ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO A CLASS OF DOUBLY NONLINEAR EVOLUTION EQUATIONS

S. Aizicovici, J. K. Kim, and Q. Yan

1. Introduction

In this paper, we discuss the asymptotic behavior, as $t \rightarrow \infty$, of solutions to the nonlinear initial value problem

$$
\left\{\begin{array}{l}
A u^{\prime}(t)+B u(t) \ni f(t), \quad t \in \mathbb{R}^{+}=[0, \infty) \tag{1}\\
u(0)=u_{0}
\end{array}\right.
$$

in a Hilbert space H. Here A and B are maximal monotone (possibly multivalued) operators in H (or from V to V^{*}, where V is a reflexive Banach space of dual V^{*}, with $V \subset H \subset V^{*}$, densely and continuously), $f: \mathbb{R}^{+} \rightarrow H$, and $u_{0} \in H$. Equations of this type arise in thermodynamics, in the presence of dissipation phenomena (cf., e.g, [5]).

The existence of solutions to (1) on a finite interval has recently been considered in $[1,5,6]$, while continuous dependence results appear in [2]. However, we are not aware of any attempt to develop an asymptotic theory for such equations.

The plan of the paper is as follows In Section 2 we extend the existence results of [1] to the case of \mathbb{R}^{+}, and we study the asymptotic properties of solutions to Equation (1) Two theorems are included. Section 3 contains two examples that illustrate the abstract theory.

We assume the familiarity of the reader with maximal monotone operators, Banach space valued functions, and Sobolev spaces. See $\{3$, 4] for background material on these topics.

[^0]
2. Main results

Throughout this paper H denotes a real Hilbert space of norm |• and inner product (\cdot, \cdot). Let $(V,\|\cdot\|)$ be a reflexive Banach space, of dual $\left(V^{*},\|\cdot\|_{*}\right)$ such that $V \subset H \subset V^{*}$, densely and continuously.

The duality pairing between $v^{*} \in V^{*}$ and $v \in V$, also denoted (v^{*}, v), coincides with the scalar product in H whenever $v^{*} \in H$. Without loss of generality we will assume that both V and V^{*} are strictly convex.

Let A be a (possibly multivalued) operator from V to V^{*} with $\mathcal{D}(A)=V$, satisfying
(H1) A is maximal monotone and there exist $0<c_{1} \leq c_{2}$, and $p \in[2,+\infty)$ such that

$$
\begin{equation*}
(y, x) \geq c_{1}\|x\|^{p}, \quad\|y\|_{*} \leq c_{2}\|x\|^{p-1} \tag{2}
\end{equation*}
$$

for all $x \in V$ and $y \in A x$.
Next let $B: V \rightarrow V^{*}$ satisfy
(H2) $B=\partial \varphi(\partial=$ subdifferential $)$, where $\varphi: V \rightarrow(-\infty,+\infty]$ is proper, convex and lower semicontinuous, and such that for any $r>0$, the set $\{x \in V: \varphi(x) \leq r\}$ is compact in V,
(H3) $B^{-1} 0 \neq \emptyset$.
In what follows, p denotes the constant appearing in (H1), and q is its conjugate, i.e., $p^{-1}+q^{-1}=1$. We also need the condition
(H4) $f \in L^{q}\left(\mathbb{R}^{+} ; V^{*}\right)$.
Definition 1. Let $u_{0} \in V$ be given. A solution of (1) is a function $u \in W_{l o c}^{1, p}\left(\mathbb{R}^{+} ; V\right)$ with $u(0)=u_{0}$, such that there exist measurable $v, w:[0, T] \rightarrow V^{*}$ satisfying

$$
\begin{align*}
& v(t) \in A u^{\prime}(t), \quad w(t) \in B u(t), \\
& v(t)+w(t)=f(t) \tag{3}
\end{align*}
$$

for almost all $t \in \mathbb{R}^{+}$.

