Chemical Constituent of Aloe capensis

Man Ki Park¹, Jeong Hill Park¹, Young Geun Shin¹, Yong Seok Choi¹, Kyeong Ho Kim², Tae Hyeong Cho³ and Seung Ki Lee¹

¹College of Pharmacy, Seoul National University, Seoul 151-742, Korea, ²College of Pharmacy, Kwangwon National University, Chuncheon 220-701, Korea, ³Namyang Aloe Co., Chopyung, Jincheon, Chungbuk 365-850, Korea

(Received January 9, 1997)

A C-glycosyl chromone, named as 7-O-methylaloesinol, was newly isolated from the leaf exudate of *Aloe capensis* and identified as 8-C- β -D-glucopyranosyl β -2-[2-(R)-hydroxypropyl]-7-methoxy-5-methyl-4H-1-benzopyran-4-one by chemical and spectral evidence.

Key words: Aloe capensis, Liliaceae, 8-C- β -D-glucopyranosyl-2-[2-(R)-hydroxypropyl]-7-methoxy-5-methyl-4H-1-benzopyran-4-one, 7-O-methylaloesinol

INTRODUCTION

Aloe is the dried latex of *Aloe ferox* Miller and its hybrids (Cape aloe) or *Aloe barbadensis* Miller (Curacao aloe) and it has long been used in folk medicine to treat constipation, burns and dermatitis. Several anthraquinones, anthrones, chromones, and their C-glycosyl derivatives were isolated from various species of aloe (Park *et al.*, 1995; Park *et al.*, 1996; Reynolds, 1985; Conner *et al.*, 1989; 1990, Speranza *et al.*, 1986; 1993). In the course of isolating chromone components from the leaf exudate of *Aloe capensis*, a C-glycosylchromone (Fig. 1) was newly isolated from the *n*-BuOH extract.

MATERIALS AND METHODS

Materials

The dried leaf exudate of *Aloe capensis* was purchased from Wha-II Pharmaceutical Co. Ltd., in Seoul.

Instruments

Melting point was recorded on a Gallenkamp melting point apparatus and was uncorrected. UV spectra were measured on a Shimadzu UV-2100 UV/VIS spectrometer. ¹H and ¹³C NMR spectra were recorded on Jeol JNM-LA300 spectrometer. IR spectra were obtained on Perkin-Elmer 1710 spectrometer. Mass spectra were obtained using VG TRIO-II GC/MS system and Jeol AX505WA mass spectrometer. Silica gel 60 and TLC plates were purchased from Merck (Germany).

Correspondence to: Jeong Hill Park, College of Pharmacy, Seoul National University, Seoul 151-742, Korea

HPLC was carried out on Samsung SLC-100 system (Samsung, Korea) using μ -Bondapak C_{18} column (4 mm \times 300 mm, 10 μ m, Waters, USA).

Extraction and isolation

Dried exudate (500 g) of *Aloe capensis* was dissolved in H₂O (3L) and extracted with EtOAc (3L × 3) stirring vigorously for 3 hours at room temperature. The aqueous layer was further extracted with water-saturated *n*-BuOH (3L × 3). The *n*-BuOH layer was concentrated *in vacuo* and the residue (180 g) was subjected to column chromatography on silica gel (800 g, 230-400 mesh, column:80 mm×1 m) using CHCl₃/MeOH (5/1, v/v) as eluent. Six fractions were obtained and Fr. III (9.5 g) was further chromatographed on silica gel (200 g, 230-400 mesh, column: 4×50 cm) using EtOAc/MeOH/H₂O (10/1/0.5, v/v/v) as eluent. Compound 1 (900 mg) was isolated from the 7th fraction in 0.18% yield.

