East Asian Math J 13 (1997), No 2, pp. 187-195

ON (*)--IDEALS AND POSITIVE IMPLICATIVE IDEALS IN BCI--ALGEBRAS

HAMZA A. S. ABUJABAL* AND JIE MENG**

The study of ideals forms an important part of the theory of BCIalgebra. Since K. Iséki [6] generalized the notion of ideals in BCKalgebras to BCI-algebras, several classes of ideals in BCI-algebras have been occurred, for instance, closed ideals [2], strong ideals [1], p-ideals [17], positive implicative ideals [3], and so on. In [4] and [9] closed ideals, strong ideals, and p-ideals were further investigated. In particular, it is shown that in a BCI-algebra the notion of strong ideals and closed p-ideals coincide. As a continuation of [4], [9] and [14], we now will deeply study further properties of (*)-ideals and positive implicative ideals and clarify the relation of the two classes of ideals.

Let X be a nonempty set. Let * be a binary operation on X and 0 is a constant of X. An algebra $\langle X; *, 0 \rangle$ of type (2,0) is said to be a BCI-algebra if for all $x, y, z \in X$,

(I) ((x * y) * (x * z)) * (z * y) = 0,

(II)
$$(x * (x * y)) * y = 0$$
,

 $(\mathrm{III}) \ x \ast x = 0,$

(IV) x * y = 0 and y * x = 0 imply x = y.

A binary relation \leq on X can be defined by putting $x \leq y$ if and only if x * y = 0. Then $\langle X; \leq \rangle$ is a partially ordered set with a minimal element 0.

In any BCI-algebra X the following properties hold.

(1) (x * y) * z = (x * z) * y,

(2) x * 0 = x,

 $(3) (x * z) * (y * z) \leq x * y,$

(4) $x \leq y$ implies $x * z \leq y * z$ and $z * y \leq z * x$.

A BCI-algebra X with the condition $0 \le x$ for all $x \in X$ is called a BCK-algebra.

A nonempty subset I of a BCI-algebra X is called an ideal of X if (i) $0 \in I$,

Received June 14, 1997

(ii) $x \in I$ whenever $x * y \in I$ and $y \in I$.

Every ideal I of X satisfies

(iii) $x \leq y$ and $y \in I$ imply $x \in I$.

An ideal I of a BCI-algebra X is said to be closed if $0 * x \in I$ for all $x \in I$. An ideal I of a BCI-algebra X is closed if and only if I is a subalgebra of X. Every ideal of a BCK-algebra is always closed. An element a in a BCI-algebra X is said to be an atom if for all $x \in X$, x * a = 0 implies x = a. Let L(X) be the set of all atoms of a BCIalgebra X. For any $a \in L(X)$, the set $\{x \in X \mid a \leq x\}$ is called the branch of a BCI-algebra X and denoted by V(a). The branch V(0) is the BCK-part of X, which is denoted by $B(X) = \{x \in X \mid 0 \leq x\}$. For all x in a BCI-algebra X, we denote $a_x = 0 * (0 * x) \in L(X)$. In the sequel, we will use the following properties:

(5) L(X) is a subalgebra of X,

(6) $L(X) = \{0 * (0 * x) | x \in X\} = \{0 * x | x \in X\},\$

(7) If $x, y \in X$, then x and y belong to the same branch if and only if $x * y \in B(X)$ and so $x * a_x \in B(X)$.

A BCI-algebra X is said to be p-semisimple if $B(X) = \{0\}$ or equivalently, L(X) = X.

The above concepts and results can be found in [1], [7] and [12]. Throughout this paper, X will mean a BCI-algebra unless mentioned otherwise.

Before starting to discuss (*)-ideals and positive implicative ideals, we give an elementary property of BCI-algebras.

THEOREM 1. Let X be a BCI-algebra. Then for all $x \in X$ and $y \in B(X)$, $x * y \leq x$.

Proof. Since $y \in B(X)$ implies 0 * y = 0, we have (x * y) * x = (x * x) * y = 0 * y = 0, that is, $x * y \le x$.

