ZARISKY TOPOLOGY IN GROUPOIDS, SEMIGROUPS AND LATTICES

CHUL JU HWANG

1. Introduction

Descriptions of commutative rings in terms of hull-kernel topology can be found in [2, 3, 6]. Kist has studied semigroups by using hullkernel topology [5]. In this paper, we proved our main result that the space D(a) is compact when a is contained in groupoids or semigroups. The properties of groupoids in terms of the hull-kernel topology are described in [8]. Up to Theorem 1, without proofs, we repeat those of [8]. We can find the fact that the space D(a) is compact when a is contained in commutative rings [2, 7]. And Also, we can find the fact that the space D(a) is compact when a is contained in regular commutative semigroups[5]. In Theorem 5, by the direct calculation, we will prove the fact that the space D(a) is compact when a is contained in commutative semigroups. Using the method of Stone's Boolean Representation Theorem in [7], which is used by Simmon [8], we prove the fact that the space D(a) is compact when a is contained in groupoids or semigroups. We consider the reason of the failure by the direct calculation that the space D(a) is compact when a is contained in noncommutative rings, non-commutative semigroups or non-commutative groupoids. There are the Krull's Separation Lemma [4, 8] in commutative rings and the similar Lemma 1.2 of [5] in commutative semigroups. Hence there are Proposition 1.7 of [2] and Theorem 1.5 of [5]. But there is no similar theorem in the non-commutative cases. The Lemma 4 is the modification of the Krull's Separation Lemma in commutative rings and the coresponding lemma in commutative semigroups.

Received Apr. 21, 1997. Revised May 20, 1997.

2. Main results

Throughout this paper, the symbol G will always denote a groupoid. And elements 0,1 mean such that g0 = 0 and g1 = g, for all g in Gunder a binary composition. A non empty subset I of a groupoid G is called an ideal of G if $GI \subset I$ and $IG \subset I$. For a set A, we mean A^c as the complement of A. \tilde{A} is meant to be the subgroupoid generated by A, and < A > is the ideal generated by A. The union and the intersection of ideals are ideals. And the intersection of subgroupoids is a subgroupoid. But IJ need not be an ideal when I and J are ideals.

EXAMPLE 1. Let R be the set of real numbers with the operation * such that for any $a, b \in R$, $a * b = a^2b$. Then * is neither associative nor commutative.

EXAMPLE 2. Let R be the set of real numbers with the operation \circledast such that for any $a, b \in R$, $a \circledast b = ab + 1$. Then \circledast is not associative but commutative.

The following result is an easy consequence of Zorn's Lemma and the fact that the union of totally ordered subgroupoids is a subgroupoid.

LEMMA 1. Let G denote a groupoid. If F is a subgroupoid of G which does not meet the ideal I, then F is contained in a subgroupoid which is maximal with respect to the property of not meeting I.

A proper ideal P is called prime; if ab is in P then a or b is in P. A prime ideal P is said to be a minimal prime ideal if G has a zero and there is no prime ideal of G which is properly contained in P. Let M(G) denote the set of all minimal prime ideals in G and P(G) denote the set of all prime ideals in G.

EXAMPLE 3. Let X be the set of $\{0, 1, 2\}$ with the operation + such that for any a, b in X, a + 0 = 0 + a = 0 = 2 + 2, otherwise a + b = 1. Then (1 + 2) + 2 = 1, 1 + (2 + 2) = 0. Hence + is not associative but commutative. And $\{1\}$ is a subgroupoid. Let P be a prime ideal. Since 1 + 2 = 1, 2 + 2 = 0 and $0 \in P, P$ equals X. Hence X has no prime ideals.

LEMMA 2. M(G) is not empty if P(G) is not empty.

LEMMA 3. Let P be a prime ideal in a groupoid G. If P contains the IJ, then P contains I or J.

REMARK. I and J of Lemma 3 need not be ideals.

COROLLARY 1. Let P be a prime ideal in a groupoid G. If P contains the intersection of I and J, then P contains I or J.

