q-ANALOGUES OF p-ADIC FOURIER TRANSFORMS

Jin-Woo Son and Min-Soo Kim

0. Introduction

Let \mathbb{Z} and \mathbb{N} denote the ring of integers and the set of all positive integers respectively and let $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Q}_{p}$, and \mathbb{C}_{p} denote the field of rational numbers, the field of real numbers, the field of complex numbers, the field of p-adic rational numbers, and the completion of the algebraic closure of \mathbb{Q}_{p} respectively. $\mathbb{R}_{\geq 0}$ is denoted by the set consisting of all positive real numbers and 0 and \mathbf{J} denote the set \mathbb{N} with the p-adic valuation $|\mid$, which is normalized as $| p \mid=p^{-1}$; hence \mathbf{J} is regarded as a dense subset of the p-adic integer ring. \mathbb{Z}_{p}.

The purpose of this paper is to give generalized Fourier transforms on test functions which is important to the study of p-adic quantum mechanics. Our goals are to construct p-adic q-Fourier transform on X, which is defined in section 2 . In section 1, we will introduce already known results to obtain our results in section 2. In section 2, we study the q-analogues of p-adic Fourier transforms on the space of bounded functions.

1. p-adic Fourier transforms of test functions on \mathbb{Q}_{p}

Recently new models of quantum physics were proposed on the basss of p-adic number field \mathbb{Q}_{p}. The p-adic Fourier transforms are important to the study of p-adic quantum mechanics. Integral of the form

$$
\int_{\mathbb{Q}_{p}} \chi_{p}(\xi x) \varphi(x) d x, \quad \xi, x \in \mathbb{Q}_{p}
$$

is called p-adzc Forier transforms of test function $\varphi(x)($ see [7]).
Any p-adic number $x \neq 0$ is uniquely represented in the canonical form $x=p^{\gamma}\left(x_{0}+x_{1} p+x_{2} p^{2}+\cdots\right)$, where $\gamma=\gamma(x) \in \mathbb{Z}$ and x_{1} are integers such that $0 \leq x_{3} \leq p-1, x_{0}>0, \jmath=0,1,2, \cdots$.

Received Aug 20, 1997 Revised Oct 20, 1997

The field \mathbb{Q}_{p} is a commutative and associative group with respect to addition. $\mathbb{Q}_{p}^{*}=\mathbb{Q}_{p}-\{0\}$ is a commutative and associative group with respect to multiplication.

From the representation of p-adic number $x \neq 0$, the fractional part $\{x\}_{p}$ of a number $x \in \mathbb{Q}_{p}$ is given by
$\{x\}_{p}= \begin{cases}0 & \text { if } \gamma \geq 0 \text { or } x=0, \\ p^{\gamma}\left(x_{0}+x_{1} p+x_{2} p^{2}+\cdots+x_{|\gamma|-1} p^{|\gamma|-1}\right) & \text { if } \gamma<0 .\end{cases}$
The space $\mathbb{Q}_{p}^{n}=\mathbb{Q}_{p} \times \mathbb{Q}_{p} \times \cdots \times \mathbb{Q}_{p}$ consists of points $x=\left(x_{1}, \cdots\right.$, $\left.x_{n}\right), x_{3} \in \mathbb{Q}_{p}, j=1,2, \cdots, n$. The norm on \mathbb{Q}_{p}^{n} is $|x|_{p}=\max _{1 \leq \jmath \leq n}|x|_{p}$, $x \in \mathbb{Q}_{p}^{n}$. This is a non-Archimedean norm since $|x+y|_{p} \leq \max \left(|x|_{p},|y|_{p}\right)$, $x, y \in \mathbb{Q}_{p}^{n}$. The space \mathbb{Q}_{p}^{n} is a clearly complete metric locally-compact and totally disconnected space. We introduce the inner product by $<x, y\rangle=x_{1} y_{1}+\cdots+x_{n} y_{n} ; x, y \in \mathbb{Q}_{p}^{n}$. From this, the following Schwartz inequality is valid: $\left.\left|<x, y>\left.\right|_{p} \leq|x|_{p}\right| y\right|_{p}, x, y \in \mathbb{Q}_{p}^{n}$.

