CONVERGENCE OF APPROXIMATE SEQUENCES FOR COMPOSITIONS OF NONEXPANSIVE MAPPINGS IN BANACH SPACES

JONG SOO JUNG AND TAE HWA KIM

1. Introduction

Let C be a nonempty closed convex subset of a Banach space E and let T_1, \dots, T_N be nonexpansive mappings from C into itself (recall that a mapping $T: C \to C$ is nonexpansive if $||Tx - Ty|| \le ||x - y||$ for all $x, y \in C$). We consider the fixed point problem for nonexpansive mappings: find a common fixed point, i.e., find a point in $\bigcap_{i=1}^N Fix(T_i)$, where $Fix(T_i) := \{x \in C : x = T_ix\}$ denotes the set of fixed points of T_i .

The most straightforward attempt to solve the fixed point problem for nonexpansive mappings is to iterate the mapping cyclically :

(1)
$$C \ni x_0 \longmapsto x_1 := T_1 x_0 \longmapsto \cdots \longmapsto x_N := T_N x_{N-1} \\ \longmapsto x_{N+1} := T_1 x_N \longmapsto \cdots$$

For convenience, we set $T_n := T_{n \mod N}$, where we let the mod N function take values in $\{1, \dots, N\}$. Then we can rewirte (1) more compactly:

(1)
$$x_{n+1} := T_{n+1}x_n \text{ for all } n \ge 0 \text{ and } x_0 \in C.$$

Received November 13, 1996.

1991 AMS Subject Classification: 47H09, 49M05.

Key words and phrases: Nonexpansive mapping, fixed points, iteration, sunny and nonexpansive retraction.

The first author was supported by the Basic Science Research Institute Program, Ministry of Education, Korea, 1997, Project No. BSRI-97-1405, and the second author was also supported by Project No. BSRI-97-1440

Unfortunately, iteration scheme (1) can fail to produce a norm convergent sequence $\{x_n\}$ even if N=1 and T_1 is firmly nonexpansive, since Genel and Lindenstrauss [4] presented an example where $\{x_n\}$ converges only weakly.

By approximating each nonexpansive mapping by Banach contractions, we can obtain the following modified version of (1): for a sequence λ_n in [0,1) converging to 0,

$$C \ni x_0 \longmapsto x_1 := \lambda_1 a + (1 - \lambda_1) T_1 x_0 \longmapsto \cdots$$

$$\longmapsto x_N := \lambda_N a + (1 - \lambda_N) T_N x_{N-1}$$

$$\longmapsto x_{N+1} := \lambda_{N+1} a + (1 - \lambda_{N+1}) T_1 x_N \longmapsto \cdots$$

or more compactly

(2)
$$x_{n+1} := \lambda_{n+1}a + (1 - \lambda_{n+1})T_{n+1}x_n$$
 for all $n \ge 0$ and $a, x_0 \in C$.

In 1967, Halpern [8] suggested iteration scheme (2) for N=1; see also Browder [2]. Ten years later, Lions [9] investigated the general case in Hilbert space under more restrictive condition on $\{\lambda_n\}$. In 1983, Reich [11] gave iteration scheme (2) for N=1 in the case when E is uniformly smooth and $\lambda_n=n^{-a}$ with 0< a<1. Since then, Wittmann [13] studied iteration scheme (2) for N=1 in the case when E is a Hilbert space and $\{\lambda_n\}$ satisfies

$$0 \le \lambda_n \le 1$$
, $\lim_{n \to \infty} \lambda_n = 0$, $\sum_{n=0}^{\infty} \lambda_n = \infty$ and $\sum_{n=0}^{\infty} |\lambda_{n+1} - \lambda_n| < \infty$.

Shioji and Takahashi [12] improved Wittmann's result to Banach spaces under the assumption that each nonempty closed convex subset of C possesses the fixed point property for nonexpansive mappings.

Very recently, Bauschke [1] generalized Wittmann's result [13] to the case N>1 in Hilbert space.

In this paper, we establish the strong convergence of $\{x_n\}$ defined by (2) in a unformly smooth Banach space with a weakly sequentially continuous duality mapping, which generalizes Bauschke's result [1] to a Banach space setting. Our main result also improves Wittmann's result [13] for N=1 to Banach spaces and partially generalizes a result by Lions [9].

