ON THE EXISTENCE OF MANDATORY REPRESENTATION DESIGNS

JEONGJIN KIM

1. Block Designs

Let X be a finite set of elements that we shall call *points*. Let I be a set called an indexing set. A mapping $\mathcal{B}: I \longrightarrow \mathcal{P}(X)$ is called a family of *blocks* on X. For each $i \in I$, $\mathcal{B}(i)$ is also written as B_i . We always assume $|B_i| \geq 2$ for each $i \in I$.

DEFINITION. Let $v \in \mathbb{N}$, $K \subseteq \mathbb{N}$ and $\lambda \in \mathbb{N}$ be given. An ordered pair $\mathcal{D} = (X, \mathcal{B})$ consisting of a finite set X together with a family $\mathcal{B} = (B_i : i \in I)$ of blocks of X is said to be a (v, K, λ) -PBD (a Pairwise Balanced Design on v points with block sizes from K and index of pairwise balance λ) iff

- (1) |X| = v
- (2) $|B_i| \in K$ for every $i \in I$
- (3) For every pairset $\{x,y\} \subseteq X$ there exist exactly λ indices $i \in I$ such that B_i contains the pairset $\{x,y\}$.

The integer v is called the order of the design. In the case that K consists of only one integer k, a $(v, \{k\}, \lambda)$ -PBD is known as a (v, k, λ) -BIBD (Balanced Incomplete Block Design), and is also written as $S_{\lambda}(2, k, v)$ or in case of $\lambda = 1$ simply S(2, k, v). The letter S is an abbreviation for "Steiner system".

Given $K \subseteq \mathbb{N}$ and $\lambda \in \mathbb{N}$, we use $B(K,\lambda)$ to denote the set of positive integers v for which a (v,K,λ) -PBD exists. If K consists of only one integer $k \in \mathbb{N}$, we simplify the notation by writing $B(k,\lambda)$

Received November 9, 1996.

1991 AMS classification: 05B05, 05B30.

Key words and phrases: Design, mandatory design.

instead of $B(\{k\}, \lambda)$. In the case $\lambda = 1$, we use the simpler notation B(K) for B(K, 1) and B(k) for B(k, 1). For example, it is well known that $B(3) = 6\mathbb{N}_0 + \{1, 3\}$ and $B(\{3, 5\}) = 2\mathbb{N} - 1$.

Definition. For a given set K of positive integers define parameters

$$\alpha(K) = \gcd\{k - 1 \mid k \in K\}$$
$$\beta(K) = \gcd\{k(k - 1) \mid k \in K\}$$

1.1. Proposition. If $v \in B(K, \lambda)$, then

(1)
$$\lambda(v-1) \equiv 0 \pmod{\alpha(K)}$$

(2)
$$\lambda v(v-1) \equiv 0 \pmod{\beta(K)}$$

Generally above conditions are not sufficient, but R. M. Wilson (Wilson 1975) proved the following fundamental theorem.

1.2. THEOREM. Let $K \subseteq \mathbb{N}$ and $\lambda \in \mathbb{N}$ be given. Then there exists a constant C = C(K) such that for all integers $v \geq C$ satisfying conditions (1) and (2), $v \in B(K, \lambda)$.

DEFINITION. A partial design (with pairwise balance λ) is a pair (X, \mathcal{B}) consisting of a point set X and a family of blocks \mathcal{B} so that any pairset occurs in at most λ times in \mathcal{B} .

DEFINITION. Let K be a finite set of integers. A mandatory representation design (v, K, λ) -MRD is a (v, K, λ) -PBD with the additional property that for each $k \in K$ there is a block of size k.

