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GENERALIZED NONLINEAR QUASIVARIATIONAL 
INCLUSIONS FOR FUZZY MAPPINGS

Nan-jing Huang and Yeol Je Cho

1. Introduction

Variational inequalities, introduced by Hartman and Stampacchia 
[13] in the early sixties, axe a very powerful tool of the current math
ematical technology. These have been extended and generalized to 
study a wide class of problems arising in me사lanics, physics, optimiza
tion and control theory, nonlinear prog호ammin皂 economics and trans
portation equilibrium and engineering sciences, etc. Quasivariational 
:me史alities are a generalize서 fcwm cf variaficnal ・1&]口4；1汴让汩日了】 which 
the constraint set depends on the solution These were introduced and 
studied by Bensoussan, Goursat and Lions [3]. For further details, we 
refer to [1, 2, 4, 5, 22].

In 1991, Chang and Huang [7, 8] introduced and studied some new 
class of complementarity problems and variational inequalities for set
valued mappings with compact values in Hilbert spaces. In 1994, Has- 
souni and Moudafi [12] studied a new class of variational inclusions, 
which included many variational and quasivariational inequalities con
sidered by Noor [24-26], Isac [19], Siddiqi and Ansari [29, 30] as special 
cases.

In 1989, Chang and Zhu [11] were first to introduce and study a class 
of variational inequalities for fuzzy mappings. Recently, several kinds of 
variational inequalities and complementarity problems for fuzzy map
pings were considered by Chang [6], Chang and Huang [9, 10], Huang 
[15-17], Noor [27] and Lee et al [20, 21]. These works may lead to new 
and significant results in these areas [28].

The main purpose of this paper is to introduce and study a new class 
of generalized nonlinear quasivariational in시usions for fuzzy mappings
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which includes some known classes as special cases. We also construct 
some new iterative algorithms and discuss the existence of solutions for 
this class of generalized nonlinear quasivariational inclusions and the 
convergence of iterative sequences generated by these algorithms. Our 
results extend and improve some known results in this field.

2. Preliminaries

Let H be a real Hilbert space endowed with the norm || • || and 
inner product •). Let 八H) be a collection of all fuzzy sets in H. A 
mapping F from H into is called a fuzzy mapping on H, If F is 
a fuzzy mapping on H、then F(x)(denote it by Fx in the sequel) is a 
fuzzy set on H and Fx(y) is the membership function of y in Fx.

Let M E •戶(H) and q € [0,1]. Then the set

(M)q = {x e H : M(x) > q}

is called a g—cut set of M.
Let 7,4 : H t »(H) be two fuzzy mappings satisfying the following 

condition (I):
(I) There exist two mappings a, & : H [0,1] such that for all 

x E H the sets (Tr)a(x) G CB(H) and (&；)虬矽 E CB(H\ where 
CB(H) denotes the family of all nonempty bounded closed subsets of 
H.

By using^the fuzzy mappings T and A, we can define two set-valued 
mappings T and A as follows:

予：UCB(H\ 亿I s屁)，

A : H CB(H\ x I—> (4z)6(y),

respectively. In the sequel, T and A are called the set-valued mappings 
induced by the fuzzy mappings T and A, respetively.

Let a)b : H -스 [0,1] be mappings, T^A : H •戸(H) be fuzzy
mappings and f^p^g:H t H be single-valued mappings. Suppose 
<p : H x H RU (+oo} be a function such that for each fixed g £ H,

: H —> R U {+。。} is a proper convex lower semicontinuous 
function on H and Img Q 尹 0 for each y E where 
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&p(、r y) denotes the subdifferential of function #(•, y). We consider the 
following problem:

Find u, w,y G H such that

(2 ]) 7 ・3\、~丿 — 5\、3八 7 — Uyyk 느，丿 I 八 j'、/、尸、l " 厂

I- p(y), V 一 g(u)) > 戒g(u\ u) 一 夕(u, u)

fb호 all v € -ff. This problem is called a generalized nonlinear quasivari- 
ational inclusion for fuzzy mappings.
Ify)二二夕(z) for all y € If, then the problem (2.1) is equivalent 

to finding u, w,y € If such that

< > a(u), Au(y) > b(u), ff(u) dom(d(p) + 0,

、(f(w) - p(y),v - g(u)) > <p(9(u)) — 夕(。)
(2-2)

(2-3)

(2-4)

for all v E H. This problem is called a generalized nonlinear variational 
inclusion- for fuzzy mappn^s, wmch was con^dered t(y Buang[I7i.

