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ON THE EXISTENCE OF MANDATORY
REPRESENTATION DESIGNS

JEONGJIN KiMm

1. Block Designs

Let X be a finite set of elements that we shall call points. Let I be a
set called an indexing set. A mapping B: I — P(X) is called a family
of blocks on X. For each i € I, B(i) is also writien as B;. We always
assume |B;| > 2 for each i € I.

DEFINITION. Let v € N, K C N and A € N be given. An ordered
pair D = (X, B) consisting of a finite set X together with a family
B = (B; : i € I) of blocks of X is said to be a (v, K,\)-PBD (a
Pairwise Balanced Design on v points with block sizes from K and
index of pairwise balance \) iff

1) | X|=v

(2) |Bi| € K for every i € I

(3) For every pairset {z,y} C X there exist exactly X indices ¢ € T

such that B; contains the pairset {z,y}.

The integer v is called the order of the desigr. In the case that K
consists of only one integer k, a (v, {k}, A\)-PBD is known as a (v, k, \)-
BIBD (Balanced Incomplete Block Design), and is also written as
Sx(2,k,v) or in case of A = 1 simply S(2,k,v). The letter S is an
abbreviation for “Steiner system”.

Given K C N and A € N, we use B(K,\) to denote the set of
positive integers v for which a (v, K, A\)-PBD exists. If K consists of
only one integer £ € N, we simplify the notaticn by writing B(k, )
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instead of B({k},A). In the case A = 1, we use the simpler notation
B(K) for B(K,1) and B(k) for B(k,1). For example, it is well known
that B(3) = 6Ng + {1,3} and B({3,5}) = 2N — 1.

DEFINITION. For a given set K of positive integers define parameters

a(K)=gcd{k—-1|ke K}
B(K) = god{k(k — 1) | k € K}

1.1. PROPOSITION. Ifv € B(K,)), then

(1) A(v —1) =0 (mod a(K))
(2) Av(v — 1) =0 (mod B(K))

Generally above conditions are not sufficient, but R. M. Wilson (Wil-
son 1975) proved the following fundamental theorem.

1.2. THEOREM. Let K C N and A € N be given. Then there
exists a constant C = C(K) such that for all integers v > C satisfying
conditions (1) and (2), v € B(K, )).

DEFINITION. A partial design (with pairwise balance \) is a pair
(X, B) consisting of a point set X and a family of blocks B so that any
pairset occurs in at most A times in B.

DEFINITION. Let K be a finite set of integers. A mandatory repre-
sentation design (v, K,\)-MRD is a (v, K, \)-PBD with the additional
property that for each k € K there is a block of size k.

Mendelsohn and Rees (Mendelsohn and Rees 1988) introduced manda-
tory representation designs and examined the existence of such designs
in the case K = {3,k}. They pointed out that the necessary condi-
tions for the existence of a (v, K, \)-M RD are those for the existence
of a (v, K,)-PBD with the additional requirement that v > P(K,)),
where P(K,\) denote the smallest number of points required to con-
struct a partial design which contains every block size at least once. It
is very difficult to determine P(K, ) for every K and X. So we make no
attempt to determine these constants. Suppose 2 € K. Then (v, K, \)-
MRD exists for all admissible v. (Construct a partial design which
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contains every block size and add all the missing pairsets.) Therefore
we assume that £ > 3 for all £ € K. While (v, K, A\)-PBD can be
defined for an infinite set K C N, we do not define (v, K, \)-MRD for
an infinite K C N because we need infinitely many points to construct
such a design. Therefore K in (v, K, A)-MRD is a finite set of integers
throughout this paper. M (K, \) will denote the set of positive integers
v for which a (v, K, A\)-MRD exists. Again, we use simpler notations
M(K) and M (k) whenever possible.

N. A group divisible

DEFINITION. Let v ¢ N, K C N and G C
g, B}, where

design (GDD), GD,|K, G;v] is a triple (X,

(D [X|=v

(2) G is a class of non-empty subsets of X (called group) with sizes
in G’ and which partition X.

(3) Bis a family of subsets of X which are called blocks, each with
size at least two in K.

(4) No block intersects a group at more thar. one point.

(5) Each pairset {z,y} C X not contained in a group is contained
in exactly A blocks.

We use GDy(K,G) to denote the set of all v € N for which a
GD,\[K,G;v] exists. If G or K are singleton set, for the sake of brevity
we delete the braces.

DEFINITION. A transversal design TDy[k, g] is a GD, [k, g;v] with
v = kg, k groups of size g, where each block intersects every group in
exactly one point, that is, each block is a transversal of the class of
groups.

We use T'D, (k) to denote the set of all n € N for which T D, [k, n]
exists. Here the paremeter A will be omitted for A = 1. It is well known
that the existence of a T D[k, g] is equivalent to the existence of k — 2
mutually orthogonal latin squares of order g.