E. H. Roh, Y. B. Jun and S. M. Wei [13] introduced the notion of (*)-ideals in BCI-algebras and obtain some of its properties.

DEFINITION 1 [13]. If an ideal I of a BCI-algebra X satisfies the condition

(iv) $x \in I$ and $a \in X - I$ imply $x * a \in I$, then I is called a (*)-ideal of X. On (*)-ideals and positive implicative ideals in BCI-algebras

189

Obviously, each ideal of a BCK-algebra is always a (*)-ideal, but for a proper BCI-algebra, $\{0\}$ is not a (*)-ideal.

THEOREM 2. If I is an ideal of a BCI-algebra X, and $L(X) \subseteq I$, then I is a (*)-ideal of X.

Proof. Assume that $x \in I$ and $y \in X - I$. Since $y * a_y \in B(X)$, by Theorem 1, we have $x * (y * a_y) \leq x$, and so $x * (y * a_y) \in I$. Since

$$\begin{aligned} ((x*y)*a_y)*(x*(y*a_y)) &= ((x*(x*(y*a_y)))*y)*a_y \\ &\leq ((y*a_y)*y)*a_y \\ &= (0*a_y)*a_y \in L(X), \end{aligned}$$

and $L(X) \subseteq I$, we have $((x * y) * a_y) * (x * (y * a_y)) \in I$. Combining $x * (y * a_y) \in I$ and using (ii), we have $(x * y) * a_y \in I$. Since $a_y \in L(X) \subseteq I$, it follows that $x * y \in I$. Therefore, I is a (*)-ideal of X.

The converse of Theorem 2 need not be hold, as is shown in the following example.

EXAMPLE 1 [9]. Let $X = \{2^n | n = \pm 1, \pm 2, ...\}$, and let \div be the usual division. Then $\langle X; \div, 1 \rangle$ is a *p*-semisimple BCI-algebra and $I = \{1, 2, 2^2, ...\}$ is an ideal of X. Observe that for all natural numbers m and n, we have $2^{-n} \in X - I$, $1 \div 2^{-n} = 2^n \in I$ and $2^m \div 2^{-n} = 2^{m+n} \in I$. Hence I is a (*)-ideal of X. But $L(X) \not\subseteq I$ as L(X) = X. One easily sees that I is not closed, because $1 \div 2 = \frac{1}{2} \notin I$.

It is natural to ask whether or not for closed ideals the converse of Theorem 2 holds. The answer is positive.

THEOREM 3. Let I be a closed (*)-ideal of a BCI-algebra X. Then $L(X) \subseteq I$.

Proof. If $L(X) \not\subseteq I$, then there is $a \in L(X) - I$, that is, $a \in L(X)$ and $a \notin I$. But $a \in L(X)$ implies a = 0 * (0 * a). By (iv), $a \notin I$ implies $0 * a \in I$. Furthermore, $a = 0 * (0 * a) \in I$, because I is closed. Therefore, we have a contradiction. Hence $L(X) \subseteq I$. \diamond

By Theorem 2 and Theorem 3, we have

COROLLARY 4. If I is a closed ideal of a BCI-algebra X, then I is a (*)-ideal if and only if $L(X) \subseteq I$.

DEFINITION 2 [11]. Let \mathbb{N} be the set of all natural numbers. Let X be a BCI-algebra. For $x \in X$, we define x^n by $x^1 = x$, $x^{n+1} = x * (0 * x^n)$. If there is $n \in \mathbb{N}$ such that $x^n \in B(X)$, then x is called finite periodic and $|x| = \min \{n \in \mathbb{N} | x^n \in B(X)\}$ is the period of x. The set $P(X) = \{x \in X | |x| < \infty\}$ is called the periodic part of X. If X = P(X), then X is said to be periodic.

PROPOSITION 5 [11, THEOREM 11]. Let X be a periodic BCIalgebra. Then each ideal of X is closed.