Mendelsohn and Rees (Mendelsohn and Rees 1988) introduced mandatory representation designs and examined the existence of such designs in the case $K = \{3, k\}$. They pointed out that the necessary conditions for the existence of a (v, K, λ) -MRD are those for the existence of a (v, K, λ) -PBD with the additional requirement that $v \geq P(K, \lambda)$, where $P(K, \lambda)$ denote the smallest number of points required to construct a partial design which contains every block size at least once. It is very difficult to determine $P(K, \lambda)$ for every K and λ . So we make no attempt to determine these constants. Suppose $2 \in K$. Then (v, K, λ) -MRD exists for all admissible v. (Construct a partial design which

contains every block size and add all the missing pairsets.) Therefore we assume that $k \geq 3$ for all $k \in K$. While (v, K, λ) -PBD can be defined for an infinite set $K \subseteq \mathbb{N}$, we do not define (v, K, λ) -MRD for an infinite $K \subseteq \mathbb{N}$ because we need infinitely many points to construct such a design. Therefore K in (v, K, λ) -MRD is a finite set of integers throughout this paper. $M(K, \lambda)$ will denote the set of positive integers v for which a (v, K, λ) -MRD exists. Again, we use simpler notations M(K) and M(k) whenever possible.

DEFINITION. Let $v \in \mathbb{N}$, $K \subseteq \mathbb{N}$ and $G \subseteq \mathbb{N}$. A group divisible design (GDD), $GD_{\lambda}[K, G; v]$ is a triple (X, \mathcal{G}, B) , where

- (1) |X| = v
- (2) \mathcal{G} is a class of non-empty subsets of X (called group) with sizes in G and which partition X.
- (3) \mathcal{B} is a family of subsets of X which are called blocks, each with size at least two in K.
- (4) No block intersects a group at more than one point.
- (5) Each pairset $\{x,y\}\subset X$ not contained in a group is contained in exactly λ blocks.

We use $GD_{\lambda}(K,G)$ to denote the set of all $v \in \mathbb{N}$ for which a $GD_{\lambda}[K,G;v]$ exists. If G or K are singleton set, for the sake of brevity we delete the braces.

DEFINITION. A transversal design $TD_{\lambda}[k,g]$ is a $GD_{\lambda}[k,g;v]$ with v=kg, k groups of size g, where each block intersects every group in exactly one point, that is, each block is a transversal of the class of groups.

We use $TD_{\lambda}(k)$ to denote the set of all $n \in \mathbb{N}$ for which $TD_{\lambda}[k, n]$ exists. Here the paremeter λ will be omitted for $\lambda = 1$. It is well known that the existence of a TD[k, g] is equivalent to the existence of k-2 mutually orthogonal latin squares of order q.

1.3. Theorem. (Chowla, Erdös and Strauss 1960) TD[k, g] exists for every fixed k whenever g is sufficiently large.

2. Existence of PBD

In this section we briefly summarize Wilson's work without proofs (Wilson 1972b, 1972c,1975) for later use.

DEFINITION. By a closure operation on the subsets A of a set X, we mean a map $A \longrightarrow \overline{A}$ from the class $\mathcal{P}(X)$ into $\mathcal{P}(X)$ satisfying

- (1) $A \subseteq \overline{A}$ (extensive)
- (2) $\overline{\overline{A}} = \overline{A}$ (idempotent)
- (3) $A \subseteq B$ implies $\overline{A} \subseteq \overline{B}$ (isotone).

A subset $A \subseteq X$ is said to be *closed* (with respect to a given closure operation) iff A is equal to its closure \overline{A} .

The map $B: K \longrightarrow B(K)$ is easily seen to be a closure operation on the subsets of the positive integers. We say that a set K is closed if it is closed under the B-operation, i.e. if K = B(K). Wilson proved a more general result.

2.1. THEOREM. $B(K, \lambda)$ is a closed set.

DEFINITION. Let $J \subseteq \mathbb{N}_0$ and $\pi \in \mathbb{N}$. A π -fiber of J is a residue class

$$M_{f,\pi} = \{ v \in J \mid v \equiv f \bmod \pi \}.$$

A π -fiber f of J is said to be *complete* iff there exist a constant C such that

$$\{v \mid v \ge C, v \equiv f \pmod{\pi}\} \subseteq J.$$

We say that J is eventually periodic with period π iff all non-empty π -fibers of J are complete

We can consider an eventually periodic set J as the union of arithmetic sequences to the modulus π where each sequence that has been "started" somewhere in J is completed. Note that every eventually periodic set must be infinite and if J is eventually periodic with period π then it is eventually periodic with period $n\pi$ for each $n \in \mathbb{N}$.