Theorem 2. Let (H1)-(H4) hold. Then for each $u_{0} \in \mathcal{D}(\varphi):=$ $\{x \in V: \varphi(x)<+\infty\}$ the problem (1) has a solution u with the following properties:

$$
\begin{equation*}
u \in L^{\infty}\left(\mathbb{R}^{+} ; V\right) \cap U C\left(\mathbb{R}^{+} ; V\right), \quad u^{\prime} \in L^{p}\left(\mathbb{R}^{+} ; V\right) \tag{4}
\end{equation*}
$$

where $U C\left(\mathbb{R}^{+} ; V\right)$ stands for the set of all uniformly continuous functions on \mathbb{R}^{+}with values in V,

$$
\begin{equation*}
v, w \in L^{q}\left(\mathbb{R}^{+} ; V^{*}\right) \tag{5}
\end{equation*}
$$

where v, w satisfy (3),

$$
\begin{align*}
& \lim _{t \rightarrow \infty} \varphi(u(t))=\min _{x \in V} \varphi(x), \tag{6}\\
& \omega(u) \neq \emptyset, \quad \omega(u) \subset B^{-1} 0, \tag{7}
\end{align*}
$$

where $\omega(u)=\left\{x \in V:-u\left(t_{n}\right) \rightarrow x\right.$ in V, for some $\left.t_{n} \rightarrow \infty\right\}$.
If also $B^{-1} 0$ is a singleton, then

$$
\begin{equation*}
\lim _{t \rightarrow \infty} u(t)=B^{-1} 0 \text { in } V \tag{8}
\end{equation*}
$$

Proof. Let $T \in(0, \infty)$ be arbitrarily fixed. By $[1$, Theorem 2], Eq. (1) has a solution u_{1} on $[0, T]$ in the sense that $u_{1} \in W^{1, p}(0, T ; V)$ and there exist $v_{1}, w_{1} \in L^{q}\left(0, T ; V^{*}\right)$ satisfying (3) (with $u=u_{1}, v=$ $v_{1}, w=w_{1}$) for almost all t in ($0, T$). Also remark (cf., e.g., [5, Lemma 4.1]) that the function $t \rightarrow \varphi\left(u_{1}(t)\right)$ is absolutely continuous on $[0, T]$, so that in particular, $u_{1}(T) \in \mathcal{D}(\varphi)$. Consider the problem

$$
\left\{\begin{array}{l}
A x^{\prime}(t)+B x(t) \ni f(t+T), \quad 0<t<T \tag{9}\\
x(0)=u_{1}(T) .
\end{array}\right.
$$

Applying Theorem 2 of [1] again, we conclude that (9) has a solution $x:[0, T] \rightarrow V$ such that $x \in W^{1, p}(0, T ; V)$ and there are functions $y, z \in L^{q}\left(0, T ; V^{*}\right)$ satisfying (3) on ($0, T$) (with x, y, z in place of u, v, w, respectively). Define $u_{2}:[T, 2 T] \rightarrow V, v_{2}, w_{2}:[T, 2 T] \rightarrow$ V^{*} by

$$
u_{2}(t)=x(t-T), \quad v_{2}(t)=y(t-T), \quad w_{2}(t)=z(t-T) \quad(T \leq t \leq 2 T)
$$

and subsequently let $u:[0,2 T] \rightarrow V, v, w:[0,2 T] \rightarrow V^{*}$ be given by

$$
u(t)=u_{n}(t), \quad v(t)=v_{n}(t), \quad w(t)=w_{n}(t) \text { if }(n-1) T \leq t \leq n T,
$$

for $n=1,2$. It is easily seen that u, v, w, as given by (10) satisfy Definition 1 on $\{0,2 T]$. Applying this procedure repeatedly we extend u, v and w on \mathbb{R}^{+}, such that $u \in W_{l o c}^{1, p}\left(\mathbb{R}^{+} ; V\right), v, w \in L_{l o c}^{q}\left(\mathbb{R}^{+} ; V^{*}\right)$ and (3) holds.