Denote by $B_{\gamma}(a)$ the ball of radius p^{γ} with center at the point $a \in \mathbb{Q}_{p}^{n}$ and by $S_{\gamma}(a)$ its boundary (sphere). For the notational convenience let $B_{\gamma}(0)=B_{\gamma}$ and $S_{\gamma}(0)=S_{\gamma}, \gamma \in \mathbb{Z}$. If $a=\left(a_{1}, \cdots, a_{n}\right) \in \mathbb{Q}_{p}^{n}$ then $B_{\gamma}(a)=B_{\gamma}\left(a_{1}\right) \times \cdots \times B_{\gamma}\left(a_{n}\right)$ in $\mathbb{Q}_{p}^{n} . B_{\gamma}(a)$ and $S_{\gamma}(a)$ are clearly closed-open sets.

An additive character of an additive group \mathbb{Q}_{p} is a continuous complex valued function

$$
\chi: \mathbb{Q}_{p} \longrightarrow \mathbb{C}
$$

satisfying the conditions; (i) $|\chi(x)|=1$ and (ii) $\chi(x+y)=\chi(x) \chi(y)$, $x, y \in \mathbb{Q}_{p}$. It is clear that every additive character of the field \mathbb{Q}_{p} is a character of any group $B_{\gamma}, \gamma \in \mathbb{Z}$.

The function $\chi_{p}(\xi x)=\exp \left(2 \pi \imath\{\xi x\}_{p}\right)$ for every fixed $\xi \in \mathbb{Q}_{p}$ is an additive character on the field \mathbb{Q}_{p} and the group $B_{\gamma}($ see [7]). From the definition of the fractional part we have $\{x+y\}_{p}=\{x\}_{p}+\{y\}_{p}-N, N=$ 0,1 .

The Haar measure $d x$ is the (essentially) unique invariant measure on the additive group $\mathbb{Q}_{p} \rightarrow \mathbb{C}$: for any $a \in \mathbb{Q}_{p}, d(x+a)=d x$. Its normalization is fixed by taking the measure of \mathbb{Z}_{p}, the set of p-adic integers, as equal to $1: \mu\left(\mathbb{Z}_{p}\right)=\int_{\mathcal{Z}_{p}} d x=\int_{|x|_{p} \leq 1} d x=1$.

Let us now take the set of numbers with a given p-adic norm p^{γ}. Cleary

$$
\mu\left(\left\{|x|_{p}=p^{\gamma}\right\}\right)=\mu\left(p^{-\gamma} \mathbb{Z}_{p}\right)-\mu\left(p^{-\gamma+1} \mathbb{Z}_{p}\right)=p^{\gamma}\left(1-p^{-1}\right) .
$$

That is

$$
\begin{equation*}
\int_{S_{\gamma}} d x=\int_{B_{\gamma}} d x-\int_{B_{\gamma-1}} d x=p^{\gamma}\left(1-\frac{1}{p}\right) \tag{1.1}
\end{equation*}
$$

The formula (1.1) is essentially all that is needed for integration over \mathbb{Q}_{p} or any of its subsets.

Proposition 1.1 [7]. For $\gamma \in \mathbb{Z}$,
(a) $\int_{S_{7}, x_{0}=k} d x=p^{\gamma-1}, \quad k=1,2, \cdots, p-1$.
(b) $\int_{S_{\gamma, x_{0} \neq k}} d x=p^{\gamma}\left(1-\frac{2}{p}\right), \quad k=1,2, \cdots, p-1$.
(c) $\int_{S_{\gamma}, x_{l}=k} d x=p^{(\gamma-1)}\left(1-\frac{1}{p}\right), l=1,2, \cdots, k=0,1,2, \cdots$, $p-1$.
(d) For $l=0,1,2, \cdots, 0 \leq k_{3}<p-1, k_{0} \neq 0$,

$$
\int_{S_{\gamma}, x_{0}=k_{0}, x_{1}=k_{1}, \cdot, x_{l}=k_{l}} d x=p^{(\gamma-l-1)} .
$$