2. Preliminaries

Let E be a real Banach space with norm $\|\cdot\|$ and let E^* be its dual. The value of $x^* \in E^*$ at $x \in E$ will be denoted by (x, x^*) . When $\{x_n\}$ is a sequence in E, then $x_n \to x$ (resp. $x_n \to x$, $x_n \stackrel{*}{\to} x$) will denote strong (resp. weak, weak*) convergence of the sequence $\{x_n\}$ to x.

The norm of E is said to be $G\hat{a}teaux\ differentable\ (and\ E\ is\ said\ to\ be\ smooth)$ if

(3)
$$\lim_{t \to 0} \frac{\|x + ty\| - \|x\|}{t}$$

exists for each x, y in its unit sphere $U = \{x \in E : ||x|| = 1\}$. It is said to be uniformly Fréchet differentiable (and E is said to be uniformly smooth) if the limit in (3) is attained uniformly for $(x, y) \in U \times U$.

The (normalized) duality mapping J from E into the family of nonempty (by Hahn-Banach theorem) weak-star compact subsets of its dual E^* is defined by

$$J(x) = \{ f \in E^* : (x, f) = ||x||^2 = ||f||^2 \}.$$

for each $x \in E$. It is single valued if and only if E is smooth. It is also well-known that if E has a uniformly Fréchet differentiable norm, J is uniformly continuous on bounded subsets of E. (cf. [3, 5]). Suppose that J is single valued. Then J is said to be weakly sequentially continuous if for each $\{x_n\} \in E$ with $x_n \to x$, $J(x_n) \stackrel{*}{\longrightarrow} J(x)$.

A Banach space E is said to satisfy Opial's condition [10] if for any sequence $\{x_n\}$ in E, $x_n \rightarrow x$ implies

$$\limsup_{n \to \infty} ||x_n - x|| < \limsup_{n \to \infty} ||x_n - y||$$

for all $y \in E$ with $y \neq x$. We know that if E admits a weakly sequentially continuous duality mapping, then E satisfies Opial's condition; see [7].

Recall that a mapping T defined on a subset C of a Banach space E (and taking values in E) is said to be *demiclosed* if for any sequence $\{u_n\}$ in C the following implication holds:

$$u_n \rightharpoonup u$$
 and $\lim_{n \to \infty} ||Tu_n - w|| = 0$

implies

$$u \in C$$
 and $Tu = w$.

The following lemma can be found in [6, p. 108].

LEMMA 1. Let E be a reflexive Banach space which satisfies Opial's condition, let C be a nonempty closed convex subset of E, and suppose $T:C\to E$ is nonexpansive. Then the mapping I-T is demiclosed on C, where I is the identity mapping.

Finally, let C be a nonempty closed convex subset of E. A mapping Q of C into C is said to be a retraction if $Q^2 = Q$. If a mapping Q of C into itself is a retraction, then Qz = z for every $z \in R(Q)$, where R(Q) is range of Q. Let Q be a subset of Q and let Q be a mapping of Q into Q. Then Q is said to be sunny if each point on the ray $\{Qx + t(x - Qx) : t > 0\}$ is mapped by Q back onto Qx, in other words,

$$Q(Qx + t(x - Qx)) = Qx$$

for all $t \geq 0$ and $x \in C$. A subset D of C is said to be a *sunny* nonexpansive retract of C if there exists a sunny nonexpansive retraction of C onto D; for more details, see [5].

The following lemma is well-known (cf. [5, p. 48]).

LEMMA 2. Let C be a nonempty closed convex subset of a smooth Banach space E, D a subset of C, $J: E \to E^*$ the duality mapping of E, and $Q: C \to D$ be a retraction. Then the following are equivalent:

- (a) $(x Qx, J(y Qx)) \le 0$ for all $x \in C$ and $y \in D$;
- (b) $||Qz Qw||^2 \le (z w, J(Qz Qw))$ for all z and w in C;
- (c) Q is both sunny and nonexpansive.

3. Main results

In this section, we study the strong convergence of $\{x_n\}$ defined by (2) in a uniformly smooth Banach space with a weakly sequentially continuous duality mapping.