To obtain the stronger conclusions of Theorem 2 , multiply (3_{2}) by $u^{\prime}(t)$ and integrate the result over ($0, t$), $0<t<\infty$. Using (H1), (H2) and Lemma 4.1 of [5], we obtain

$$
\begin{align*}
& \left(c_{1} / 2\right) \int_{0}^{t}\left\|u^{\prime}(s)\right\|^{p} d s+\varphi(u(t)) \tag{11}\\
& \quad \leq \varphi\left(u_{0}\right)+2^{q / p} q^{-1}\left(c_{1} p\right)^{-q / p} \int_{0}^{t}\|f(s)\|_{*}^{q} d s
\end{align*}
$$

In view of (H3), φ is bounded below on V. This, (H4) and (11) yield $u^{\prime} \in L^{p}\left(\mathbb{R}^{+} ; V\right)$. Moreover it also follows that $\left\{\varphi(u(t)): t \in \mathbb{R}^{+}\right\}$ is bounded, so that by (H2), $\left\{u(t): t \in \mathbb{R}^{+}\right\}$is compact in V. In particular (4) and (7_{1}) have been established. Relation (5) is a direct consequence of (3), (4) and (H1). To prove (6), note first that

$$
\begin{equation*}
\frac{d}{d t} \varphi(u(\cdot)) \in L^{1}(0, \infty) \tag{12}
\end{equation*}
$$

Indeed, $\frac{d}{d t} \varphi(u(t))=\left(w(t), u^{t}(t)\right)$ with $u^{\prime} \in L^{p}\left(\mathbb{R}^{+} ; V\right)$ and $w \in$ $L^{q}\left(\mathbb{R}^{+} ; V\right)(c f .(4),(5))$. Since

$$
\varphi(u(t))=\varphi\left(u_{0}\right)+\int_{0}^{t}(\varphi(u(s)))^{\prime} d s
$$

we infer, by (12), that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \varphi(u(t))=\varphi_{\infty} \tag{13}
\end{equation*}
$$

exists. Next, by the definition of a subdifferential and (3),

$$
\begin{equation*}
\varphi(x) \geq \varphi(u(t))+(w(t), x-u(t)), \text { a.e. on } \mathbb{R}^{+}, \forall x \in V \tag{14}
\end{equation*}
$$

Taking into account that $w \in L^{q}\left(\mathbb{R}^{+} ; V^{*}\right)$ and $u \in L^{\infty}\left(\mathbb{R}^{+} ; V\right)$ one can find a sequence $t_{n} \rightarrow \infty$, such that $\left(w\left(t_{n}\right), x-u\left(t_{n}\right)\right) \rightarrow 0$.

Letting $t=t_{n} \rightarrow \infty$ in (14) yields by virtue of (13)

$$
\varphi(x) \geq \varphi_{\infty}, \quad \forall x \in V
$$

This in conjunction with (H3) shows that $\varphi_{\infty}=\min _{x \in V} \varphi(x)$, as desired. Finally, let $x_{0} \in \omega(u)$; that is $u\left(t_{n}\right) \rightarrow x_{0}$ in V for some $t_{n} \rightarrow \infty$. The lower semicontinuity of φ, together with (6), implies

$$
\varphi\left(x_{0}\right)=\min _{x \in V} \varphi(x)
$$

which is equivalent to $x_{0} \in B^{-1} 0$, so that $\left(7_{2}\right)$ holds. In particular, when $B^{-1} 0$ is a singleton, (8) follows from (7). This completes the proof of Theorem 2

Our second results complements Theorem 3 in [1]. In place of (H2) we are now using the following conditions:
(H5) $B=\partial \psi$, where $\psi: H \rightarrow(-\infty,+\infty)$ is proper, convex and lower semicontinuous, and such that the set $\{x \in H: \psi(x) \leq$ $r\}$ is compact in H for any $r>0$
(H6) $V \subset \mathcal{D}(B)$ and B^{0} maps bounded subsets of V into bounded subsets of H. (Here $B^{0} x=\operatorname{Proj}_{B x} 0, \forall x \in \mathcal{D}(B)$, where 'Proj' designates the nearest point projection in H.)