We call the subgroupoid S of G to be saturated ; if gh is in S then g and h are in S. And the saturation of a subgroupoid S which we denote S^- , is the smallest saturated subgroupoid of G containing S. Since the intersection of saturated subgroupoids is saturated, clearly the saturation of a subgroupoid S exists. If 0 is in a saturated subgroupoid S, then S = G. Hence if a saturated subgroupoid S is proper, 0 is not in S. Moreover, although $I \cap S$ is empty, $I \cap S^-$ may not be empty by Example 3. But if I is prime, $I \cap S = \emptyset$ implies that $I \cap S^-$ is empty from the following Lemma 4.

LEMMA 4. A proper subgroupoid S is saturated if and only if S^c is a prime ideal.

LEMMA 5. If S is a subgroupoid of G which does not meet the ideal I, then I is contained in an ideal J which is maximal with respect to the property of not meeting S; moreover, if S^- does not meet J then J is prime.

For any subset L of P(G), k(L) is defined to be the set of all elements in G which are common to all of the ideals in L. And for any subset A of G, h(A) is the set of all P in P(G) such that $A \subset P$. If L is in P(G), then we define a closure operator on P(G) such that the closure of L is h(k(L)). The topology so defined on P(G) is called the hull kernel topology. If g is in G, then let, for any subset A of G, $P(A)=D(A)=X(A)=\{P \in P(G): A \text{ is not contained in } P\}$. Similarly, M(g) is defined. For the following Lemma 6, it is easy to see that the collection $\{X(g): g \in G\}$ is a basis for the open sets when P(G) is equipped with the hull kernel topology. Moreover, it is obvious that the hull kernel topology satisfies the T_0 separation axiom. It is clear that M(G) is a T_1 space when equipped with the hull kernel topology. We define $s^n = s^{n-1}s$ inductively. If I is an ideal in G, then the radical of I, denoted by r(I), is defined to be the set of all g in G such that the intersection of \tilde{g} and I is not empty. LEMMA 6. a). $X(A) \cap X(B) = X(AB) = X(A \cap B)$ and $M(A) \cap M(B) = M(AB) = M(A \cap B)$. In particular, $X(a) \cap X(b) = X(ab)$ and $M(a) \cap M(b) = M(ab)$. b). $X(A) \cup X(B) = X(A \cup B)$ and $M(A) \cup M(B) = M(A \cup B)$. c). X(A) = X(<A>) and M(A) = M(<A>).

LEMMA 7. If I is an ideal in the commutative groupoid G, then r(I) is in $\cap \{P \in P(G): P \text{ contains } I\}$; moreover if the saturation of \tilde{s} for any s in I^c does not meet I, then r(I) equals $\cap \{P \in P(G): P \text{ contains } I\}$.

LEMMA 8. For any elements f, g, h in a groupoid G, M((fg)h) = M(f(gh)) and P(fg)h) = P(f(gh)).

THEOREM 1. $\{M(g): g \text{ is in } G\}$ and $\{P(g): g \text{ is in } G\}$ are semilattices under the intersection.

D(G), E(G) denote the semilattices of sets $\{M(g): g \text{ is in } G\}$ and $\{P(g): g \text{ is in } G\}$, respectively.

THEOREM 2. P(G) and P(E(G)) are homeomorphic.