From now on, let $\{\lambda_n\}$ be a sequence in [0,1) which satisfies the following:

- (A1) $\lim_{n\to\infty}\lambda_n=0$,
- (A2) $\sum_{n=0}^{\infty} \lambda_n = \infty$; equivalently $\prod_{n=1}^{\infty} (1 \lambda_n) = 0$ (A3) $\sum_{n=0}^{\infty} |\lambda_n \lambda_{n+N}| < \infty$.

As in the Introduction, we set $T_n := T_{n \mod N}$, where we let the mod N function take values in $\{1, \dots, N\}$.

THEOREM 1. Let E be a uniformly smooth Banach space with a weakly sequentially continuous duality mapping $J: E \to E^*, C$ a nonempty closed convex subset of E, and T_1, \dots, T_N nonexpansive mappings from C into itself with $F := \bigcap_{i=1}^N Fix(T_i)$ nonempty and

$$F = Fix(T_N \cdots T_1) = Fix(T_1 T_N \cdots T_3 T_2) = \cdots$$

= $Fix(T_{N-1} T_{N-2} \cdots T_1 T_N).$

Let $\{\lambda_n\}$ be a sequence in [0,1) which satisfies (A1), (A2) and (A3). Then for any a and x_0 in C, the sequence $\{x_n\}$ defined by (2) converges strongly to Q_Fa , where Q is a sunny nonexpansive retraction of C onto F.

We need the following result which is obtained in [1].

LEMMA 3. Let E be a Banach space and let $C, T_1, \dots, T_N, F, \{\lambda_n\},$ and $\{x_n\}$ be as in Theorem 1. Then for $x_0 = a$,

$$\lim_{n\to\infty}\|x_n-T_{n+N}\cdots T_{n+1}x_n\|=0.$$

Proof. The proof still follows the lines of the proof in [1]. So we omit the proof.

Proof of Theorem 1. First we prove the case $x_0 = a$. Note that $\{x_n\}$ is bounded since $F \neq \emptyset$. In fact, by induction, we show that

$$||x_n - z|| \le ||a - z||$$

for all $n \ge 0$ and $z \in F$. Let $z \in F$. Clearly, (4) holds for n = 0. If $||x_n - z|| \le ||a - z||$, then we have

$$||x_{n+1} - z|| \le \lambda_{n+1} ||a - z|| + (1 - \lambda_{n+1}) ||T_{n+1}x_n - z||$$

$$\le \lambda_{n+1} ||a - z|| + (1 - \lambda_{n+1}) ||x_n - z||$$

$$\le ||a - z||.$$

Let a subsequence $\{x_{n'}\}$ of $\{x_n\}$ be such that

$$\lim_{n' \to \infty} (a - Q_F a, J(x_{n'+1} - Q_F a)) = \limsup_{n \to \infty} (a - Q_F a, J(x_{n+1} - Q_F a)).$$

We assume (after passing to another subsequence if necessary) that $n'+1 \mod N=i$ for some $i\in\{1,\cdots,N\}$ and that $x_{n'+1}\to x$. From Lemma 3, it follows that $\lim_{n'\to\infty}\|x_{n'+1}-T_{i+N}\cdots T_{i+1}x_{n'+1}\|=0$. Hence, by Lemma 1, we have $x\in Fix(T_{i+N}\cdots T_{i+1})=F$. On the other hand, since E is uniformly smooth, F is a sunny nonexpansive retract of C (cf. [5, p. 49]). Thus, by weakly sequentially continuity of duality mapping J and Lemma 2, we have

(5)
$$\limsup_{n \to \infty} (a - Q_F a, J(x_{n+1} - Q_F a))$$
$$= \lim_{n' \to \infty} (a - Q_F a, J(x_{n'+1} - Q_F a))$$
$$= (a - Q_F a, J(x - Q_F a)) \le 0.$$