Theorem 3. Assume $(H 1),(H 3)-(H 6)$. Then for every $u_{0} \in V$, there exists a solution u of (1) satisfying

$$
\begin{gather*}
u \in L^{\infty}\left(\mathbb{R}^{+} ; H\right) \cap U C\left(\mathbb{R}^{+} ; V\right), u^{\prime} \in L^{p}\left(\mathbb{R}^{+} ; V\right) \tag{15}\\
v \in L^{q}\left(\mathbb{R}^{+} ; V^{*}\right), \quad w \in L_{l o c}^{\infty}\left(\mathbb{R}^{+} ; H\right) \cap L^{q}\left(\mathbb{R}^{+} ; V^{*}\right) \tag{16}\\
\lim _{t \rightarrow \infty} \psi(u(t))=\psi_{\infty} \text { exists, } \tag{17}\\
\omega_{H}(u) \neq \emptyset \tag{18}
\end{gather*}
$$

where $\omega_{H}(u)=\left\{x \in H: u\left(t_{n}\right) \rightarrow x\right.$ in H for some $\left.t_{n} \rightarrow \infty\right\}$. If also

$$
\begin{equation*}
u \in L^{\infty}\left(\mathbb{R}^{+} ; V\right) \tag{19}
\end{equation*}
$$

then

$$
\begin{equation*}
\psi_{\infty}=\min _{x \in H} \psi(x), \quad \omega_{H}(u) \subset B^{-1} 0 \tag{20}
\end{equation*}
$$

In particular, when $B^{-1} 0$ is a singleton, then

$$
\begin{equation*}
u(t) \rightarrow B^{-1} 0 \text { in } H, \text { as } t \rightarrow \infty \tag{21}
\end{equation*}
$$

The proof of Theorem 3 is essentially similar to that of Theorem 2, and is therefore omitted. (One makes use of [1, Theorem 3] to obtain a solution to (1) on a finite interval $[0, T]$, and then extends it to \mathbb{R}^{+}. Relations (15)-(17) and (20), (21) are derived by the technique employed in the proof of Theorem 2.)

An interesting question is when does (19) hold. A partial answer is given below.

REMARK 4. Let $A: V \rightarrow V^{*}$ be a linear bounded self-adjoint operator satisfyimg

$$
(A x, x) \geq c\|x\|^{2}, \quad \forall x \in V(c>0)
$$

This implies (H1) with $p=2$. In particular, $x \rightarrow(A x, x)$ defines an equivalent norm to $\|x\|$ for $x \in V$.

Let $f \in L^{1}\left(0, \infty ; V^{*}\right) \cap L^{2}\left(0, \infty ; V^{*}\right)$, and $0 \in B 0$. If u is a solution to (1), one has, for almost all $t \in \mathbb{R}^{+}$

$$
\left(A u^{\prime}(t), u(t)\right)=\left(A u(t), u^{\prime}(t)\right)=\frac{1}{2} \frac{d}{d t}(A u(t), u(t))
$$

As a consequence, multiplying (3_{2}) by $u(t)$ and integrating over $(0, t)$, $0<t<\infty$, yields

$$
\|u(t)\| \leq C\left(\left\|u_{0}\right\|+\int_{0}^{\infty}\|f(s)\|_{*} d s\right)
$$

for some $C>0$, so that $u \in L^{\infty}\left(\mathbb{R}^{+}, V\right)$, as desired.
It is also worth noting that in this case u is uniquely determined.

