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THE DOUBLE GAMMA FUNCTION

Junesang Choi and Tae Young Seo

1. Introduction and definitions

The double Gamma function was defined and studied by Barnes [4, 

5, 6] and others in about 1900, not appearing in the tables of the most 

well-known special functions, but cited in the exercise by Whittaker 

and Watson [32, p. 264]. Recently this function has been revived 

in the study of determinants of Laplacians [9, 11, 19, 20, 24, 25, 26, 

29, 31]. Shintani [27] also used this function to prove the classical 

Umecke호 limit &rmula. Its p-adin analytic -^tension LappeaEed in a 

formula of Cassou-Nogues [8] for the p-adic ^-functions at the point 

0. More recently Choi et al. [12, 1 이 showed that the theory of the 

double Gamma function is turned out to be useful in evaluating some 

series involving the zeta function, the origin of which can. be traced 

back to an over two century old theorem of C. Goldbach as noted in 

Srivastava [28]. Before Barnes, these functions had been introduced 

under a different form by Alexeiewsky [1], Glaisher [18], Holder [21] 

and Kinkelin [22].

Barnes [4] defines the double Gamma function L = 1/G satisfying 

each of the following properties*

(a) G(z + 1) =「(z)G(z) for z G C,
(b) G⑴=1,

(c) As n ― oo, 

log G(z + n + 2) = "土; 土 z log 2tt

[n2 5 事 / 八 L &2
+ 5 + 九 + 石 + 3 + (九 + l)z logn------ n

£ 1.乙 £ 불

~ nz -log A + ^-+ O(-),

12 n
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where F* is the well-known Gamma function and A is called Glaisher's 

(or Kinkelin^) constant defined by

/n2 „ 1 \ n2
(1-1) = lim log(l122 ■ ■ ■ nn) - ( — + - + — )logn + —,

n—>8 \ Z Z LZ / 4

the numerical value of A being 1.282427130 • • •.

From this definition, Barnes deduced

{「2(Z + 1)}7 =(구(Z + 1) 

(1.2) = (2泸_印1+財同 fj (1 + ：)*广거峨 

k=l

where 7 is the Euler-Mascheroni5s constant defined by 

(1.3) , T = ?瓶 (X：-logn) 으 0.577215664... .

We also have two more equivalent forms of G:

G(z + 1) =(冲广捋以书J］档告即)+乾3

(1.4) = (2渺专 喙+1M)牛T(z)z

where the accent ' denotes the exclusion of the case n = m = 0 and 矽 

is the logarithmic derivative of the Gamma function:

(L5) 帔z、)=寿 log r(2)==快一.

az 1(z)

Each form is a product convergent for all finite values of |z|, by the

Weierstrass factorization theorem [14, p. 17이.

We observe that「2(2)—' is an entire function with zeros at 2 = ~k 

whose multiplicity is fc + 1, A: = 0,1,2, •■-.
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For more known properties and formulas see [쉬.

The object of the present paper is to give another approach for the 

double Gamma function. Using this approach we can deduce and prove 

some properties and formulas for this function more easily because, in 

this approach, the study of the double Gamma function is reduced 

to that of the generalized zeta function whose many properties and 

formulas have already been developed and studied.

2. Another form of double gamma function

We can define the Gamma function「by using the Bohr-Mollerup 

theorem (see [3, p. 14); [14, p. 179]). By analogy, we can also give 

definitions for the double Gamma function and more generally for the 

n-ple Gamma functions Tn for any positive integer n by the following 

theorem provided by Vigneras [3이:

THEOREM 2.1. Tbr all positive integers n, there exists a unique 

meromorphic function Gn{z) such that

(a) Gn(l) = 1,

(b) Gn{z + 1) = Gn-i(z)Gn(2)for all z e C,

(c) For x > 1, Gn(x) is infinitely differentiable, £*[ log G£(z)〉0,

(d) Go(x) = x.

In particular, when n = 1, the uniqueness of F(z) = Gi(z) satisfying 

the above conditions was shown by the Bohr-Mollerup. Starting with 

the following function

oo
•仏):一注+ £$ Tog (1 + 刘， 

n=l

and using a result of Dufresnoy and Pisot [15], Vigneras [30] gives the 

Weierstrass canonical product forms of n-ple Gamma functions Vn by 

a recurrence formula, which is summarized as follows:

THEOREM 2.2. For all positive integers n, the n~ple Gamma func

tions rn are given by

「Jz) = G、(Z)(T)i, 
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where Gn(z + 1) = exp(/n(x)) and the functions /n(x) satisfy each of 

the following properties:

(a) fn(T + 1) - fn(3：) = fn-l(3：)；

(b) fn(0) = 0；

(c) 挡 끼 > 0 for all X > 0;

(d) fn(z) = 一展+ £當 믠普} 栋쓰(0) - 應⑴] + 烦功 

where

m€Nn-1 xN*

"•+(项7扁 + (*씨1+扁)

and L(m) = mi +m2 + .. . + mn ifm = (mi, m2, • • • , mn) E Nn-1 xN*, 

N denotes the set of nonnegative in址啓rs and N*— N _ {아丁就Qr) = 

is the hth Bernoulli polynomial;

(e)
jn+l
序帀 £@) = n! £ (x + Z(m))—1
Ctx ' 匕一J

mGNn-1 xN*

is decreasing for x >Q and tends to 0 as x ] 00.