(e) For $\gamma \in \mathbb{Z}$, let χ_{p} be the additive character of the field \mathbb{Q}_{p}. Then

$$
\int_{B_{\gamma}} \chi_{p}(\xi x) d x=p^{\gamma} \Omega\left(\left|\xi p^{-\gamma}\right|_{p}\right)
$$

where $\Omega(\alpha)$ is 1 if $0 \leq \alpha \leq 1$ and 0 if $\alpha>1$.
(f) Let χ_{p} be the additive character of field \mathbb{Q}_{p}. Then we have

$$
\int_{S_{\gamma}} \chi_{p}(\xi x) d x= \begin{cases}p^{\gamma}\left(1-\frac{1}{p}\right), & |\xi|_{p} \leq p^{-\gamma} \\ -p^{(\gamma-1)}, & |\xi|_{p}=p^{-\gamma+1} \\ 0, & |\xi|_{p} \geq p^{-\gamma+2}\end{cases}
$$

A complex-valued function $f(x)$ defined on \mathbb{Q}_{p} is called locally-constant if for any point $x \in \mathbb{Q}_{p}$ there exists an integer $l(x) \in \mathbb{Z}$ such that

$$
f\left(x+x^{\prime}\right)=f(x), \quad\left|x^{\prime}\right|_{p} \leq p^{l(x)}
$$

The set of locally-constant functions on \mathbb{Q}_{p} denotes as $\mathcal{E}=\mathcal{E}\left(\mathbb{Q}_{p}\right)$. We call it a test function if every function from \mathcal{E} with compact support. When the set of test function is linear, we denote it by $\mathcal{D}=\mathcal{D}\left(\mathbb{Q}_{p}\right)$. Let $\varphi \in \mathcal{D}$. Then there exists $l \in \mathbb{Z}$, such that

$$
\varphi\left(x+x^{\prime}\right)=\varphi(x), \quad x^{\prime} \in B_{l}, x \in \mathbb{Q}_{p}
$$

Such largest number l we call the parameter of constancy of a function $\varphi, l=l(\varphi)$. Let $\mathcal{D}_{N}^{I}=\mathcal{D}_{N}^{l}\left(\mathbb{Q}_{p}\right)$ be denoted by the set of test function with support in the disc B_{N} and with parameter of constancy $\geq l$. Let $\varphi \in \mathcal{D}$. Its Fourter-transform $F[\varphi]=\widetilde{\varphi}$ is defined by the formula

$$
\begin{equation*}
\widetilde{\varphi}(\xi)=\int_{\mathbb{Q}_{p}} \chi_{p}(\xi x) \varphi(x) d x, \quad \xi \in \mathbb{Q}_{p} \tag{1.2}
\end{equation*}
$$

Proposition $1.2[7]$. The Fourier-transform $\varphi \rightarrow \tilde{\varphi}$ is the linear isomorphism \mathcal{D} onto \mathcal{D}, and also have the inversion Fourier-transform formula

$$
\varphi(x)=\int_{\mathbb{Q}_{p}} \chi_{p}(-x \xi) \tilde{\varphi}(\xi) d \xi, \quad \tilde{\varphi}, \varphi \in \mathcal{D} .
$$

Thus the Parseval-Steklov equalities are valid:

$$
\begin{array}{ll}
\int_{\mathbb{Q}_{p}} \varphi(x) \overline{\psi(x)} d x=\int_{\mathbb{Q}_{p}} \widetilde{\varphi}(\xi) \bar{\psi}(\xi) d \xi, \quad \varphi, \psi \in \mathcal{D} \\
\int_{\mathbb{Q}_{p}} \varphi(x) \widetilde{\psi}(x) d x=\int_{\mathbb{Q}_{p}} \widetilde{\varphi}(\xi) \psi(\xi) d \xi, \quad \varphi, \psi \in \mathcal{D} .
\end{array}
$$