3. Examples

Throughout this section, $p \in[2, \infty)$ and $q=p /(p-1)$.
First, let Ω be a bounded open subset of $\mathbb{R}^{N}(N \geq 1)$ with smooth boundary Γ, and let $r, s \in[2, \infty)$ satisfy $r^{-1}+s^{-1}=1$; if $r<$ N, we also assume that $p<r N /(N-r)$. Set $V=\left(L^{p}(\Omega)\right)^{M}, H=$ $\left(L^{2}(\Omega)\right)^{M}, W=\left(W_{0}^{1, r}(\Omega)\right)^{M}(M \geq 1)$, so that $V^{*}=\left(L^{q}(\Omega)\right)^{M}, W^{*}=$ $\left(W^{-1, s}(\Omega)\right)^{M}$ and $W \subset V \subset H \subset V^{*} \subset W^{*}$ with dense and continuous injections; moreover W is compactly imbedded into V.

Let α be a maximal monotone graph in $\mathbb{R}^{M} \times \mathbb{R}^{M}$ satisfying

$$
\begin{equation*}
\sum_{j=1}^{M} y_{j} z_{j} \geq c_{1} \sum_{j=1}^{M}\left|z_{j}\right|^{p}, \quad \sum_{j=1}^{M}\left|y_{j}\right|^{q} \leq c_{2} \sum_{j=1}^{M}\left|z_{j}\right|^{p} \tag{22}
\end{equation*}
$$

for all $z=\left(z_{1}, \cdots, z_{M}\right) \in \mathbb{R}^{M}$ and $y=\left(y_{1}, \cdots, y_{M}\right) \in \alpha(z)$, and fixed positive constants c_{1}, c_{2}.

Beffire $A: V \rightarrow V^{*}$ by

$$
\begin{equation*}
v \in A u \text { if } v(x) \in \alpha(u(x)), \text { a.e. on } \Omega \tag{23}
\end{equation*}
$$

In view of (22) it is readily seen that A, as given by (23), satisfies (H1). Next, introduce $\varphi: V \rightarrow(-\infty,+\infty]$ by

$$
\varphi(u)= \begin{cases}\sum_{j=1}^{M} r^{-1} \int_{\Omega} \sum_{i=1}^{N} b_{2 j}(x)\left|\frac{\partial u_{3}}{\partial x_{\mathrm{s}}}(x)\right|^{r} d x, & \text { if } u \in W \tag{24}\\ +\infty, & \text { if } u \in V \backslash W\end{cases}
$$

where $b_{\imath \jmath} \in L^{\infty}(\Omega)(\imath=1, \cdots, N ; j=1, \cdots, M)$ are such that

$$
\begin{equation*}
0<b_{1} \leq b_{1 j}(x) \leq b_{2}, \text { a.e. on } \Omega \tag{25}
\end{equation*}
$$

for some $b_{1}, b_{2}>0$, and we have set $x=\left(x_{1}, \cdots, x_{N}\right), u=\left(u_{1}, \cdots, u_{M}\right)$.
Observe that φ is proper, convex and lower semicontinuous on V, and that its subdifferential (denoted by B) is given by

$$
\begin{align*}
& B u=\left(\beta_{1}\left(u_{1}\right), \cdots, \beta_{M}\left(u_{M}\right)\right) \\
& \mathcal{D}(B)=\left\{u \in W: \beta_{3}\left(u_{\jmath}\right) \in L^{q}(\Omega), \quad \jmath=1, \cdots, M\right\} \\
& \beta_{j}(y)=-\sum_{\imath=1}^{N} \frac{\partial}{\partial x_{\imath}}\left(b_{\imath}(x)\left|\frac{\partial y}{\partial x_{\imath}}\right|^{r-2} \frac{\partial y}{\partial x_{\imath}}\right), \quad \forall y \in W_{0}^{1, r}(\Omega) \tag{26}
\end{align*}
$$