Combining Corollary 4 and Proposition 5, we get

THEOREM 6. If X is a periodic BCI-algebra, and I is an ideal of X, then I is a (*)-ideal of X if and only if $L(X) \subseteq I$.

Since a finite BCI-algebra is periodic (see [11, Theorem 8]), we obtain

COROLLARY 7. An ideal I of a finite BCI-algebra X is a (*)-ideal if and only if $L(X) \subseteq I$.

Now, we give simpler characterizations of (*)-ideals and closed (*)-ideals.

THEOREM 8. Suppose I is an ideal of a BCI-algebra X. Then I is a (*)-ideal of X if and only if $a \in X - I$ implies $0 * a \in I$.

Proof. (\Longrightarrow) : Trivial.

 (\Leftarrow) : Suppose an ideal *I* satisfies that $a \in X - I$ implies $0 * a \in I$. If $x \in I$ and $a \in X - I$, then $(x * a) * x = (x * x) * a = 0 * a \in I$. By (ii), $x * a \in I$. Therefore, *I* is a (*)-ideal. \diamond

THEOREM 9. An ideal I of a BCI-algebra X is a closed (*)-ideal if and only if $0 * x \in I$ for all $x \in X$.

Proof. Let I be a closed (*)-ideal and $x \in X$. If $x \in X - I$, then $0 * x \in I$, because I is a (*)-ideal. If $x \in I$, then $0 * x \in I$, because I is a closed ideal. Hence $0 * x \in I$ for all $x \in X$.

Conversely, suppose $0 * x \in I$ for all $x \in X$. In other words, $L(X) \subseteq I$ by (6). It follows from the definition of closed ideals that I is closed. Then, applying Corollary 4, we get that I is a (*)-ideal. \diamond

THEOREM 10. A nonempty subset I of a BCI-algebra X is a closed (*)-ideal of X if and only if (i) t $0 \in I$, and (v) for all $x, y, z \in X$, $x * y \in I$ and $y \in I$ imply $x * z \in I$.

Proof. Suppose that I satisfies (i) and (v). Assume that z = 0 in (v). Then I satisfies $x * y \in I$ and $y \in I$ imply $x \in I$. Hence I is an ideal of X. Let x = y = 0 in (v). Then $0 * z \in I$ for all $z \in X$. By Theorem 9, I is a closed (*)-ideal of X.

Conversely, let I be a closed (*)-ideal of X. If $x * y \in I$ and $y \in I$, then by closeness of I, we have $x * z \in I$ whenever $z \in I$. Thus, for all $x, y, z \in X$, $x * y \in I$ and $y \in I$ imply $x * z \in I$. \diamondsuit

For a subset A of X, let (A] (resp. $(A]_*$) denotes the least ideal (resp. least closed (*)-ideal) containing A in X.

THEOREM 11. Let A be a subset of a BCI-algebra X. Then $(A]_* = (A \cup L(X))$.

Proof. It follows directly from Theorem 9 and (6). \diamond

Next, we discuss positive implicative ideals in BCI-algebras and their relation with (*)-ideals. The notion of positive implicative ideals in BCK-algebras was introduced by K Iséki in [5] and generalized to BCI-algebras by C. S. Hoo in [3].

DEFINITION 3 [5]. A nonempty subset I of a BCI-algebras X is called a **positive implicative ideal** of X if it is satisfies (i) $0 \in I$ and (vi) $(x * y) * z \in I$ and $y * z \in I$ imply $x * z \in I$

Any positive implicative ideal must be an ideal, but the converse need not be hold.

DEFINITION 4 [15]. A BCI-algebra X is called quasi-associative if for $x, y, z \in X$, $(x * y) * z \le x * (y * z)$.

PROPOSITION 12 [15]. A BCI-algebra X is quasi-associative if and only if for all $x \in X$, $0 * x \le x$, or equivalently (0 * x) * x = 0.

For a nonempty subset A of a BCI-algebra X and a fixed element a of X, the set $\{x \in X \mid x * a \in A\}$ is denoted by A_a .