2.2. Theorem. Every closed set K (under B-operation) is eventually periodic with period $\beta(K)$.

- 2.3. THEOREM. For any set $K \subseteq \mathbb{N}$, $\alpha(B(K)) = \alpha(K)$, $\beta(B(K)) = \beta(K)$.
- 2.4. THEOREM. $B(K, \lambda)$ is eventually periodic with period $\beta(K)/(\lambda, \beta(K))$.

Theorem 1.2 for $\lambda = 1$ is equivalent to the following

2.5. THEOREM. For every $K \subseteq \mathbb{N}$, B(K) is eventually periodic with period $\beta(K)$ and every residue class f modulo $\beta(K)$ satisfying

$$f-1 \equiv 0 \pmod{\alpha(K)}$$

 $f(f-1) \equiv 0 \pmod{\beta(K)}$

is a fiber of B(K).

Wilson managed to reduce the above theorem into a simpler form through a series of theorems, and obtained the following theorem.

2.6. THEOREM. Given positive integer k, (v, k, 1)-BIBD's exist for all sufficiently large integers v for which the following congruences are valid. And this fact implies theorem 1.2.

$$\lambda(v-1) \equiv 0 \pmod{k-1}$$

 $\lambda v(v-1) \equiv 0 \pmod{k(k-1)}$

One must note that eventual periodicity of $B(K,\lambda)$ is not enough for the proof of theorem 2.6. To illustrate the point, cosider B(6). Here $\alpha(B(6))=5$ and $\beta(B(6))=30$. Solutions of the necessary conditions are $v\equiv 1,6,16,21\pmod{30}$. To complete the proof of the theorem for k=6, we will need to find examples of (v,6,1)-BIBD's with $v\equiv 1,6,16,21\pmod{30}$. Wilson's success was due to his construction method of a design for each fiber, although his construction does not yield specific examples.

3. Existence of (v, K, λ) -MRD

3.1.MAIN THEOREM. Let $K \subset \mathbb{N}$, $\lambda \in \mathbb{N}$ be given. Then there exists a constant C = C(K) such that for all integers $v \geq C$ satisfying

$$\lambda(v-1) \equiv \pmod{\alpha(K)}$$

 $\lambda v(v-1) \equiv \pmod{\beta(K)}$

there exist a (v, K, λ) -MRD.

Proof of this theorem requires several steps. First, we show that $M(K,\lambda)$ is a closed set under the *B*-operation(Theorem 3.2) thus it is eventually periodic by theorem 2.2. Second, we shall prove that the theorem is true for any K and $\lambda = 1$.(Teorem 3.3) Finally we show that the theorem is valid for any K and $\lambda > 0$.(Theorem 3.7)

3.2. THEOREM. For every finite set $K \subseteq \mathbb{N}$ and $\lambda \in \mathbb{N}$, $M(K, \lambda)$ is closed with respect to the B-operator i.e. $B(M(K, \lambda)) = M(K, \lambda)$.

Proof. Clearly $M(K,\lambda) \subseteq B(M(K,\lambda))$. Therefore we only need to show that $B(M(K,\lambda)) \subseteq M(K,\lambda)$. Let $v \in B(M(K,\lambda))$ and $(X, \mathcal{B} = \{B_1 \dots B_l\})$ be a $(v, M(K,\lambda), 1)$ -PBD. Since $|B_i| \in M(K,\lambda)$ for each i, we have a $(|B_i|, K, \lambda)$ -MRD say, $(B_i, \mathcal{B}_i = \{B_{i_1} \dots B_{i_j}\})$. Then $(X, \bigcup \mathcal{B}_i)$ is a (v, K, λ) -MRD. To see this, note that a given pairset $\{x,y\} \subseteq X$ can occur in a block of \mathcal{B}_i only if $\{x,y\} \subseteq B_i$ and there is a unique block of \mathcal{B} that contains $\{x,y\}$. If $\{x,y\} \subseteq B_i$, then there are λ blocks B_{i_r} 's that contain $\{x,y\}$. Thus $(X, \bigcup \mathcal{B}_i)$ is a (v, K, λ) -PBD. From the construction of (B_i, \mathcal{B}_i) each block size $k \in K$ occurs at least once in $(X, \bigcup \mathcal{B}_i)$. This shows that $v \in M(K, \lambda)$ and $M(K, \lambda)$ is closed.