On account of (24)-(26) one verifies (H2) and (H3) ; in particular, $B^{-1} 0=0$. Finally let u_{0}, f be such that

$$
\begin{equation*}
u_{0} \in\left(W_{0}^{1, r}(\Omega)\right)^{M}, \quad f \in L^{q}\left(\mathbb{R}^{+} ;\left(L^{q}(\Omega)\right)^{M}\right) \tag{27}
\end{equation*}
$$

and consider the initial-boundary value problem ($j=1, \cdots, M$)
$\left(P_{1}\right)$

$$
\left\{\begin{array}{l}
w_{3}-\sum_{t=1}^{N} \frac{\partial}{\partial x_{i}}\left(b_{1}(x)\left|\frac{\partial u_{2}}{\partial x_{1}}\right|^{r-2} \frac{\partial u_{y}}{\partial x_{2}}\right)=f_{j} \text { on } \mathbb{R}^{+} \times \Omega, \\
w \in \alpha\left(\frac{\partial u}{\partial t}\right) \text { on } \mathbb{R}^{+} \times \Omega, \\
u(0, x)=u_{0}(x) \text { on } \Omega, \quad u=0 \text { on }(0, T) \times \Gamma,
\end{array}\right.
$$

where $u=\left(u_{1}, \cdots, u_{M}\right), w=\left(w_{1}, \cdots, w_{M}\right), f=\left(f_{1}, \cdots, f_{M}\right)$. This can be rewritten in the abstract form (1), with A and B given by (23) and (26) respectively. As remarked earlier conditions (H1)-(H3) are satisfied in this setup, while (H4) and the restriction on u_{0} in Theorem 2 are consequences of (27). A direct application of Theorem 2 leads to

Theorem 5. Let the assumptions (22), (25) and (27) be fulfilled. Then the problem (P_{1}) has a solution u satisfying

$$
\begin{aligned}
& u \in L^{\infty}\left(\mathbb{R}^{+} ;\left(L^{p}(\Omega)\right)^{M}\right) \cap U C\left(\mathbb{R}^{+} ;\left(L^{p}(\Omega)\right)^{M}\right), \\
& u_{t} \in L^{p}\left(\mathbb{R}^{+} ;\left(L^{p}(\Omega)\right)^{M}\right), \\
& v, w \in L^{q}\left(\mathbb{R}^{+} ;\left(L^{q}(\Omega)\right)^{M}\right), \\
& \left(v=-\sum_{i=1}^{N} \frac{\partial}{\partial x_{i}}\left(b_{\imath \jmath}(x)\left|\frac{\partial u_{\jmath}}{\partial x_{\imath}}\right|^{r-2} \frac{\partial u_{j}}{\partial x_{\imath}}\right)\right), \\
& \lim _{t \rightarrow \infty} u(t, \cdot)=0 \text { in }\left(W_{0}^{1, r}(\Omega)\right)^{M} .
\end{aligned}
$$

The last conclusion of Theorem 5 follows from (6) and (8), by virtue of (24) and $B^{-1} 0=0$.

Our second example is related to Theorem 3. We now take $V=$ $W_{0}^{2,2}(0,1), H=L^{2}(\Omega), V^{*}=W^{-2,2}(0,1)$, and define $A: V \rightarrow V^{*}$ by

$$
\begin{equation*}
A u=\frac{d^{4} u}{d x^{4}}, \quad \forall u \in V \tag{28}
\end{equation*}
$$

Obviously A satisfies the conditions in Remark 4. Next, let $g: \mathbb{R} \rightarrow \mathbb{R}$ satisfy

$$
\begin{equation*}
g \in C^{1}(\mathbb{R}), \quad g(0)=0, \quad 0<m \leq g^{\prime} \leq M \tag{29}
\end{equation*}
$$

for some $m, M>0$. Define $\psi: H \rightarrow(-\infty,+\infty]$ by

$$
\psi(u)= \begin{cases}\int_{0}^{1}\left(\int_{0}^{u_{x}} g(s) d s\right) d x, & \text { if } u \in W_{0}^{1,2}(0,1) \tag{30}\\ +\infty, & \text { if } u \in L^{2}(0,1) \backslash W_{0}^{1,2}(0,1)\end{cases}
$$

Note that ψ is proper, convex and lower semicontinuous on H, with subdifferential $B=\partial \psi$ given by

$$
\begin{align*}
B u & =-\left(g\left(u_{x}\right)\right)_{x} \\
\mathcal{D}(B) & =\left\{u \in W_{0}^{1,2}(0,1):\left(g\left(u_{x}\right)\right)_{x} \in L^{2}(0,1)\right\} \tag{31}
\end{align*}
$$

Taking into account (29)-(31), one can easily show that (H5) and (H6) hold ; moreover $B^{-1} 0=0$.