Since $(1 - \lambda_{n+1})(T_{n+1}x_n - Q_F a) = (x_{n+1} - Q_F a) - \lambda_{n+1}(a - Q_F a)$, by using the inequality $||u||^2 - ||v||^2 \ge 2(u - v, J(v))$ for all $u, v \in E$ with $u = (1 - \lambda_{n+1})(T_{n+1}x_n - Q_F a)$ and $v = (x_{n+1} - Q_F a)$, we have

$$||x_{n+1} - Q_F a||^2$$

$$\leq (1 - \lambda_{n+1})^2 ||(T_{n+1}x_n - Q_F a)||^2$$

$$+ 2\lambda_{n+1}(a - Q_F a, J(x_{n+1} - Q_F a))$$

$$\leq (1 - \lambda_{n+1}) ||x_n - Q_F a||^2$$

$$+ 2\lambda_{n+1}(a - Q_F a, J(x_{n+1} - Q_F a)).$$

Now, let $\varepsilon > 0$ be arbitrary. Then by (5), there exists n_{ε} such that

$$(a - Q_F a, J(x_{n+1} - Q_F a)) \le \varepsilon$$
 for all $n \ge n_{\varepsilon}$.

Thus, from (6), we have

$$||x_{n+1} - Q_F a||^2 \le (1 - \lambda_{n+1}) ||x_n - Q_F a||^2 + 2\lambda_{n+1} \varepsilon$$

and hence inductively

$$\|x_{n+1} - Q_F a\|^2 \le 2\varepsilon + \|x_{n_{\varepsilon}} - Q_F a\|^2 \prod_{k=n_{\varepsilon}+1}^{n+1} (1 - \lambda_k)$$
 for all $n \ge n_{\varepsilon}$.

Letting $n \to \infty$, we have

$$\limsup_{n \to \infty} \|x_n - Q_F a\|^2 \le 2\varepsilon.$$

Since ε was arbitrary, $\{x_n\}$ converges strongly to $Q_{F}a$.

Next, let x_0 be arbitrary (possibly different from a) and let $\{y_n\}$ be the sequence with starting point $y_0 := a$. Then, by the above fact, we have

$$\lim_{n\to\infty} y_n = Q_F a.$$

On the other hand, it is easy to check that

$$||x_n - y_n|| \le ||x_0 - y_0|| \prod_{k=1}^n (1 - \lambda_k)$$
 for all $n \ge 0$.

Thus we have $\lim_{n\to\infty} ||x_n - y_n|| = 0$ and hence $\{x_n\}$ converges strongly to $Q_F a$.

This completes the proof.

As direct consequences, we have the following:

COROLLARY 1 (Bauschke [1, Theorem 3.1]). Let H be a Hilbert space, C a nonempty closed convex subset of H, and T_1, \dots, T_N nonexpansive mappings from C into itself with $F := \bigcap_{i=1}^N Fix(T_i)$ nonempty and

$$F = Fix(T_N \cdots T_1) = Fix(T_1 T_N \cdots T_3 T_2) = \cdots$$

= $Fix(T_{N-1} T_{N-2} \cdots T_1 T_N).$

Let $\{\lambda_n\}$ be a sequence in [0,1) which satisfies (A1), (A2) and (A3). Then for any a and x_0 in C, the sequence $\{x_n\}$ defined by (2) converges strongly to $P_F a$, where P is the nearest point projection of C onto F.

Proof. Note that the nearest point projection P of C onto F is a sunny nonexpansive retraction. Thus the result follows from Theorem 1.

COROLLARY 2 ([Wittmann [13, Theorem 2]). Let H be a Hilbert space, C a nonempty closed convex subset of H, and T a nonexpansive mapping from C into itself with $Fix(T) \neq \emptyset$. Let $\{\lambda_n\}$ be a sequence in [0,1) which satisfies (A1), (A2) and (A3). Then for any a and x_0 in C, the sequence $\{x_n\}$ defined by (2) (with N=1) converges strongly to $P_{Fix(T)}a$, where P is the nearest point projection of C onto Fix(T).

Let D be a subset of a Banach space E. Recall that a mapping $T:D\to E$ is said to to be firmly nonexpansive if for each x and y in D, the convex function $\phi:[0,1]\to[0,\infty)$ defined by

$$\phi(s) = \|(1-s)x + sTx - ((1-s)y + sTy)\|$$

is nonincreasing. Since ϕ is convex, it is easy to check that a mapping $T:D\to E$ is firmly nonexpansive if and only if

$$||Tx - Ty|| \le ||(1 - t)(x - y) + t(Tx - Ty)||$$

for each x and y in D and $t \in [0,1]$. It is clear that every firmly nonexpansive mapping is nonexpansive (cf. [5, 6]).