By Theorem (2.2) $M(K,\lambda)$ is eventually periodic with period $\beta(M(K,\lambda))$. Thus we need to calculate this period $\beta(M(K,\lambda))$ for any given K and λ . But calculating the period directly is difficult, so we prove the main theorem without direct calculation of the periods. Note that $M(K,\lambda) \subseteq B(K,\lambda)$ for any K and λ , so the period of $M(K,\lambda)$ can not be smaller than that of $B(K,\lambda)$. Moreover if the main theorem is true $M(K,\lambda)$ and $B(K,\lambda)$ coincide for sufficiently large v.

DEFINITION. We say that two sets $S,T\subseteq\mathbb{N}$ eventually coincide iff there exist a constant M such that

$$\{s\in S\mid s\geq M\}=\{t\in T\mid t\geq M\}.$$

To prove the main theorem we need to show that $M(K,\lambda)$ contains all the fibers of $B(K,\lambda)$ modulo the period of $B(K,\lambda)$. Then the period of $M(K,\lambda)$ must be the same as the period of $B(K,\lambda)$. Then $M(K,\lambda)$ and $B(K,\lambda)$ eventually coincide with each other. Now, we prove the main theorem for $\lambda = 1$.

3.3. THEOREM. For any finite set $K \subset \mathbb{N}$ there exist a constant C = C(K) such that for all integers $v \geq C$ satisfying

$$(v-1) \equiv 0 \pmod{\alpha(K)}$$

 $v(v-1) \equiv 0 \pmod{\beta(K)}$

there exists a (v, K, 1)-MRD.

Proof. By theorem (2.4) B(K) is eventually periodic with period $\beta(K)$. In order to prove that M(K) is eventually coincide with B(K)we need to show that there exists at least one (v, K, 1)-MRD for each fiber f modulo $\beta(K)$. We use induction on the number of elements in K. The case when $K = \{k\}$ is covered by theorem 1.2. Assume that the theorem is true for any K with |K| = n - 1. Let $K = \{k_1 \dots k_n\}, K_i = 1$ $K\setminus\{k_i\}$ $i=1,\ldots,n$. Choose a fiber f modulo $\beta(K)$. If we have a v satisfying $v \equiv f \pmod{\beta(K)}$ and $v \in M(K)$ we have nothing to prove. Suppose not, i.e. for any $v \equiv f \pmod{\beta(K)}, v \notin M(K)$. By theorem (1.2) there exist a costant C = C(K) such that for every v satisfying $v > C(K) \equiv f \pmod{\beta(K)}, v \text{ is in } B(K).$ Especially $v \in B(K_i)$ for some i.(If there is no such i then every block size must be used, which is contrary to our assumption.) Since $B(K_i)$ and $M(K_i)$ eventually coincide with each other by the induction hypothesis, every sufficiently large $v \equiv f \pmod{\beta(K)}$ is in $M(K_i)$. Now choose w such that $w \equiv 1$ $\pmod{\beta(K)}$ and $w \in B(k_i)$ to obtain $wv \equiv f \pmod{\beta(K)}$. (such a w always exists since $\beta(K)|k_i(k_i-1)|$ and by theorem 1.2.) It only remains to show that $wv \in M(K)$. By the existence of transversal designs TD[k,q] for every k whenever q is sufficiently large (Theorem 1.3), we can choose v so that TD[w, v] exist. Break up each group of size v to make a $(v, K_i, 1)$ -MRD. Since $w \in B(k_i)$ we also have blocks of size k_i therefore $wv \in M(K)$. Since our choice of f is arbitrary M(K) eventually coincide with B(K).