Compound 1: amorphous powder (EtOAc/MeOH),

Fig. 1. The structure of compound 1.

mp: $140-142^{\circ}$, $[\alpha]_{D}^{24}:-11.5^{\circ}$ (MeOH, c 0.2), $R_{f}:0.22$ (CHCl₃/MeOH=5/1; Kieselgel 60F₂₅₄), UV λ max (log ϵ) MeOH:226 (4.27), 242 (4.20), 250 (4.17), 292 (4.00), IR v_{max} (KBr):3401, 2361, 1651, 1598, 1385 cm⁻¹, ¹H-NMR (300 MHz, DMSO- d_6 , δ ppm):1.16 (3H, d, $\not=$ 6.0 Hz, 11-H), 2.57 (2H, brd, \neq 6.0 Hz, 9-Hz), 2.74 (3H, s, .12-H), 3.2-4.0 (5H, m, sugar-H), 3.88 (3H, s, 7-OCH₃), 4.13 (1H, m, 10-H), 4.73 (1H, d, №9.6 Hz, 1'-H), 6.03 (1H, s, 3-H), 6.93 (1H, s, 6-H), ¹³C-NMR (75 MHz, DMSO- d_6 , δ ppm):165.3 (C-2), 111.6 (C-3), 179.2 (C-4), 116.3 (C-4a), 141.5 (C-5), 111.9 (C-6), 160.4 (C-7), 113.2 (C-8), 157.6 (C-1a), 43.6 (C-9), 64.3 (C-10), 24.2 (C-11), 23.3 (C-5-CH₃), 56.7 (C-7-OCH₃), 73.4 (C-1'), 71.4 (C-2'), 79.1 (C-3'), 71.2 (C-4'), 82.2 (C-5'), 62.2 (C-6'), Mass [EI+, m/z] (rel.int. %):410[M[†]] (11), 392 (10), 366 (14), 277 (19), 259 (81), 233 (100), 217 (49), 193 (94), 121 (63), positive FAB-MS:411[M+ H]⁺.

Synthesis of compound 1

Aloesin (100 mg), which was isolated in our laboratory, was methylated with CH₂N₂ in diethylether to give 7-O-methylaloesin and NaBH₄ (200 mg) was added to a solution of 7-O-methylaloesin in MeOH (5 ml). The solution was stirred for 3.5 hrs at room temperature and acidified to pH 3 with 1M-HCl. The solution was extracted with *n*-BuOH and *n*-BuOH soluble part was evaporated in vacuo to give a mixture of diastereomers (60 mg). HPLC of the product showed two peaks; (10,R)-form at 7.5 min and (10,S)form at 8.3 min. HPLC conditions; column: Waters μ-Bondapak C_{18} (4 mm \times 300 mm, 10 μ m), mobile phase: linear gradient from 10% CH₃CN in H₂O to 20% CH₃CN for 10 min, flow rate:1.0 ml/min, detection: UV 293 nm. Compound 1 was separated from the product mixture by semi-prep HPLC; column: Lichrosorb C_{18} (7 µm, 10 mm×250 mm), mobile phase: linear gradient from 10% MeOH to 40% MeOH in H₂O for 30 min, flow rate: 2.5 ml/min, detection:UV 293 nm.

RESULTS AND DISCUSSION

Compound **1**, $C_{20}H_{26}O_9$, gave blue fluorescence under long wavelength UV (365 nm). Positive FAB-MS spectrum showed [M+H]⁺ ion peak at m/z 411. The EI-MS spectrum showed fragmentation pattern very similar to that of aloeresin D (Speranza *et al.*, 1986), except that it lacked a fragment arising from p-coumaroyl moiety (m/z 164). The ¹H NMR spectrum of **1** showed two methyl proton signals at δ 1.16 and δ 2.74, a methoxy proton signal at δ 3.88, an olefinic proton signal at δ 6.93. The anomeric proton signal of compound **1** appeared at δ 4.73 (1H, d, J=9.6 Hz) and its coupling