2. p-adic q-analogue Fourier transforms $F_{q}\left[f^{\rho}\right]=\widehat{f_{q}}{ }_{q}$

Now let us consider a bounded function $f(x)$ defined on \mathbf{J} and taking its values in \mathbb{C}_{p}, namely $f(x) \in \mathbb{C}_{p}$ and there exists a constant L depending on f such that $|f(x)| \leq L$ for any $x \in \mathbf{J}$. The set $B\left(\mathbf{J}, \mathbb{C}_{p}\right)$ of all bounded functions makes an algebra over \mathbb{C}_{p} under the pointwise addition and multiplication.

Let $\mathbb{Z} / p^{N} \mathbb{Z}$ be the residue class ring of the rational integer ring \mathbb{Z} module $p^{N}(N \in \mathbb{N})$, and ζ is a primitive p^{N}-th root of unity in \mathbb{C}_{p}.

Then functions $\zeta^{m x}$ of $x \in \mathbb{Z}\left(m=0,1, \cdots, p^{N}-1\right)$ are all the characters of the additive group of $\mathbb{Z} / p^{N} \mathbb{Z}$. We identify any of the induced function on $\mathbb{Z} / p^{N} \mathbb{Z}$. For any given bounded function $f \in B\left(\mathbf{J}, \mathbb{C}_{p}\right)$ we make an induced function $f^{N}(x)$ on $\mathbb{Z} / p^{N} \mathbb{Z}$ by

$$
\begin{equation*}
f^{N}(x)=f\left(x-p^{N}\left[\frac{x}{p^{N}}\right]_{g}\right) \quad(x \in \mathbb{Z}) \tag{2.1}
\end{equation*}
$$

where $[z]_{g}$ denotes the greatest integer not exceeding the real number z, namely []$_{g}$ means the Gauss' symbol.

If $q \in \mathbb{C}$, and assume again that $|q|<1$. If $q=1+t \in \mathbb{C}_{p}$, we normally assume $|t|_{p}<1$. We shall further suppose that ord $_{p} t>\frac{1}{1-p}$, so that $q^{x}=\exp \left(x \log _{p} q\right)$ for $|x|_{p} \leq 1$.

We use the notation

$$
\begin{equation*}
[x]=[x ; q]=\frac{1-q^{x}}{1-q} . \tag{2.2}
\end{equation*}
$$

Thus, we obtain $\lim _{q \rightarrow 1}[x ; q]=x$ for any x with $|x|_{p} \leq 1$.
For any fixed positive integer d we easily see that

$$
\begin{equation*}
\frac{1}{\left\{p ; q^{d p^{N}}\right]} \sum_{\imath=0}^{p-1} q^{\imath d p^{N}}=1 \tag{2.3}
\end{equation*}
$$

Let d be a fixed positive integer, and let p be a fixed prime number. Let

$$
X=\underset{\underset{N}{\ln }}{ }\left(\mathbb{Z} / d p^{N} \mathbb{Z}\right)
$$

where the map from $\mathbb{Z} / d p^{M} \mathbb{Z}$ to $\mathbb{Z} / d p^{N} \mathbb{Z}$ for $M \geq N$ is a reduction $\bmod d p^{N}$. Let $a+d p^{N} \mathbb{Z}_{p}=\left\{x \in X \mid x \equiv a\left(\bmod d p^{N}\right)\right\}$. Without loss of generality, we may always choose a so that $0 \leq a<d p^{N}$. Also,
(2.4) $a+d p^{N} \mathbb{Z}_{p}=\bigcup_{0 \leq b<p}\left(a+b d p^{N}\right)+d p^{N+1} \mathbb{Z}_{p} \quad$ (disjounted union).

We write $a+d p^{N} \mathbb{Z}_{p}=a+\left(d p^{N}\right)$.