1.3. THEOREM. (Chowla, Erdés and Strauss 1960) T D[k, g] exists
for every fixed k whenever g is sufficiently large.
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2. Existence of PBD

In this section we briefly summarize Wilson’s work without proofs
(Wilson 1972b, 1972¢,1975) for later use.

DEFINITION. By a closure operation on the subsets 4 of a set X, we
mean a map A — A from the class P(X) into P(.X) satisfying

(1) A C A (extensive)

(2) A=14 (idempotent)

(3) A C B implies A C B (isotone).
A subset A C X is said to be closed(lvith respect to a given closure
operation) iff A is equal to its closure A.

The map B : K — B(K) is easily seen to be a closure operation
on the subsets of the positive integers. We say that a set K is closed if
it is closed under the B-operation, i.e. if K = B(K). Wilson proved a
more general result.

2.1. THEOREM. B(K, M) is a closed set.

DEFINITION. Let J C Ny and 7 € N. A n-fiber of J is a residue
class
Mi.={veJ|v=fmodnr}.

A 7-fiber f of J is said to be complete iff there exist a constant C such
that

{fviv>C,v=f (modmw)}CJ

We say that J is eventually periodic with period 7 iff all non-empty
m-fibers of J are complete

We can consider an eventually periodic set J as the union of arith-
metic sequences to the modulus 7 where each sequence that has been
“started” somewhere in J is completed. Note that every eventually
periodic set must be infinite and if J is eventually periodic with period
7 then it is eventually periodic with period nx for each n € N.

2.2. THEOREM. Every closed set K (under B-operation) is eventu-
ally periodic with period 3(K).
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2.3. THEOREM. For any set K C N,a(B(K)) = a(K), B(B(K)) =
BK).
2.4. THEOREM. B(K,)) is eventually periodic with period
B(K)/ (A, B(K)).
Theorem 1.2 for A = 1 is equivalent to the following
2.5. THEOREM. For every K C N, B(K) is eventually periodic with
period B(K) and every residue class f modulo §(K) satisfying
f—1=0 (mod a(K))
F(f=1)=0 (mod B(K))
is a fiber of B(K).

Wilson managed to reduce the above theorem into a simpler form
through a series of theorems, and obtained the following theorem.

2.6. THEOREM. Given positive integer k, (v, k,1)-BIBD’s exist for
all sufficiently large integers v for which the following congruences are
valid. And this fact implies theorem 1.2.

AMv—1)=0 (mod k - 1)
A(v—1) =0 (mod k(k — 1))

One must note that eventual periodicity of B(K,)) is not enough
for the proof of theorem 2.6. To illustrate the point, cosider B(6). Here
a(B(6)) = 5 and B(B(6)) = 30. Solutions of the necessary conditions
are v = 1,6,16,21 {(mod 30). To complete the proof of the theorem
for k = 6, we will need to find examples of (v,6,1)-BIBD’s with v =
1,6,16,21 mod 30. Wilson’s success was due to his construction method

of a design for each fiber, although his construction does not yield
specific examples.

3. Existence of (v, K,\)-MRD

3.1.MAIN THEOREM. Let K C N, A € N be given. Then there exists
a constant C = C(K) such that for all integers v > C satisfying
AMv—1)= (mod a(K))
Av(v — 1) = (mod B(K))
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there exist a (v, K, \)-MRD.

Proof of this theorem requires several steps. First, we show that
M(K, ) is a closed set under the B-operation(Theorem 3.2) thus it is
eventually periodic by theorem 2.2. Second, we shall prove that the
theorem is true for any K and A = 1.(Teorem 3.3) Finally we show that
the theorem is valid for any K and A > 0.(Theorem 3.7)

3.2. THEOREM. For every finite set K C N ancd A € N, M(K, )) is
closed with respect to the B-operator i.e. B(M(K,)\)) = M(K,\).

Proof. Clearly M(K,\) C B(M(K,\)). Therefore we only need to
show that B(M(K,\)) € M(K,)). Let v € B(M(K,\)) and (X, B =
{B1...Bi}) be a (v, M(K,)),1)-PBD. Since |B;| < M(K, ) for each
i, we have a (|Bi|, K,\)-MRD say, (B;, B;i = {3;;...By,}). Then
(X,UB;) is a (v, K,\)-MRD. To see this, note that a given pairset
{z,y} € X can occur in a block of B; only if {z,y} C B; and there is
a unique block of B that contains {z,y}. If {z,y} C B;, then there are
A blocks B;,’s that contain {z,y}. Thus (X,JB;) s a (v, K,\)-PBD.
From the construction of (B;, B;) each block size k £ K occurs at least
once in (X, B;). This shows that v € M (K, ) and M (K, )) is closed.