In terms of the Hermite formula for a) [32, p. 270], the Gamma 

function r is seen to be related to the generalized zeta function as 

follows:

(2-1) {£<(")} = logr(a) - log(2?r) or I、(a) =

where <(s,Q)= + 幻—七 a > 0 is the generalized (or Hurwitz)

zeta function which is analytic for Re(s) > 1. Furthermore by the 

contour integral representation [32, p. 266], C(5,a) can be continued 

analytically to the whole s-plane except a simple pole at s = 1 with 

its residue 1. <(s, 1)=二】IL = <(s) is the Riemann zeta function. 

Note [1 이 that the formula (2.1) can also be obtained by using the 

Bohr-Mollerup theorem.
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The double Hurwitz zeta function <2(s)a) is defined by

oo

(2.2) <2(s,a) =(q + 加 + 短)s

&"；2=0

which is analytic for Re(s) > 2 by the Eisenstein^ theorem [16, p. 99]. 

Furthermore a) can be continued analytically to the whole 5-plane 

except simple poles at s = 1, 2 by the contour integral representation 

[기:

—az
(2-3)

負，为 = 四느이/느广%* 

加 Jc (1 — e~z)

where the contour C is the same as m [32, p. 245].

It is easy to reduce a) to a linear combination of〈(<% a):

(2.4) <2(s,a) = - l,a) + (1 一 a)〈(s,a).

The Kinkelin5s constant A was shown to be expressed as a derivative 

of the Riemann zeta function <(s) by Voros [31]:

(2.5) log A = — -
丄c

Now we deduce a relationship between「2(a) and G(0,a) similar to 

that of the formula (2.1).

THEOREM 2.3. Let <2(s,a) be the double Hurwitz zeta function 

where a > 0. Then we have

(2.6) r2(a)=厂击4(27「)*一加顶(00)

where(&(s)£) = 으<2(s,a) and A is the Kinkelin7s constant.

Proof. Let g(d) be the right side of Eq. (2.6). We show that 

satisfies the criteria of Theorem 2.1 when n = 2:

It follows from Eq. (2.4) that —<‘(一1). Considering Eq.

(2.5) we have = A~1e^. Therefore we have g(l) = 1.
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It can easily be verified that

m—1

(2.7) a) = + a) ++ 九)一,，m = 1, 2, 3,...

n=0

Letting m = 1 in this formula, we have = ((s^l + a) + a~3. Then 

considering Eq. (2.4) we see that g(a + I)"1 = r(a)^(a)-1.

We find that for a > 0

成 J3 J 00 n
丁司 logg(a)T =-了-厂3-<2(铲) = 7-------- --------- v-vz > 0.
必 da3 ds s=0 只二0 (a + 庆 + 人:2)3

Also by the analytic continuation of G(s)a) we see that 5(a)"1 € 

。2次)ttenw, in view of Theorem 2.1, the 

the uniqueness of the function which satisfies the properties of the case 

n = 2.

From Eq. (2.4) and Theorem 2.3, we have the following:

THEOREM 2.4. Let S(s“z) be the Hurwitz zeta function where 

a > 0. Then we have

(2.8) r2(a)=厂击4(27苹一如済'(一项+(1以'(E

where C(s,a) = 으Rs, a).

3. Properties and formulas

In this section we first give some properties and formulas for the 

double Gamma function by using Theorems 2.3 and 2.4. We can ex

press log「2(a) as imprope호 integrals in many ways. In the following 

theorem we give only two representations for log「2(a)：
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Theorem 3.1. We have, for a > 0,

logr2(a) = + \ogA- loga + (l - a)logT(a)
丄Z 线 \ £ 厶 )

+ 2
* sin (arctan *)

+ (a2 + J/?)* arctan — cos farctan 으) \ — --一 

a \ a/ J /叫—1

1 ir /、 , , a2 / a2 a 1 \ , . 、， 〜、
logr2(a) =logA-—+1—— I loga + (l-a)logr(a)

Tt \ 厶 丄 N J

1 1 1 y
  ——-4- — 一 --  ij 
ey -1--y 2 12j y

，8
~2e-aydy

0

Proof. From [32, p. 270] we have the Hermite^ formula for <(s,a):