Proposition 2.1 [3]. Let μ_{q} be given by

$$
\begin{equation*}
\mu_{q}\left(a+\left(d p^{N}\right)\right):=\frac{q^{a}}{\left\{d p^{N}\right\}}=\frac{q^{a}}{\left\{d p^{N} ; q\right]} . \tag{2.5}
\end{equation*}
$$

Then μ_{q} extends to a distribution on the compact open sets $U \subset X$.
Remark 2.2. For the ordinary p-adic distribution μ_{0} defined by (see [4])

$$
\mu_{0}\left(a+\left(d p^{N}\right)\right)=\frac{1}{d p^{N}},
$$

we see

$$
\lim _{q \rightarrow 1} \mu_{q}=\mu_{0} .
$$

We can evaluate $\int_{X} f d \mu_{g}$ as the limit

$$
\begin{align*}
\int_{X} f d \mu_{q} & =\lim _{N \rightarrow \infty} \sum_{0 \leq a<d p^{N}} f(a) \mu_{q}\left(a+\left(d p^{N}\right)\right) \\
& =\frac{1}{\left[d p^{N}\right]} \sum_{a=0}^{d p^{N}-1} f(a) q^{a} . \tag{2.6}
\end{align*}
$$

Also, we have(see [3])

$$
\int_{X} f(x) d \mu_{q}(x)=\int_{\mathbf{z}_{p}} f(x) d \mu_{q}(x) .
$$

Thus we easily see that

$$
\int_{X} d \mu_{q}(x)=\int_{\mathbb{Z}_{\mathrm{p}}} d \mu_{q}(x)
$$

because we set $f=1$.
Now, for $f \in B\left(\mathbf{J}, \mathbb{C}_{p}\right)$ we will construct the p-adic q-Fourier transfrom $F_{q}\left[f^{\rho}\right]=\widehat{f^{p}}{ }_{q}$ on \mathbb{C}_{p}. If $\lim _{q \rightarrow 1} \widehat{f^{\rho}}{ }_{q}=\widehat{f^{p}}{ }_{1}=\widehat{f^{p}}, \widehat{f^{p}}$ is similar to Fourier transform on the complex number field \mathbb{C}.

We consider the $F_{q}\left[f^{\rho}\right]=\widehat{f}_{q}$ as

$$
{\widehat{f^{\rho}}}_{q}(y)=\int_{X} \zeta^{y x} f^{\rho}(x) d \mu_{q}(x)
$$

$$
\begin{equation*}
=\lim _{\rho \rightarrow \infty} \frac{1}{\left[d p^{\rho}\right]} \sum_{x=0}^{d p^{\rho}-1} \zeta^{y x} f^{\rho}(x) q^{x}, \quad y \in \mathbb{Z} \tag{2.7}
\end{equation*}
$$

Thus this function $\widehat{f e}_{q}$ is q-analogue form of the Fourier transform. Also its inverse q-analogue Fourier transform is

$$
\begin{align*}
f^{\rho}(x) & =\int_{X} \zeta^{-x y} \widehat{f_{q}^{\rho}}(y) q^{-y} d \mu_{q}(y) \\
& =\lim _{\rho \rightarrow \infty} \frac{1}{\left[d p^{\rho}\right]} \sum_{y=0}^{d p^{p}-1} \zeta^{-x y} \widehat{f}_{q}^{\rho}(y), \quad x \in \mathbb{Z} \tag{2.8}
\end{align*}
$$

since

$$
\begin{aligned}
& \int_{X} \zeta^{-x y} \widehat{f}_{q}^{\rho}(y) q^{-y} d \mu_{q}(y) \\
&=\int_{X} \zeta^{-x y} \int_{X} \zeta^{y x^{\prime}} f^{\rho}\left(x^{\prime}\right) d \mu_{q}\left(x^{\prime}\right) d \mu_{q}(y) \\
&=\int_{X} f^{\rho}\left(x^{\prime}\right) \int_{X} \zeta^{-x y+y x^{\prime}} q^{-y} d \mu_{q}(y) d \mu_{q}\left(x^{\prime}\right) \\
&=f^{\rho}(x)+\int_{X, x \neq x^{\prime}} f^{\rho}\left(x^{\prime}\right) \int_{X} \zeta^{\left(x^{\prime}-x\right) y} q^{-y} d \mu_{q}(y) d \mu_{q}\left(x^{\prime}\right) \\
&=f^{\rho}(x)
\end{aligned}
$$