If T, A : H —> 2H(where 2H denotes all the nonempty subsets of H) 
are classical set-valued mappings, then the problem (2.1) is equivalent 
to finding u, w, y 6 H such that

w € Tu, y G Au, g{u) Q dom(5(^(*, u))丰 0,

、- p(y), v 一 g(u)) > 夕(g(h), u) - ^(v, u)
for all v E which is called a generalized nonlinear quasivariational 
inclusion for set-valued mappings and 난le problem (2.2) is equivalent 
to finding u^w^y E H such that

w 6 Tu, y £ Au^ g(")히UQq) + 0,

、(f(s) - p(y), u — 9(u)) >(p(g(u)) - 9(们

for all v E Hj which is called a generalized nonlinear variational in시u- 
sion for set-valued mappings, which was considered by Huang [14].

REMARK 2.1 Feu an appropriate and suitable choice of the map
pings /, p, g、T, A and the functions a,奴 夕,a number of known classes 
of variational inequalities and quasi-variational inequalities can be ob
tained as special cases studied previously by many autho호s in [5, 7-10, 
12, 14-19, 22, 24-26, 29-31].
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3. Iterative algorithms
First, let us give the following lemma.

LEMMA 3.1. u, w and y are a solution of the problem (2.1) if and 
only if w E Tu^y € Au such that
(3.1) ff(u)=踏，")(g(u) - a(/(w) - p(g))),

where a > 0 is a constant and 以，'")=(I + «))-1 is the so-
called proximal mapping on H.

Proof. From the definition of ,u\ we have

g(u) - a(/(w) 一 p(j/)) e g(们 + agj 时(9(力)

and hence
p(g) - f(w) e 为(・,u)(g(“)).

From the definition of it follows that
甲S “)> u)+ (p(y) 一 f (心釘一，的)〉

for all v G /T. Thus u, w and y are a solution of (2.1). This completes 
the proof.

To obtain an approximate solution of (2.1), we can apply a successive 
approximation method to the problem of solving
(3.2) u e F(u)
where

」F(u) = u- g(u) + - a(f(Tu) 一 p(Au))).
Based on (3.1) and (3.2), we proceed our algorithms.
Suppose that T,A : H :F(H) satisfy 난le conditon (I). Let T,A : 

H —) CB(H) be set-valued mappings induced by T, A, respectively. 
For given uq E -ff, let wq E Tuq? Vq € Au0 and

«i =«o - g(uo) + J終 g)(g(0o) - a(/(w0) -p(yo)))-

By Nadler {2이 there exists € Tu± and y\ € Au± such that
I阮- woII < (1 + l)H(fui,Tu0),

lk/i -yo|| < (1 4- l)H(^ui5 Azz0),

where H is the Hausdorff metric on By induction, we can
obtain our algorithm as follows:
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ALGORITHM 3.1. Suppose that T^A:H T :F(H) satisfy the con- 
diton (I). Let T, A : —* CB(H) be set-valued mappings induced 
by T, A, respectively, and p, g : H -스 H be mappings. For given 
uq E 瓦 we can get an algorithm for (2.1) as follows:

(3.3) <

Un+1= -9(Un) + J*夕，- a(/(wn) - p(t/n))),

II初n+1 - Wn|| < (1 + (1 +n)-1)H(fun+i,fun), 

||yn+i -yn|| < (1+ (1+n)-1)H(Au n+1, 4，如) 

Wn e Tun, yn € Aun 

for n = 0,1,2, ••-.

Similarly, we have the following algorithms:

Algorithm 3.2. Suppose that T,A : H t :F(H) satisfy the con- 
d也皿 Q)° Let T-^-A : H t CBiH) be set-valued mapping induced 
by T^A, respectively^ and f, p, g : H — H be mappings. For given 
uq € Hj we can get an algorithm for (2.2) as follows:

'Un+1 =un- g(un) + jf(g(如)一 a(/(wn) - p(yn))),

||wn+i - wn|| < (1 4- (1 + n)-1)H(Tun+i,Tun),

|]yn+l — yn|| < (1 + (1 + n)-1)H(Aun+i, Aun)

、初n £ 꼬%z, ?/n € Aun

(3.4)

for n = 0,1,2, • • ■.

Algorithm 3.3. Let T,A : H CB(H) be set-valued mappings 
and \ p, g : H -송 H be mappings. For given uq 6 H)we can get an 
algorithm for (2.3) as follows:

s너t. = s% — g(s?) + jg , ”(9(Sz) —— P(，n))),

||wn+i - w„|| < (1 + (1 + n)~1')'H.(Tun+1,Tun'),

||yn+i 一 yn|| < (1 + (1 + n)-1)H(Aun+i, Aun)
£ Tunt) yn G Aun

for n = 0,1,2, ••-.