1 사■ —3
^,a)=-a-s + —-

(3.1) 2 8 $ —丄

+ 2 L (a2+g2)T{sin(sarctan%)}矛兰亍

Diffe호entiating the formula (3.1) with respect to s, and then making 

s —> —1, finally using the formula (2.1) and Theorem 2.4, we obtain 

the first formiila. Setting m = 2 in the second formula which appears 

in [23, p. 24] (the condition Re(s) > —(2m + 1) may be corrected as 

Re(5)> —(2m 一 1)), we have for Re(s) > —3, a > 0,

(3-2)

,,、sa—'-I a-s ai-s
〈(¥)= —k + E + uj

12

]

ey -1
广丄厂"奴

Then using this identity (3 2) we obtain the second formula in a similar 

way as in getting the first one by considering

d 1 

ds r(s)
and
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Glaisher [17, p. 47] expressed the Kinkelin5s constant A as an inte

gral:

4 = 2긇宀(3-3)

r 1
1 2

exp < - + - / logT(l + x)dx >.
3 3 Jo

Taking a = 1 in the formulas of Theorem 3.1, we can express log A 

as improper integrals:

Corollary 3.2. We express

log 4 = ? - 2
in (arctan y)

11OgA=4+/

+ (1 + arctany cos (arctan.y)| ―

1 1 丄 1 g] _2 f

百一 m+矽一히' e 如

We now obtain an expansion which represents the function log「2(a) 

asymptotically for large values of a, and which can be used in the 

calculation of the double Gamma function.

THEOREM 3.3. We have, for large values of a > 0,

logr2(a) = logA+ - a- --

+ |(! - a) log(27r) + ° (?)

a2

~2

5 k 
a+仍 log«

Proof. It follows from. Stirling's formula for r(a) [23, p. 12] that, 

for large values of a > 0,

(3.4) log「(a)=
log a - a 4- I log(2?r) + & +。成)•

We can find a number M > 0 such that

<M
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for all real y in (0, oo). Thus we see that

< M-. 
a

It follows from the second equation of Theorem 3.1 that

(3-5)

1 r ,、 1 < a2 (a2 a 1 \ .
logr2(a) = logA- — + I y - - + — I logo

+ (l—a)log「(a) + C)G).

Hence the desired result is obtained from combining of Eqs. (3.4) and 

(3.5).

JPor any complex x we define the functions Bi(x} by the=equa&n

或*,
1=0 '

w/iere |히 V 2m.

The functions are called Z-th Bernoulli polynomials and the num

bers B/(0) are called Bernoulli numbers and are denoted by Bi，Thus,

8 7?
e-q*， 

l=Q

where |히 < 2tt.
z

The Bernoulli polynomials and numbers of order n are defined re

spectively by, for any complex number x,

8 I
(安 - l)n = 匚畔(赤, v/here |히 < 2?r;

zneIZ

n 8 /
__m= Vs(n)- 
(e2 - i)n — i ir 
i 7 l=o

Note that 3件3) = Bz(x), B建=Bi

where |히 V 2矿

and 3件(0) = B件.
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Recall the formula (see [2, p. 264, Eq.(17)]): For every integer 

m N 0, we have

(3-6)
<(—m,a) = —으끄畔, 

m + 1

where are Bernoulli polynomials.

Now we can obtain the similar formula for &(—Ja) and B^{a) as 

the formula (3.6).

THEOREM 3.4. For every integer ? > 07 we have

G( - La)= (Z+'2)(?+1)吧(2 - a).

Proof. In Eq. (2.3), we can justify that the function defined by the 

contour int^rai

〃 、 1 f (—z)st 厂心
"=-说丿顼二二尸z

is an entire function of s, where a > 0. Then we find that G(s,a)= 

r(l — 5)J(5, a). Taking $ = in the formula just obtained, where I is 

a nonnegative integer, we have a) = r(l + /)I(-Z, a) = Z!I(-Z, a). 

We also have

—azT( 1 1 [ (一2)一'一七
1( — 1, — ~—7 / —72 R—dz

2混 Jc2 (1 - e-z)2

-D (一沪-'e 
——Re5z—o------------------- 9

(1 - T

, ~2_(2-a)z
=(-1) Res^o^1-3 --------秘

⑹-I)2

OO k
=(-l)‘ReSz=o，zT-3 £思2)(2 _

k=Q

_(])間岛(2 - a)

—az

G + 2)!
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from which we have the desired formula.

It can also be easily seen that, for every integer Z > 0, 

(3-7) 別2)(2 一 z) = (-l)zBj2)(x).