Hence we get:
Proposition 2.3. Let $f \in B\left(\mathbf{J}, \mathbb{C}_{p}\right)$ and assume that $\widehat{f \rho}_{q} \in B(\mathbf{J}$, \mathbb{C}_{p}). Then for all $x \in \mathbb{Z}$

$$
f^{\rho}(x)=\int_{X} \zeta^{-x y} \widehat{f}_{q}^{\rho}(y) q^{-y} d \mu_{q}(y)
$$

In this case, we calls \widehat{f}_{q} is p-adic q-Founer transform of f^{ρ}.

Proposition 2.4. If $\lim _{q \rightarrow 1} \mu_{q}=\mu_{o}$, then:

- $\lim _{q \rightarrow 1} \int_{X} \zeta^{-x y} \widehat{f \rho}_{q}(y) q^{-y} d \mu_{q}(y)=\int_{X} \zeta^{-x y}{\widehat{f f^{\rho}}}_{1}(y) d \mu_{0}(x)$.
- $\widehat{f^{p}}{ }_{1}(y)=\lim _{\rho \rightarrow \infty} \frac{1}{d p^{\rho}} \sum_{x=0}^{d p^{p}-1} \zeta^{y x} f_{1}^{\rho}(x), \quad y \in \mathbb{Z}$.
- $f_{1}^{\rho}(x)=\lim _{\rho \rightarrow \infty} \frac{1}{d p^{\rho}} \sum_{y=0}^{d p^{p}-1} \zeta^{-x y} \widehat{f_{1}^{p}}(y), \quad x \in \mathbb{Z}$.

This formula resembles the formula of a finite Fourier transform argument in [2], [5], and [8].

Corollary 2.5. If we consider a sequence of partitions of \mathbb{Z}_{p}, then

$$
\mathcal{P}\left(\mathbb{Z}_{p}\right)=\bigcup_{j=0}^{d p^{N}-1} B_{-N}(j)
$$

and computes $\int_{Z_{p}} f(x) d \mu_{0}(x)$ as the limit

$$
\int_{Z_{p}} f(x) d \mu_{0}=\lim _{N \rightarrow \infty} \sum_{x=0}^{d p^{N}-1} f(x) \frac{1}{d p^{N}}, \quad x \in B_{-N}(\jmath) .
$$

References

1. Ebbinghaus et al., Numbers, Springer-Verlag, Berlin, Heidelberg, New York, 1977
2. K Ikeda, T. Kim, K Shiratani, On p-adic bounded functions, Men. Fac. Scı. Kyushu Univ Ser A 46 no 2 (1992), 341-349
3 T Kım, On the q-Analogues of p-adzc log Gamma and L-Functions, Kyushu Univ press, 1994.
4 N Koblitz, p-adic Numbers, p-adıc Analyszs, and Zeta-Functzons, Springer-Verlag, Berlın, Heidelberg, New York, 1977.
5 S Lang, Cyclotomic Ftelds I and II, Springer-Verlag, Berlin, Heidelberg, New York, 1990.
6 V S Vladimirov and I . V. Volovich, A vacuum state in p-adic quantum mechantcs, Physics Letters B 217 no. 4 (1989), 411-415.
7 V S. Vladımırov, 1 V. Volovich, E 1. Zelenov, p-adıc Analysis and Mathematical Physzcs, World Scientific, Singapore, NewJersey, London, HongKong, 1994
8 L C. Washington, Introduction to Cyclotomtc Fields, Springer-Verlag, Berlin, Heldelberg, New York, 1997
9 E l Zelenov, p-adrc quantum mechanics for $p=2$, Teoret : Mat. Fizika 80 (1989), 253-264

Department of Mathematics
Kyungnam University
Masan 631-701, Korea
e-mail : sonjin@hanma.kyungnam.ac.kr