Definition. Given $K \subseteq \mathbb{N}$, we define

$$\gamma(K) = \begin{cases} \beta(K)/\alpha(K) & \text{if } \alpha(K) \neq 0\\ 1 & \text{if } \alpha(K) = 0. \end{cases}$$

3.4. Lemma. If $\lambda = a_1\lambda_1 + \cdots + a_n\lambda_n$ for $a_i \geq 0, \lambda_i \geq 1$ then

$$\bigcap_{i=1}^n M(K,\lambda_i) \subseteq M(K,\lambda)$$

3.5.LEMMA. Let a and c be relatively prime integers. If $\lambda(f-1) \equiv 0 \pmod{a}$ and $\lambda f(f-1) \equiv 0 \pmod{ac}$, then there exists an integer d such that

$$\lambda(d-f) \equiv 0 \pmod{ac}$$
 $d-1 \equiv 0 \pmod{a}$
 $d(d-1) \equiv 0 \pmod{ac}$

3.6. Lemma. $\alpha(K)$ and $\gamma(K)$ are relatively prime.

Proofs of these lemmas are similar to the proofs of Wilson's lemmas in (Wilson 1972c)

3.7. THEOREM. If the theorem 3.1 is valid for a given set $K \subseteq \mathbb{N}$ and $\lambda = 1$, then it is valid for all $\lambda \geq 1$.

Proof. By theorem (2.4) $\beta(B(K,\lambda)) = \beta(K)/(\lambda,\beta(K))$. Thus we shall show that every residue class f modulo $\beta(K)/(\lambda,\beta(K))$ satisfying

$$\lambda(f-1) \equiv 0 \mod \alpha(K)$$

 $\lambda f(f-1) \equiv 0 \mod \beta(K)$

is in fact a fiber modulo $\beta(K)/(\lambda,\beta(K))$ of the closed set $M(K,\lambda)$. That is for any such residue class f there exist $v \in M(K,\lambda)$ with $v \equiv f \mod \beta(K)/(\lambda,\beta(K))$. Given such f, choose $o = \alpha(K), c = \gamma(K)$ and apply lemma (3.5) we have an integer d such that

$$\lambda(d-f) \equiv 0 \pmod{\beta(K)}$$
$$d-1 \equiv 0 \pmod{\alpha(K)}$$
$$d(d-1) \equiv 0 \pmod{\beta(K)}$$

Since d satisfies all the necessary conditions, d is a fiber of M(K) by theorem (3.3), i.e. every sufficiently large v with $v \equiv d \pmod{\beta(K)}$ is in M(K). Since $M(K) \subseteq M(K, \lambda)$ these v are also in $M(K, \lambda)$. Now,

$$v \equiv d \mod \frac{\beta(K)}{(\lambda, \beta(K))}$$
 since $\frac{\beta(K)}{(\lambda, \beta(K))} | \beta(K)$

by the choice of
$$d = d \equiv f \mod \frac{\beta(K)}{(\lambda, \beta(K))}$$

Therefore,

$$v \equiv f \mod \frac{\beta(K)}{(\lambda, \beta(K))}$$

4. Application of MRD

An immediate application of mandatory representation design is a sub-design problem.

PROBLEM. Let (Y, \mathcal{A}) be a S(2, k, u), find a S(2, k, v) (X, \mathcal{B}) which contains (Y, \mathcal{A}) as a sub-design.

In terms of MRD this problem is equivalent to determining $M(\{k,u\})$. To see this, note that for any $v \in M(\{k,u\})$ each block of size u may be considered as a sub-design. Conversely, a sub-design of order u can be written as one block of size u thus $v \in M(\{k,u\})$. Sub-design problems can be easily generalized into pairwise balanced designs or mandatory representation designs. Although a complete solution for such a problem is known only for $K = \{3\}$ we can expect that sufficiently large v might work. And the following theorem confirms our expectation.