By Theorem (2.2) M (K, ) is eventually periodic with period
B(M (K, X)). Thus we need to calculate this period 3(M (K, A)) for any
given K and A. But calculating the period directly is difficult, so we
prove the main theorem without direct calculation of the periods. Note
that M(K,)\) € B(K,\) for any K and A, so the period of M (K, )
can not be smaller than that of B(K, A). Moreover if the main theorem
is true M (K, A) and B(K, A) coincide for sufficiently large v.

DEFINITION. We say that two sets S,7 C N eventunally coincide iff
there exist a constant M such that

{se€S|s>My={teT|t> M}

‘To prove the main theorem we need to show that M (K, A) contains
all the fibers of B(K, A\) modulo the period of B(K, A). Then the period
of M (K, A) must be the same as the period of B(K A). Then M (K, ))
and B(K,)) eventually coincide with each other. Now, we prove the
main theorem for A = 1.
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3.3. THEOREM. For any finite set K C N there exist a constant C =
C(K) such that for all integers v > C satisfying

(v—1)=0 (mod a(K))
v(v—1) =0 (mod G(K))

there exists a (v, K,1)-MRD.

Proof. By theorem (2.4) B(K) is eventually periodic with period
B(K). In order to prove that M(K) is eventually coincide with B(K)
we need to show that there exists at least one (v, K,1)-M RD for each
fiber f modulo G(K). We use induction on the number of elements in
K. The case when K = {k} is covered by theorem 1.2. Assume that the
theorem is true for any K with |K|=n—1. Let K = {k1... k. }, K; =
K\{k;} i = 1,... ,n. Choose a fiber f modulo 3(K). If we have a v
satisfying v = f (mod B(K)) and v € M(K) we have nothing to prove.
Suppose not, i.e. for any v = f (mod 3(K)),v ¢ M(K). By theorem
(1.2) there exist a costant C = C(K) such that for every v satisfying
v > C(K) = f (mod B(K)), v is in B(K). Especially v € B(K;) for
some i.(If there is no such ¢ then every block size must be used, which
is contrary to our assumption.) Since B(K;) and M(K;) eventually
coincide with each other by the induction hypothesis, every sufficiently
large v = f (mod B(K)) is in M(K;). Now choose w such that w =1
(mod 3(K)) and w € B(k;) to obtain wv = f (mod 3(K)). (such a
w always exists since S(K)|k;(k; — 1) and by theorem 1.2.) It only
remains to show that wv € M(K). By the existence of transversal
designs T'D[k, g] for every k whenever g is sufficiently large(Theorem
1.3), we can choose v so that T'D[w,v] exist. Break up each group of
size v to make a (v, K;,1)-M RD. Since w € B(k;) we also have blocks
of size k; therefore wv € M(K). Since our choice of f is arbitrary
M (K) eventually coincide with B{K).

DEFINITION. Given K C N, we define

BK)/a(K) if ao(K)#0
V(K):{ 1 if (k) =0.
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34.LEMMA. If X =ajA\; + -+ ay\, for a; > 0,A; > 1 then

(n] M(K, ) C M(K, )

=1

3.5.LEMMA. Let a and c be relatively prime integers. If\(f—1) =0
(mod a) and Af(f — 1) = 0 (mod ac), then there exists an integer d
such that

Ald - f) =0 (mod ac)
d—1=0 (mod a)
d{(d —~1) =0 (mod ac)

3.6.LEMMA. «(K) and v(K) are relatively prime.

Proofs of these lemmas are similar to the proofs of Wilson’s lemmas
in (Wilson 1972c)

3.7. THEOREM. If the theorem 3.1 is valid for a given set K C N
and A = 1, then it is valid for all A > 1.

Proof. By theorem (2.4) B(B(K,)\)) = B(K)/(X,B(K)). Thus we
shall show that every residue class f modulo 3(K)/ (A, B(K)) satisfying

A(f-1) =0mod a(K)
Af(f — 1) = 0 mod B(K)

is in fact a fiber modulo 8(K)/(A, B(K)) of the closed set M(K,\).
That is for any such residue class f there exist v € M (K, ) with
v = fmod B(K)/(\ B(K)). Given such f, choose ¢ = a(K),c=v(K)
and apply lemma (3.5) we have an integer d such that

Ad - f)=0 (mod B(K))
d—1=0 (mod a(K))
d(d—1) =0 (mod B(K))
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Since d satisfies all the necessary conditions, d is a fiber of M(K) by
theorem (3.3), i.e. every sufficiently large v with v = d (mod B(K)) is
in M(K). Since M(K) C M(K, X) these v are also in M (K, ). Now,

= dmod PE) L BK)
vEdmed 5Ty S n ey P
by the choice of d d = f mod Z)\i(f({;))
Therefore, 0
 f mod BU)_
v = f mod 3B

4. Application of MRD

An immediate application of mandatory representation design is a
sub-design problem.