(3.5)
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ALGORITHM 3.4. Let T^A:H—^ CB(H) be set-valued mappings 
and h p, g : H t H be mappings. For given uq G H〉we can get an 
algorithm for (2.4) as follows:

'«n+l = «n - g(un) + J^(g(Un) - «(/(l«n) 一 P(J/n))),
/o a、 H^n+1 - Wn|| < (1 + (1 + 끼一1) 負(孔서-1,7虹),
(o.o) 스

|gn+i - g시I < (1 + (1 + 끼t)H(血妇

. wn € 끄7上： yn C Aun

for n — 0,1,2, ••-.

REMARK 3.1. Algorithms 3.1~3.4 include several known algorithms 
of [5, 7, 8, 10, 12, 14, 16-19, 24-26, 29-31] as special cases.

4. Existence and convergence

Defi^TION~4.1. A mapping g : H一ispakHbbe
(1) strongly monotone if there exists some S > 0 such that

〈9(勺) - 9(U2),S - ”2)> 이Is — ”2俨

for % € 瓦 z = 1,2,
(2) Lipschitz continuous if there exists some <7 > 0 such that

11戒勺) - g(“2)|| < 에“I - 也||

for ut € -ff, i = 1,2.

DEFINITION 4.2. A set-valued mapping T : H -스 2H is said to be
(1) strongly monotone with respect to a mapping f : H t H if there 

exists some 0 > 0 such that

- f (祯2), - «2)> /이阮 - ?시I?

ior ut E H and wt E Tul5 z = 1,2,
(2) TL-Ltpschitz continuous if there exists some 7 > 0 such that

H(Tui,Tt£2) < ?llui 一如I

for H,i = 1,2.
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THEOREM 4.1. Let g : H H be strongly monotone and Lipschitz 
continuouSy 打p ： H —> H be Lipschitz continuous, :F(、H)
be fuzzy mappings satisfying the condition (I). Let T^A: H CB(H) 
be set-valued mappings induced by T, & respectively, and T, A be ll- 
Lipschitz continuous and T be strongly monotone with respect to /. 
Suppose there exists a constant g > 0 such that for each x, y, 2 € H,

||弗以 G(z) —弗9(，，)(z)||

If the following conditions hold:

(4.1) 『벅亨世我)
W — 나，”

、邸 _ 1)弘)2 _ (了2 _ €“2)^(2 — E)
v ^产件_ &卩? 5

(4.2) /? > (1 - 幻타2 +、/(〃2了2 一 $2产2)机2 — 幻,

© > 타奴

(4.3) c사疋 < 1 — A;, E = g + 2\/1 — 2S + o% fc < 1,

where /3 and 8 are constants of strong monotonicity ofT and g, respec
tively, 7 and 卩，are U-Lipschitz constants of T and A. respectively^ <r, 
77 and e are Lipschitz constants of f and p, respectively, then there 
exist y Q H such that (2.1) is satisfied. Moreover, as n —소 cxd,

un t S wn w, yn t y.

where {un}, {wn} and {yn} are defined in Algorithm 3.1.

Proof. From (3.3), it follows that

H^n+l - ^n\\ = \\^n 一 ^n-1 一 (成힜小) 一

+ 炊，临)(砸”))一變

where
h(un) = ff(un) - a(/(wn) 一 p(竝')
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Also we have

꺠 J너 (MS) - 曹，"

< II饗.心(砸n-l)) - 玲.，퍼i)(砸n_]))||

+ II玲，매)(g) - Jg 心)(输宀))||

日g - *_1|| + H砸Q- 加nT)||
< 伽如-«n-l|| + ||wn - «n-l - a(f(wn)-六0、-1))||

+ ||«n - Un-1 - (g(un) - g，(Un-l))|| + 에P(，n) - p(yn-l)||-

That is

M+1 - u„|| < ^||u„ 一 U„-l||

(4 4) + 2||g - un_i - (ff(un) 一 JZ(Un-l))||
+ IS - Un-1 - Ol(f(wn) - /(10„_!))||
+ «l|P(!/n)-p(yn-l)||.

By Lipschitz continuity and strong monotonicity of g, we obtain

(4 5) M - Wn-l - (g(如)-5(«n-l))||2
' <(l-2<5 + a2)||un-un_1||2.

Also from H-Lipschitz continuity and strong monotonicity of T and 
Lipschitz continuity of /, we have 

(4 6) ”애 ~ Un~1 ~ ‘虬八‘如) - Z(^n-l))||2
< C1 - 2伽 + a2T]2(l + n-1)272)|[«n 一 «n-l||2.