THEOREM 13. Let X be a quasi-associative BCI-algebra and let A be a positive implicative ideal of X. Then for any fixed $a \in X$, A_a is the least ideal containing A and a.

Proof. Since X is quasi-associative, $(0 * a) * a = 0 \in A$. Combining $a * a = 0 \in A$ and by (vi), we have $0 * a \in A$, that is, $0 \in A_a$. Also, let $x * y \in A_a$ and $y \in A_a$. Then $(x * y) * a \in A$ and $y * a \in A$. By (vi), $x * a \in A$ and so $x \in A_a$. Therefore, A_a is an ideal of X.

Since X is quasi-associative, for all $x \in A$, we have $(x * a) * a \le x * (a * a) = x * 0 = x \in A$ and so $(x * a) * a \in A$ by (iii). Observe that $a * a = 0 \in A$. Hence $x * a \in A$. Namely, $x \in A_a$. Thus $A \subseteq A_a$. Clearly, $a \in A_a$.

Suppose that I is any ideal containing A and a. If $x \in A_a$, then $x * a \in A \subseteq I$, and so $x * a \in I$. It follows from $a \in I$ that $x \in I$. Hence $A_a \subseteq I$. This means that A_a is the least ideal containing A and a. \diamond

THEOREM 14. Let A be an ideal of a BCI-algebra X. If for all $a \in X$, A_a is an ideal of X, then A is a positive implicative ideal of X.

Proof. Let $x, y, z \in X$ be such that $(x * y) * z \in A$ and $y * z \in A$. Then $x * y \in A_z$ and $y \in A_z$. Since A_z is an ideal of X, by (ii), $x \in A_z$ and so $x * z \in A$. Hence A is a positive implicative ideal of X. \diamond

By Theorem 13 and Theorem 14, we have

COROLLARY 15. Let X be a quasi-associative BCI-algebra and A be an ideal of X. Then A is positive implicative if and only if for any $a \in X$, A_a is an ideal of X.

The following result is a generalization of [8, Theorem 4]

THEOREM 16. If I is an ideal of a BCI-algebra X, then the following are equivalent:

(8) I is positive implicative,

(9) $(x * y) * y \in I$ implies $x * y \in I$, for all $x, y \in X$, (10) $(x * y) * z \in I$ implies $(x * z) * (y * z) \in I$ for all $x, y, z \in I$.

The proof of the above result is similar to [8, Theorem 2] and omitted.

THEOREM 17. Suppose X is a quasi-associative BCI-algebra and A is a positive implicative ideal of X. Then A is a closed (*)-ideal of X.

Proof. For all $a \in X$, A_a is an ideal of X by Theorem 13. Since $0 \in A_a$, it follows that $0 * a \in A$. By Theorem 9, we know that A is a closed (*)-ideal of X. \diamond

COROLLARY 18 [16]. Let I be a positive implicative ideal of a quasiassociative BCI-algebra X. Then $L(X) \subseteq I$.

Proof. It follows from Theorem 3 and Theorem 17. \diamond

By quotient algebras, we can characterize (*)-ideals. Let I be an ideal of a BCI-algebra X. Define a binary relation \sim on X as follows:

 $x \sim y$ if and only if $x * y \in I$ and $y * x \in I$.

Then \sim is a congruence relation on X. Denote by $C_x = \{y \in X | y \sim x\}$ the equivalence class containing $x \in X$ and $X/I = \{C_x | x \in X\}$. Define $C_x * C_y = C_{x*y}$. Then C_0 is the greatest closed ideal contained in I, and $\langle X/I; *, C_0 \rangle$ is a BCI-algebra, called the quotient algebra of X by I (see [7]). Then C_0 may not equal I. We can check that $C_0 = I$ if I is a closed ideal.

THEOREM 19. Let I be a closed ideal of a BCI-algebra X. Then I is a (*)-ideal if and only if $\langle X/I; *, C_0 \rangle$ is a BCK-algebra.

