unit sphere U = {z € F : ||z| = 1}. It is said
to be uniformly Fréchet differentiable (and E is said to be uniformly
smooth) if the limit in (3) is attained uniformly for (z,y) € U x U.
The (normalized) duality mapping J from E into the family of non-
empty (by Hahn-Banach theorem) weak-star compact subsets of its dual
E™ is defined by

J(@)={f € E": (z,f) = || = IF]*}.

for each x € E. It is single valued if and only if E is smooth. It is
also well-known that if £ has a uniformly Fréchet differentiable norm,
J is uniformly continuous on bounded subsets of E. (cf. [3, 5]). Sup-
pose that J is single valued. Then J is said to be weakly sequentially
continuous if for each {z,} € E with z,, — z, J{z,) = J(x).

A Banach space E is said to satisfy Opial’s condition [10] if for any
sequence {z,} in E, z,, — r implies

limsup ||z, — z|| < limsup ||z, — y||
T—>00 n—C0O

for all y € E with y # 2. We know that if E admits a weakly sequen-
tially continuous duality mapping, then E satisfies Opial’s condition;
see [7].

Recall that a mapping T defined on a subset (C of a Banach space E
( and taking values in E) is said to be demiclosed if for any sequence
{un} in C the following implication holds:

up, = and .lim |[Tu, —w|| =0
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implies
veC and Tu=w.

The following lemma can be found in [6, p. 108].

LEMMA 1. Let E be a reflexive Banach space which satisfies Opial’s
condition, let C' be a nonempty closed convex subset of E, and suppose
T : C — E is nonexpansive. Then the mapping I — T is demiclosed on
C, where I is the identity mapping.

Finally, let C be a nonempty closed convex subset of E. A mapping
Q@ of C into C is said to be a retraction if Q? = (2. If a mapping Q
of C' into itself is a retraction, then Qz = z for every > € R(Q), where
R(Q) is range of Q. Let D be a subset of C and let (2 be a mapping
of C into D. Then Q is said to be sunny if each point on the ray
{Qz + t(x — Qz) :t > 0} is mapped by Q back onto Qz, in other
words,

Q(Qz +it(z — Q) = Qux

forall t > 0 and z € C. A subset D of C is said to be a sunmny
nonexpansive retract of C if there exists a sunny nonexpansive retraction
of C' onto D; for more details, see [5].

The following lemma is well-known (cf. [5, p. 48)).

LEMMA 2. Let C be a nonempty closed convex subset of a smooth
Banach space E, D a subset of C, J : E — E* the duality mapping of
E, and Q : C — D be a retraction. Then the following are equivalent:

(a) (z~Qz,J(y — Qz)) <0 for all z € C and y = D;

(b) 1Qz — Qu|* < (z — w, J(Qz — Qu)) for all z and w in C;

(c) Q is both sunny and nonexpansive.

3. Main results
In this section, we study the strong convergence of {z,} defined by
(2) in a uniformly smooth Banach space with a weakly sequentially

continuous duality mapping.
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From now on, let {\,} be a sequence in [0, 1) which satisfies the

following:
(A1) limy, o0 An = 0,
(A2) 322 An = 00; equivalently []22 (1), ) =0

(A3) 3026 [ — Mg n| < 00,

As in the Introduction, we set T}, := T}, mod N, Where we let the mod
N function take values in {1,--- N}

THEOREM 1. Let E be a uniformly smooth Banach space with a
weakly sequentially continuous duality mapping J : E — E* C a
nonempty closed convex subset of E, and T},--- ,Ty nonexpansive
mappings from C into itself with F := NY_, Fiz(7}) nonempty and

F=Fig(Ty - T1) = Fiz(TiTx - TsTp) = ---
= F'i.r(rle_.,lTN..Q s TlTN).
Let {A.} be a sequence in [0,1) which satisfies {Al), (A2) and (A3).

Then for any a and xo in C, the sequence {z,,} defined by (2) converges

strongly to Qra, where () is a sunny nonexpansive retraction of C' onto
F.

We need the following result which is obtained in [1].

LEMMA 3. Let E be a Banach space and let C, Ty,--- ,Tn, F, {\,},
and {z,} be as in Theorem 1. Then for =y = a,

lim ”‘Tﬂ —Tnyn - Tn-H:EnH == 0.
n —oo

Proof. The proof still follows the lines of the proof in [1]. So we omit
the proof.

Proof of Theorem 1. First we prove the case 2o = a. Note that {z,}
is bounded since F' # (. In fact, by induction, we show that

(4) 2n — 2l < lla — 2]
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foralln > 0and z € F. Let z € F. Clearly, (4) holds for n = 0. If
|zn — z|| < |la — z||, then we have

lznt1 =2l < Analle = 2l + (1 = Mor1) | Tny12a — 2|
< Analle =zl + (1= Ans) 2w — 2|
< lla—z]|.

Let a subsequence {, } of {z,} be such that

lim (a - Qra,J(zn 41 — Qpa)) = limsup(a — Qpa, J(zpi1 — Qra)).

n’ 00 n—00

We assume (after passing to another subsequence if necessary) that
n’+1mod N =i for some i € {1,---,N} and that ZTp'+1 — z. From
Lemma 3, it follows that im, oo ||zn 11 — T - - Ti1Zr11] = 0.
Hence, by Lemma 1, we have 2 € Fiz(T; 1y - -T;41) = F. On the
other hand, since E is uniformly smooth, F is a sunny nonexpansive
retract of C (cf. [5, p. 49]). Thus, by weakly sequentially continuity of
duality mapping J and Lemma 2, we have

limsup(a — Qra, J(zni1 — Qpa))

n—+0o00

(5) = lim (a — Qra,J(Tni+1 — QFa))

n’' —o00

= (a— Qra,J(z — Qra)) < 0.