By H-Lipschitz continuity of A, Lipschitz continuity of p and (3.3), it 
follows that

(4.7) «||p(?/n) -p(yn-l)|| < O€(l + n-1)/z||un - Un-i]|.

Thus, by combining (4.4)〜(4.7), we have

||"n+l — I] 으 ||^n 一 Un — 11|,
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where

也：=f + 20 -宓+、2 +、R 一 2伽 + c"(i +

+ ae(l + n-1)//.

Letting

0 := g + 2\/l — 28 + a2 + s/1 — 2/3a + a2rj2y2 + o타卜

we know that 6n \ 0. It follows from (4.1)~(4.3) that 6 < 1. Hence 
6n < 1 for n sufficiently large. Therefore, {un} is a Cauchy sequence 
in H and we can suppose that un u E H.

Now we prove that wn —> w G Tu and yn y Au as n oo. In 
fact, it follows from Algorithm 3.1 that

||^n - Wn-xH < (1 +n-1)7||lZn - Un_i||,

||yn - 2/n-l|| < (1 +n-1)/z||un - Un-l||,

i.e., {wn} and {yn} axe Cauchy sequences in H. Let wn —> w and 
yn —> ?/ as n —> oo. Further, we have

^(w, Tu) = inf(||w — 히I ： z G Tu}

< ||W 一 Wn\\ + XWn, Tu)
< ||w - wn|| + H(Tun,Tu)

< ||w 一 Wn|| + 7||un 一 u\\ T 0.

Hence, w G Tu. Similarly, y E Au. This completes the proof.

From Theorem 4.1, we have the following results:

THEOREM 4.2. Let g \ H H be strongly monotone and Lipschitz 
continuous, be Lipschitz continuous, T^A:H t :F(H、)

be fuzzy mappings satisfying the condition (I). Let CB(H)
be set-valued mappings induced by T1 A, respectively, and T, A be Il- 
Lipschitz continuous and T be strongly monotone with respect to f. If 
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the following conditions hold:

(4-8)

(4.9)

8 + 타£(k — 1)

\/(8 + 住 一 1)타£)2 一 (护 — €”2)奴2 - k) 
7产了2 _营产2

0 > (1 - k)타l + \/(?7272 ~ e2fi2)k(2 — ^),

们 그 타'

(4.10) (싸此 < 1 — ky k = 2\/1 — 28 + a2, A; < 1,

where g and 8 are constants of strong monotonicity ofT and g> respec
tively, 7 and /z are H-Lipschitz constants of T and A, respectively^ a, 
7] and e are Lipschitz constants of gy f and p, respectively, then there 
exist uy y E H such that (2.2) is satisfied. Moreover, as n —> oo〉

Wn % -승 叫 yn T J/,

where (un}? {?如} and {yn} are defined in Algorithm 3.2.

THEOREM 4.3. Let g : H —수 H be strongly monotone and Lipschitz 
continuous, f^p:H—^Hbe Lipschitz continuous, T, A : if —> CB(H) 
be H-Lipschitz continuous and T be strongly monotone with respect to 
/. Suppose there exists a constant £ > 0 such that for each G H)

II 曹 3)(z) 一暧，(，，)(z)||< 亦 f/||.

If the conditions (4」)~(4.3) of Theorem 4.1 hold, where g and 8 are 
constants of strong monotonicity of T and g respectively, 7 and 卩，are 
H-Lipschitz constants ofT and A9 respectively, a, r] and e axe Lipschitz 
constajats of gy f and p, respectively^ then there exist u, w, y E H such 
that (2.3) is satisfied. Moreover, as n —> 00,

T s Wn T W, yn T y,

where (un)? (wn} and (yn} are defined in Algorithm 3.3.
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THEOREM 4.4. Let g : H H be strongly monotone and Lipschitz 
continuous, : H H be Lipschitz continuous, T^A:H^ CB(H) 
be H-Lipschitz continuous and T be strongly monotone with respect 
to /. If the conditions (4.8)~(4.10) of Theorem 4.2 hold, where 0 
and 8 are constants of strong monotonicity of T and g respectively, 7 
and /z are H-Lipschitz constants of T and A, respectively^ a, r] and 
e are Lipschitz constants of g, f and p, respectively, then there exist

y E H such that (2.4) is satisfied. Moreover, as n 00,

Un T S Wn -> w, yn T 饥

where {un}, {wn} and {yn} are defined in Algorithm 3.4.

REMARK 4.1 For a suitable choice of the operators 们 T, A, /, p and 
the function 夕)we can obtain several known results [5, 7, 8, 10, 14, 
16-19)24-26, 29-31] as special cases of our main results.
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