constant suggests a β-glucosidic linkage (Overend, 1972). These data indicated that compound 1 has an aloeresin D analogue lacking p-coumaroyl moiety. The ¹³C NMR spectrum of 1 showed two methyl carbons at δ 23.3 and δ 24.2, one methoxy carbon at δ 56.7. By comparison of ¹³C-NMR of C- or O-glycosyl compounds (Markham, 1982), hexose carbons of 1 appeared at δ 73.4 (anomeric carbon), 71.4, 79.1, 71.2, 82.2 and 62.2 suggesting the existence of C-glycosidic linkage and a glucose moiety in the molecule. All ¹³C and ¹H NMR signals of compound 1 were assigned using DEPT, 1H-1H COSY, 13C-1H COSY and were confirmed by comparison of chemical shifts and coupling constants with those of aloesin analogues (Park et al., 1995; Park et al., 1996; Conner et. al., 1989; 1990; Speranza et al., 1986, 1993). The configuration of C-10 in compound 1 was determined by Speranza's procedure (Speranza et al., 1986) as follows. Aloesin was treated with CH₂N₂ to give 7-Omethylaloesin, which was then reduced with NaBH₄. In HPLC analysis, the product showed two peaks arising from (10,R) and (10,S) stereoisomers (R=7.5 and 8.3 min). Compound 1 coincided with former peak (R_i= 7.5 min) which is (10,R)-form of 8-C-glucosyl-7-Omethylaloesol. Alkaline hydrolysate of authentic aloeresin D also coincided with former peak (R=7.5 min) which is (10,R)-form (Speranza et al., 1986).

Thus, compound 1 was identified as 8-C-β-D-gluco-pyranosyl-2-[2-(R)-hydroxypropyl]-7-methoxy-5-methyl-4H-1-benzopyran-4-one, and designated as 7-O-methylaloesinol. Although compound 1 and its stereoisomer were synthesized from aloesin to elucidate the structure of aloeresin D (Speranza *et al.*, 1986), compound 1 has not been reported in the nature so far.

ACKNOWLEDGMENTS

We are grateful to Dr. Speranza for supplying the authentic sample of aloeresin D. This research was supported by the grant from the Ministry of Science and Technology, Korea.

REFERENCES CITED

Conner, J. M., Gray, A. I., Reynolds, T. and Waterman, P. G., Anthracene and chromone derivatives in the exudate of *Aloe rabaiensis*, *Phytochemistry*, 28, 3551-3553 (1989)

Conner, J. M., Gray, A. I., Reynold, T. and Waterman, P. G., Anthrone and chromone components of *Aloe cremnophila* and *A. jacksonii* leaf exudates, *Phytochemistry*, 29, 941-944 (1990)

Markham, K. R., *Techniques of flavonoid identification*, Academic Press, New York, 1982, p81.

Overend, W. G., Glycosides, In Pigman, W. and Horton, D., (Eds.), *The carbohydrates: chemistry and bio-*

- *chemistry*, Academic Press, New York, 1972, pp. 306-309.
- Park, M. K., Park, J. H., Kim, K. H., Shin, Y. G., Myoung, K. M. and Lee, J. H., Chemical constituents on *Aloe capensis, Saengyak Hakhoechi*, 26, 244-247 (1995)
- Park, M. K., Park, J. H., Shin, Y. G., Kim, W. Y., Lee, J. H. and Kim, K. H., Neoaloesin A: A new C-glu-cofuranosyl chromone from *Aloe barbadensis, Planta Med.*, 62, 363-365 (1996)
- Reynolds, T., Observations on the phytochemistry of

- the Aloe leaf-exudate compounds, *Bot. J. Linn. Soc.* 90, 179-199 (1985).
- Speranza, G., Dada, G., Lunazzi, L., Gramatica, P. and Manitto, P., A C-glucosylated 5-methylchromone from Kenya aloe, *Phytochemistry*, 25, 2219-2222 (1986)
- Speranza, G., Manitto, P., Cassara, P., Monti, D., Castri, D. D., Chialva, F., Studies on Aloe, 12. Furoaloesone, a new 5-methylchromone from Cape aloe, J. Nat. Prod., 56, 1089-1094 (1993)