Since (1_/\n+1)( n+1Tn — QFa) (xn+1 “‘QFa) - )‘n-f-l(a_QFa)a by
using the inequality |ju|? — ||v||? > 2(u — v, J(v)) for all u,v € E with
= (1 = At 1)(Tar12n — Qra) and v = (zny1 — Qra), we have
l2n+1 — Qral?

< ( n+1) ”( n+1dln — QFa)“2
(6) + 2 nt1(a — Qra, J(Tpr1 — Qra))

< (1= Ang1)llzn — Qral?

+ 2)\n+l(a - QFa7 J(x'n+l - QF’a>)-

Now, let £ > 0 be arbitrary. Then by (5), there exists n. such that

(@ —Qra,J(Tni1 — Qra)) <e forall n > n..
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Thus, from (6), we have

[Znt+1 — QF a|]2 (1= Ans1)llzn — QF“H2 + 2An41€
and hence inductively
n+1

|Znt1 — Qral)® < 26 + ||zn, — Qral? H (1--Ag) foralln > n,.
k=n.+1

Letting n — oc, we have

limsup ||z, — Qral|® < 2e.
n— 00

Since € was arbitrary, {z, } converges strongly to Qra.

Next, let zg be arbitrary (possibly different from a) and let {y,} be
the sequence with starting point yo := a. Then, by the above fact, we
have

lim y,, = Qpa.

n—o0

On the other hand, it is easy to check that

|Zn = ynll < llzo — ol JJ(1 = Ax) for all n > 0.
k=1

Thus we have lim,, o ||£n —y»|| = 0 and hence {a:,,} converges strongly

to Qra.
This completes the proof.

As direct consequences, we have the following

COROLLARY 1 (Bauschke [1, Theorem 3.1]). Let H be a Hilbert
space, C' a nonempty closed convex subset of H, and Ty, - - - , Tx nonex-
pansive mappings from C' into itself with F := ¥, Fiz(T;) nonempty
and

- F’I:.’IT(TN_lTNHQ cee TlTN).
Let {\.} be a sequence in [0,1) which satisfies (A1), (A2) and (A3).
Then for any a and xy in C, the sequence {z,} defined by (2) converges
strongly to Ppa, where P is the nearest point projection of C' onto F.
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Proof. Note that the nearest point projection  of C onto F is a
sunny nonexpansive retraction. Thus the result follows from Theorem
1.

COROLLARY 2 ([Wittmann [13, Theorem 2]). Let H be a Hilbert
space, C' a nonempty closed convex subset of H, and T a nonexpansive
mapping from C' into itself with Fiz(T) # 0. Let {\,} be a sequence
in [0,1) which satisfies (A1), (A2) and (A3). Then for any a and z; in
C, the sequence {,,} defined by (2) (with N = 1) converges strongly
to Priz(rya, where P is the nearest point projectior: of C' onto Fix(T).

Let D be a subset of a Banach space E. Recall that a mapping
T : D — F is said to to be firmly nonexpansive if for each z and y in
D, the convex function ¢ : [0, 1] — [0, 00) defined by

#(s) = |(1 - s)z + sTz — (1 — s)y + sTy)||

1s nonincreasing. Since ¢ is convex, it is easy to check that a mapping
T': D — F is firmly nonexpansive if and only if

1Tz =Tyl < |(1 = t)(z — y) + t(Tz - Ty)|

for each z and y in D and ¢t € [0,1]. It is clear that every firmly
nonexpansive mapping is nonexpansive (cf. [5, 6]).

The following result extends a Lions-type iteration scheme [9] to
Banach spaces.

COROLLARY 3. Let E be a uniformly smooth Banach space with
a weakly sequentially continuous duality mapping J : E — E* C a
nonempty closed convex subset of E, and T3, - - - , Ty firmly nonexpan-

sive mappings from C into itself with F := ﬂi’ile'a:(Ti) nonempty and

F=Fiz(Ty--T) = Fig(\Ty - TyT3) = ---
= Fix(In_Ty_z- - T\TxN).
Let {\.} be a sequence in [0,1) which satisfies (A1), (A2) and (A3).
Then for any a and z¢ in C, the sequence {z,,} defined by (2) converges

strongly to QQra, where Q) is a sunny nonexpansive retraction of C' onto
F.
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REMARK. (1) In Hilbert space, Lions [9] had used
(L2) > Mknyi=ooforalli=0,--- N — I,

which is more restrictive than (A2), and

: >r [Aenvti=Ap—1)Nta]l
(L3) limg 500 N s =

in place of (A3).

(2) In general, (A3) and (L2) are independent, even when N = 1: if

An = 27, then {)\,} satisfies (A3) and fails (L3). In contrast, if {\,}

is given by Az, := (n+1)"% and Agpi1 i= (n+ 1)3 + (n+1)71, then
(L3) holds but (A3) does not. For more details, see [1].

10.

11.
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