We are interested in the semilimear prothem

$$
\left(P_{2}\right) \quad\left\{\begin{array}{l}
u_{t x x x x}-\left(g\left(u_{x}\right)\right)_{x}=f, \text { on } \mathbb{R}^{+} \times(0,1) \\
u(0, x)=u_{0}(x), \text { on }(0,1) \\
\frac{\partial^{k} u}{\partial x^{k}}(t, 0)=\frac{\partial^{k} u}{\partial x^{k}}(t, 1), t \in \mathbb{R}^{+}(k=0,1)
\end{array}\right.
$$

where u_{0} and f are such that

$$
\begin{align*}
& u_{0} \in W_{0}^{2,2}(0,1) \\
& f \in L^{1}\left(\mathbb{R}^{+} ; W^{-2,2}(0,1)\right) \cap L^{2}\left(\mathbb{R}^{+} ; W^{-2,2}(0,1)\right) \tag{32}
\end{align*}
$$

In view of (28), (31) and (32) it is clear that $\left(P_{2}\right)$ is of the abstract form (1) in $H=L^{2}(0,1)$. By applying Theorem 3 in conjunction with Remark 4, we obtain

Theorem 6. Let conditions (29) and (32) be satisfied. Then the problem (P_{2}) has a unique solution u such that

$$
\begin{aligned}
& u \in L^{\infty}\left(\mathbb{R}^{+} ; W_{0}^{2,2}(0,1)\right) \cap U C\left(\mathbb{R}^{+}, W_{0}^{2,2}(0,1)\right) \\
& u_{t} \in L^{2}\left(\mathbb{R}^{+}, W_{0}^{2,2}(0,1)\right) \\
& \left.\left(g\left(u_{x}\right)\right)_{x} \in L_{l o c}^{\infty} \mathbb{R}^{+} ; L^{2}(0,1)\right) \cap L^{2}\left(\mathbb{R}^{+} ; W^{-2,2}(0,1)\right) \\
& \lim _{t \rightarrow \infty} u(t, \cdot)=0 \text { in } W_{0}^{1,2}(0,1)
\end{aligned}
$$

The convergence of u on $W_{0}^{1,2}(0,1)$ (as compared to $L^{2}(0,1)$, only) is a consequence of (20), (21) and (30).

References

1. S. Aizicovici and Q. Yan, Existence results for a class of doubly nonhnear evolution equations, Proc Dynamic Systems Appl 2 (1996), 31-37.
2. __, Convergence theorems for abstract doubly nonlinear differential equatıons, Panamer. Math J. 7 (1997), 1-17
3. V. Barbu, Nonlinear Semıgroups and Differentıal Equation in Banach Spaces, Noordhoff, Leyden, 1976.
4 H Brézıs, Opérateurs Maxımaux Monotones et Semi-groupes de Contractzons dans les Espaces de Hulbert, North Holland, Amsterdam, 1973
4. P Colh, On some doubly nonlinear evolution equations in Banach spaces, Japan J. Indust. Appl Math. 9 (1992), 181-203

6 P Colli and A Visintin, On a class of doubly nonlinear evolution equations, Comm Partial Differential Equations 15 (1990), 737-756.

Department of Mathematics
Ohio University
Athens; Ohio 45701, U. S. A.
Department of Mathematics
Kyungnam University
Masan, Kyungnam 631-701, Korea
Department of Mathematics
Ohio University
Athens, Ohio 45701, U. S. A.

[^0]: Received Nov 7, 1997
 This paper was supported by the Research Foundation of Kyungnam Unversity in 1997