From Theorem 3.4 and Eq. (3.7) we have the following:

COROLLARY 35 For every integer I >0, we have

<2(-顷)=0+2上+ 1)临砂

From the formulas (2.4), (3.6) and Corollary 3.5, we obtain a rela

tionship between and Bk(a) for some special values of k:

CURUELARY 3.6. For every integer I > 0, we have

J?/4,2(a) = (' + 2)(Q - — (Z + l)Bi+2(a)・

Now we will give a formula for a) similar to the Hurwitz formula 

for <(s, a):

THEOREM 3.7. Let S = a + zt and 0 < a < 1. Then we have, for 

a < 0?

<2(5,a)

_ 2(1 - Q)r(i—s)

(27T)1-s

f , /I \ cos(27ran) fl 、£= sin(27ran)'
sm 侦司 E FL + cos 3" E —斗二一

、 ' ，n=l ' ， n=l ,

,2(s - 1)「(1 一 s)

(2Q2-s

(1 \ cos(27ran) . (1 \ 으\ sin(27ran)

cos G巧X -皿(产丿桓—芬ZL ，
I ' / n=l ' 7 n=l 丿 
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each of these series being convergent.

Proof. Consider

〃 \ 1 [ (—Z 厂七
Z(s,a) = / —----- —dz

27性 (1 一 e-zy

taken round a contour △ consisting of a cir시e of radius (2JV + 1)tt, (N 

a positive integer), starting at the point (27V + l)7r and encirling the 

origin in the positive direction, arg(—z) being zero at z = —(2N + 1)7「.

In the region between △ and the contour (27\顷+旳 0+), of which the 

contour C of Eq. (2.3) is the limiting form, (—2：)s-1e-az(l 一 e~z)~~2 is 

analytic and one-valued except at the poles of order 2; ±2兀% ±4tfz, 

Hence

N

/)(F% 血 

으皿 牛成r (1 - e~zy

—az

=+ K), 

n=l

where /?n, Rn axe the residues of the integrand at 2n?rz, —2mri respec

tively, usually denotes that the path of integration starts at

'(27V + 1)7F5 on the real axis, encirles the origin in the positive direction 

and returns to the starting point, and so 나ic contour in Eq. (2.3) is 

written as fc = f^+).

We can readily compute that

Rn = (-2n7rOs-1e-2—{(1 - a) + 春二丄)；

I 2n7ri J

R'n = (2赤广七2까叫'(1 -a)-.

[ 2nm j

Therefore we have

Rn + n!n — (271^)3-12(1 - a) COS G($ — 1) + 27FQ71)

_ (2n7r)s~22(s — 1) sin (：(s — 1) + 27r<m).
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Hence

1 /(°+) (一2)11厂皿 2(1 — a) sin cos(27ran)
服i /(2NH)” (1 - 厂z)2 Z — —(2찌l-s一~ 2 疽—s

2(1 — a) cos js sin(27ran) 2(s - l)cos *s (J cos(27ran)

+ (2%)1-5 七 n1-3 + (2?r)2-s J n2~s

Tl— 1 ?2=그1

2(5 — l)sin ys sin(27ran) 1 j (—z)s-1e"a2
(2Qi 2 飞W "M 人(]—L)厂

Now, since 0 < a < 1, it is easy to see that we can find a number 

K independent of N such that e~az(l — e~z)~2 < K when z is on △. 

Hence

f一”八 s—1q—az I [F"*z)2 dz〈赤k / J ((22V + 1HS / d0

< K{(2N + l)7r}be찌이 -> 0

as TV t 8 if a < 0.

Making N —> cxd, we obtain the desired formula.

Let ^2(5,1) = <2(s). Taking q = 1 in Theorem 3.7, considering the 

formula (2.4) and「(z + 1) — zF(^), we obtain. functional relations for 

G(s) and <(s):

Corollary 3.6. We have

<2(s) = —2s-17rs-2 cos (-分 j r(2 — s)<2(3 — s);

<(s) = 2希ST Sin (y) r(l - 5)C(1 - s),

where the second identity is referred to as the Riemann Js functional 

equation for《(s).

It follows from Corollary 3.5 and Theorem 3.7 that the Bernoulli 

polynomials of order 2 are expressible in trigonometric series.
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Corollary 3.7. 

have

For 0 < a < 1 and k any positive integer, we

•成？卜고 (")

2(—1产(2Jb + l)!

(27沪
n=l

cos(27ran) 

n2^

k g으、sin(27ran) 
+梏

oo .
' SI：

( ―打3하

■®2fc+2(a)

2(-l)\2A： + 2)!

= 一(2兀)고+아一'

oo
(i-«)£

n=l

sin(27ran) 1 + 2A: cos(2?ran) 
湛+가 + 2% 2丿 疽+2左

n=l
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