PROBLEM. Let (Y,.A) be a S(2,k,u), find a S(2,k,v) (X, B) which
contains (Y,.4) as a sub-design.

In terms of M RD this problem is equivalent to determining M ({k, u}).
To see this, note that for any v € M ({k, u}) each block of size u may be
considered as a sub-design. Conversely, a sub-design of order « can be
written as one block of size u thus v € M ({k, u}). Sub-design problems
can be easily generalized into pairwise balanced designs or mandatory
representation designs. Although a complete solution for such a prob-

lem is known only for K = {3} we can expect that sufficiently large v
might work. And the following theorem confirms our expectation.

4.1. THEOREM. Let (Y, A) be a (u, K,1)-MRD, then there exists a
constant C = C(K,u) such that for all integers v > C satisfying

v—1=0 (mod a(K))
v(v—1) =0 (mod B(K))

we have (v, K, 1)-M RD (X, B) which contains (Y, A) as a sub-design.
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Proof. 1t is enough to show that for every such v, there is a (v, KU
{u},1)-MRD. Note that a(K U{u}) = a(K) and S(K U {u}) = 8(K).
By the main theorem there exists a constant C(K,u) such that for all
v > C(K,u) satisfying necessary conditions, a (v, K U {v},1)-MRD
exists. thus we have (v, K,1)-MRD which contains a mandatory sub-
design of order u.

4.2. COROLLARY. For any S(2,k,u) there exists a constant C(k, u)
such that for all v > C(k,u) satifying necessary conditions

v—1=0 (modk—1),v(v—1)=0 (mod k(k— 1))

there is an S(2, k,v) which contains S(2, k,u) as a sub-design.

REMARK. Finding the smallest such C(k,u) is still a very difficult
problem. In general, existence of (v, K,\)-MRD for small v is very
much open.

References

1. Beth T., Jungnickel D, and Lenz H., Design Theory, Bibliographisches Institut,
1985.

2. Brouwer A. and Lenz H., Subspaces of linear space of linesize 4, Eroupean J.of
Combiantorics 2 (1981), 323-330.

3. Chowla S., Erdds P. and Strauss E., On the mazimal number of pairwise or-
thogonal Latin squares of a given order, Canadian J.Math 12 (1960), 204-208.

4. Doyen J. and Wilson R. M., Embeddings of Steiner triple systems, Disc.Math.
5 (1973), 229-239.

5. Hanani H., The ezistence and construction of balanced incomplete block design,
Ann. Math. Statist. 32 (1961), 361-386.

6. Hanani H., On balanced incomplete block designs with blocks having five ele-
ments, J. Combinatorial Theory A 12 (1972), 184-201.

7. Hanani H., Balanced Incopmlete Block Design and relaied design, Disc.Math.
11 (1975), 255-369.

8. Mendelsohn E. and Rees R., Mandatory representation designs, J.Combinatorial
Theory A 49 (1988), 349-362.

9. Mills W. H., A new block design, pro. the sixth Southeasten Conference on
Combinatorics, Graph theory, and Computing (Florida Atlantic University Boca
Raton Florida ), 1975, pp. 461-465.

90



10.

11.

12.

13.

14.

15.

16.

On the existence of mandatory representation designs

Mills W. H., Incomplete Block Designs, Enumeration and Design (The Silver Ju-
bilee Conference on Combinatorics, University of Waterloo, 1982 ) (D. Jackson
and S. Vanstone, eds.), Academic Press, 1984, pp. 239-244.

Wilson R. M., An Ezistence Theory for Pairwise Balanced Design, Ph.D. dis-
sertation The Ohio State University 1969, 1969.

Wilson R. M., Cyclotomy and difference families in elementary abelian group,
J.Number Theory 4 (1972a), 17-42.

Wilson R. M., An existence theory for pairwise balanced design I. Composition
theorem and morphisms, J.Combinatorial Theory A 13 (1972b), 220-245.
Wilson R. M., Existence theory for pairwise balanced design II. The structure
of PBD-closed set and the existence conjectures, J.Combinatorial Theory A 13
(1972c), 246-273.

Wilson R. M., Construction and use of pairwise balanced design, Mathematical
Centre Tracts 55 (1974), 18-41.

Wilson R. M., An ezistence theory for pairwise balanced design I11. Proof of the
ezistence conjectures, J.Combinatorial Theory A 18 {1975), 71-79.

DEPARTMENT OF MATHEMATICS MYONGJI UNIVERSITY, YONGIN, KOREA 449-800
E-mail: jjkim@wh.myongji.ac.kr

91