Proof. (\Longrightarrow) : Suppose I is a closed (*)-ideal of X. By Theorem 9, $0 * x \in I$ for all $x \in X$, and so $C_0 * C_x = C_{0*x} = I = C_0$ for all $x \in X$. Hence $\langle X/I; *, C_0 \rangle$ is a BCK-algebra.

 (\Leftarrow) : If $\langle X/I; *, C_0 \rangle$ is a BCK-algebra, then for all $x \in X$, $C_0 * C_x = C_0$. Thus $C_{0*x} = I$, for I is closed. Hence $0 * x \in I$ By Theorem 9, I is a closed (*)-ideal of X.

COROLLARY 20. Let X be a quasi-associative BCI-algebra, and let I be a positive implicative ideal of X. Then $\langle X/I; *, C_0 \rangle$ is a positive implicative BCK-algebra.

Proof. By Theorem 17 and Theorem 19, it suffices to prove that $\langle X/I; *, C_0 \rangle$ is positive implicative. So, we assume that $(C_x * C_y) * C_y \in \{C_0\}$. Hence $C_{(x*y)*y} = I$, and so $(x * y) * y \in I$. By (9), we have $x * y \in I$. Thus $C_x * C_y = C_{x*y} = C_0 \in \{C_0\}$. This is to say that the zero ideal $\{C_0\}$ is positive implicative in BCK-algebra X/I. By [8, Corollary 7], $\langle X/I; *, C_0 \rangle$ is a positive implicative BCK-algebra. \diamond

ACKNOWLEDGEMENT. The author is grateful to the referees for their suggestion and comments. Further, we extend our thanks to Professor Y. B. Jun for his valuable comments.

References

- S A. Bhatti, Close-ness and open-ness of ideals in BCI-algebras, Math. Japan. 36 (1991), 915-921
- 2. C S Hoo, Closed ideals and p-semisimple BCI-algebras, Math. Japon. 35 (1990), 1103-1112
- 3. _____, Filters and ideals in BCI-algebras, Math. Japon. 36 (1991), 987-997
- 4. S M. Hong, Y B. Jun and J. Meng, On strong ideals and p-ideals in BCI-algebras, Submitted.
- 5 K. Iséki, On ideals in BCK-algebras, Math. Seminar Notes 3 (1975), 1-12
- 6 _____, On BCI-algebras, Math. Seminar Notes 8 (1980), 125-130.
- 7. T. D. Lei and C. C. Xi, *p-radical in BCI-algebras*, Math. Japon **30** (1985), 511-517
- 8 J Meng, On ideals in BCK-algebras, Math Japon. 40 (1994), 143-154
- 9 J Meng and H A. S. Abujabal, On closed ideals in BCI-algebras, Math. Japon. 44 (1996), 499-505
- 10 J Meng and Y B Jun, BCK-algebras, Kyung Moon Sa Co, Seoul, Korea, 1994
- 11 J Meng and S. M Wei, Periodic BCI-algebras and closed ideals in BCI-algebras, Math Japon. 38 (1993), 571-575.
- 12 J Meng and X L Xin, Characterizations of atoms in BCI-algebras, Math Japon 37 (1992), 359-361.
- 13 E H. Roh, Y. B Jun and S. M Wei, Some ideals in BCI-algebras, Math Japon 43 (1996), 47-50
- 14 S. M. Wei, Y. B. Jun and E. H. Roh, On (*)-ideals in BCI-algebras, J. Nanchang Univ 19 (1995), 66-68
- 15 C C Xi, On a class of BCI-algebras, Math Japon 35 (1990), 13-17
- 16. Q. Zhang, BCI-algebras with weak units, Math Japon 36 (1991), 1163-1166.

17. X H Zhang, H Jiang and S A. Bhatti, On p-ideals of a BCI-algebra, Punjab University J Math 27 (1994), 121-128.

* Department of Mathematics
Faculty of Science
King Abdul Aziz University
P. O. Box 31464, Jeddah 21497
Saudi Arabia

** Department of Mathematics Northwest University Xian 710069, P. R. China