The following result extends a Lions-type iteration scheme [9] to Banach spaces.

COROLLARY 3. Let E be a uniformly smooth Banach space with a weakly sequentially continuous duality mapping $J: E \to E^*$, C a nonempty closed convex subset of E, and T_1, \dots, T_N firmly nonexpansive mappings from C into itself with $F := \bigcap_{i=1}^N Fix(T_i)$ nonempty and

$$F = Fix(T_N \cdots T_1) = Fix(T_1 T_N \cdots T_3 T_2) = \cdots$$

= $Fix(T_{N-1} T_{N-2} \cdots T_1 T_N).$

Let $\{\lambda_n\}$ be a sequence in [0,1) which satisfies (A1), (A2) and (A3). Then for any a and x_0 in C, the sequence $\{x_n\}$ defined by (2) converges strongly to $Q_F a$, where Q is a sunny nonexpansive retraction of C onto F.

Convergence of approximate sequences

REMARK. (1) In Hilbert space, Lions [9] had used

- (L1) $\lim_{n\to\infty} \lambda_n = 0$,
- (L2) $\sum_{k=1}^{\infty} \lambda_{kN+i} = \infty$ for all $i = 0, \dots, N-1$,

which is more restrictive than (A2), and

(L3)
$$\lim_{k \to \infty} \frac{\sum_{i=1}^{N} |\lambda_{kN+i} - \lambda_{(k-1)N+i}|}{(\sum_{i=1}^{N} \lambda_{kN+i})^2} = 0$$

in place of (A3).

(2) In general, (A3) and (L2) are independent, even when N=1: if $\lambda_n := \frac{1}{n+1}$, then $\{\lambda_n\}$ satisfies (A3) and fails (L3). In contrast, if $\{\lambda_n\}$ is given by $\lambda_{2n} := (n+1)^{-\frac{1}{4}}$ and $\lambda_{2n+1} := (n+1)^{-\frac{1}{4}} + (n+1)^{-1}$, then (L3) holds but (A3) does not. For more details, see [1].

References

- 1. H. H. Bauschke, The approximation of fixed points of compositions of nonexpansive mappings in Hilbert space, J. Math. Anal. Appl. 202 (1996), 150-159.
- F. E. Browder, Convergence of approximations to fixed points of nonexpansive mappings in Banach spaces, Archs Ration. Mech. Anal. 24 (1967), 82-90.
- J. Diestel, Geometry of Banach Spaces, Lectures Notes in Math. 485, Springer-Verlag, Berlin, Heidelberg, 1975.
- A. Genel and J. Lindenstrauss, An example concerning fixed points, Israel J. Math. 22 (1975), 81-86.
- K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry and Nonexpansive Mappings, Marcel Dekker, New York and Basel, 1984.
- K. Goebel and W. A. Kirk, Topics in metric fixed point theory, in "Cambridge Studies in Advanced Mathematics," Vol. 28, Cambridge Univ. Press, Cambridge, UK, 1990.
- J. P. Gossez and E. L. Dozo, Some geometric properties related to the fixed point theory for nonexpansive mappings, Pacific J. Math. 40(3) (1972), 565-573.
- 8. B. Halpern, Fixed points of nonexpansive maps, Bull. Amer. Math. Soc. 73 (1967), 957-961.
- P. L. Lions, Approximation de points fixes de contractions, C. R. Acad. Sci. Sér A-B, Paris 284 (1977), 1357-1359.
- Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597.
- S. Reich, Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. Math. Anal. Appl. 75 (1980), 287-292.
- 12. N. Shioji and W. Takahashi, Strong convergence of approximated sequences for nonexpansive mappings in Banach spaces, preprint.

Jong Soo Jung and Tae Hwa Kim

 R. Wittmann, Approximation of fixed points of nonexpansive mappings, Arch. Math 59 (1992), 486-491.

Jong Soo Jung

DEPARTMENT OF MATHEMATICS, DONG-A UNIVERSITY, PUSAN 604-714, KOREA *E-mail*: jungjs@seunghak.donga.ac.kr

TAE HWA KIM

Department of Applied Mathematics, Pukyong National University, Puasn 608-737, Korea

E-mail: taehwa@dolphin.pknu.ac.kr