4.1. THEOREM. Let (Y, A) be a (u, K, 1)-MRD, then there exists a constant C = C(K, u) such that for all integers $v \ge C$ satisfying

$$v-1 \equiv 0 \pmod{\alpha(K)}$$

 $v(v-1) \equiv 0 \pmod{\beta(K)}$

we have (v, K, 1)- $MRD(X, \mathcal{B})$ which contains (Y, \mathcal{A}) as a sub-design.

Proof. It is enough to show that for every such v, there is a $(v, K \cup \{u\}, 1)$ -MRD. Note that $\alpha(K \cup \{u\}) = \alpha(K)$ and $\beta(K \cup \{u\}) = \beta(K)$. By the main theorem there exists a constant C(K, u) such that for all $v \geq C(K, u)$ satisfying necessary conditions, a $(v, K \cup \{v\}, 1)$ -MRD exists. thus we have (v, K, 1)-MRD which contains a mandatory subdesign of order u.

4.2. COROLLARY. For any S(2, k, u) there exists a constant C(k, u) such that for all $v \geq C(k, u)$ satisfying necessary conditions

$$v-1 \equiv 0 \pmod{k-1}, v(v-1) \equiv 0 \pmod{k(k-1)}$$

there is an S(2, k, v) which contains S(2, k, u) as a sub-design.

REMARK. Finding the smallest such C(k,u) is still a very difficult problem. In general, existence of (v,K,λ) -MRD for small v is very much open.

References

- Beth T., Jungnickel D, and Lenz H., Design Theory, Bibliographisches Institut, 1985.
- Brouwer A. and Lenz H., Subspaces of linear space of linesize 4, Eroupean J.of Combiantorics 2 (1981), 323-330.
- Chowla S., Erdös P. and Strauss E., On the maximal number of pairwise orthogonal Latin squares of a given order, Canadian J.Math 12 (1960), 204-208.
- Doyen J. and Wilson R. M., Embeddings of Steiner triple systems, Disc.Math. 5 (1973), 229-239.
- 5. Hanani H., The existence and construction of balanced incomplete block design, Ann. Math. Statist. 32 (1961), 361-386.
- Hanani H., On balanced incomplete block designs with blocks having five elements, J. Combinatorial Theory A 12 (1972), 184-201.
- Hanani H., Balanced Incopmlete Block Design and related design, Disc.Math. 11 (1975), 255-369.
- 8. Mendelsohn E. and Rees R., Mandatory representation designs, J.Combinatorial Theory A 49 (1988), 349–362.
- Mills W. H., A new block design, pro. the sixth Southeasten Conference on Combinatorics, Graph theory, and Computing (Florida Atlantic University Boca Raton Florida), 1975, pp. 461–465.

On the existence of mandatory representation designs

- Mills W. H., *Incomplete Block Designs*, Enumeration and Design (The Silver Jubilee Conference on Combinatorics, University of Waterloo, 1982) (D. Jackson and S. Vanstone, eds.), Academic Press, 1984, pp. 239-244.
- 11. Wilson R. M., An Existence Theory for Pairwise Balanced Design, Ph.D. dissertation The Ohio State University 1969, 1969.
- 12. Wilson R. M., Cyclotomy and difference families in elementary abelian group, J.Number Theory 4 (1972a), 17–42.
- 13. Wilson R. M., An existence theory for pairwise balanced design I. Composition theorem and morphisms, J.Combinatorial Theory A 13 (1972b), 220-245.
- 14. Wilson R. M., Existence theory for pairwise balanced design II. The structure of PBD-closed set and the existence conjectures, J.Combinatorial Theory A 13 (1972c), 246-273.
- 15. Wilson R. M., Construction and use of pairwise balanced design, Mathematical Centre Tracts 55 (1974), 18-41.
- 16. Wilson R. M., An existence theory for pairwise balanced design III. Proof of the existence conjectures, J.Combinatorial Theory A 18 (1975), 71–79.

DEPARTMENT OF MATHEMATICS MYONGJI UNIVERSITY, YONGIN, KOREA 449-800 E-mail: jjkim@wh.myongji.ac.kr