Proof. For $P \in P(G)$, let $f(P) = \{ U \in E(G) : U \text{ does not contain } \}$ P = { $P(g) : g \in P$ }. If P(g) is contained in f(P), for any h in G, $P(g) \cap P(h) = P(gh)$ is in f(P). Hence f(P) is an ideal. If $P(g) \cap P(h) =$ P(gh) is in f(P), then $gh \in P$. Hence $g \in P$ or $h \in P$. This means that $P(g) \in f(P)$ or $P(h) \in f(P)$. Thus f(P) is a prime ideal. Conversely if Q' is a prime ideal of P(E(G)), we define $l(Q') = \{ g : P(g) \in Q' \}$, which is a prime ideal of G from the following argument. Let $g \in l(Q')$. Then for every $h \in G$, $P(gh) = P(g) \cap P(h) \in Q'$, since Q' is an ideal. Thus, $gh \in l(Q')$. Hence l(Q') is an ideal. If $gh \in l(Q')$, then $P(gh) = P(g) \cap P(h) \in Q'$. Since Q' is prime, $P(g) \in Q'$ or $P(h) \in Q'$. Thus $g \in l(Q')$ or $h \in l(Q')$. Hence l(Q') is a prime ideal. And we easily find l(f(P)) = P and f(l(Q')) = Q'. Hence f is a bijection. If we show that f(P(g)) = P(P(g)) then $f^{-1}(P(P(g))) = P(g)$. Thus f is a homeomorphism of P(G) into P(E(G)). To show that $f(P(g)) \subset C$ P(P(q)), let $P \in P(q)$. Then q is not in P hence P(q) is not in f(P). Thus f(P) is in P(P(g)). Hence we proved that $f(P(g)) \subset P(P(g))$. To show that $f(P(g)) \supset P(P(g))$, let $Q' \in P(P(g))$. Hence P(g)is not in Q', g is not in $f^{-1}(Q')$. Thus $f^{-1}(Q') \in P(g)$. Therefore $f(f^{-1}(Q')) = Q' \in f(P(g)).$

COROLLARY 2. M(G) and M(D(G)) are homeomorphic.

Let S is a semigroup and L is a collection of P(I) which means the set of prime ideals of S not containing I, when I is an arbitrarily finitely generated ideal of S. We think L as a lattice under the union and the intersection [8]. P(S) and P(L) mean their prime ideals space with Zarisky topology. M(S) and M(L) mean their minimal prime ideals subspace of P(S) and P(L).

THEOREM 3. P(S) is bijective to P(L).

Proof. We define a map f from P(S) to P(L) as follows. For any prime ideal P of S, we define f(P) as $\{U \in L: U \text{ does not contain}\}$ $P = \{P(I) \in L: I \subset P \text{ and } I \text{ is finitely generated ideal of } S.\}$ For any prime ideal Q of L, we define g(Q) as the set $\{a \in S: P(a) \text{ is contained} \}$ in Q}. If $a \in g(Q)$, then $P(a) \in Q$. For each $b \in S, P(a) \cap P(b) =$ $P(ab) \in Q$. Hence $ab \in g(Q)$. Thus g(Q) is an ideal of S. Suppose that ab is contained in q(Q). Then P(ab) is contained in Q. Since Q is prime, $P(a) \in Q$ or $P(b) \in Q$. Hence $a \in q(Q)$ or $b \in q(Q)$. Thus we have that g(Q) is a prime ideal of L. Let $P(I) \in f(P)$, then $I \in P$. Since for each $P(J) \in L, P(I) \cap P(J) = P(IJ)$ and $IJ \subset P, P(IJ) = P(I) \cap P(J) \in f(P)$. Suppose that $P(I) \in f(P)$ and $P(J) \in f(P)$, then $I \subset P$ and $J \subset P$. Thus $I \cup J \subset P$. Hence $f(I \cup J) \in f(P)$ Thus f(P) is an ideal of the lattice L. Suppose that $P(I) \cap P(J) \in f(P)$. Then $P(IJ) = P(I) \cap P(J)$ is contained in f(P). Hence $IJ \subset P$. Since P is prime, $I \subset P$ or $J \subset P$. Hence $P(I) \in f(P)$ or $P(J) \in f(P)$. Therefore we have that f(P) is a prime ideal of L. Suppose that $P(I) \in f(g(Q))$ when Q is an arbitrary prime ideal of L. Then $I \subset g(Q)$. For $a \in I \subset g(Q)$, $P(a) \in Q$. And $P(I) = P(a_1) \cup ... \cup P(a_n)$ when $\langle \{a_1, ..., a_n\} \rangle = I$. Hence $P(I) \in Q$. Thus we proved that $f(g(Q)) \subset Q$. Suppose that $P(I) \in Q$ and $< \{a_1, ..., a_n\} >= I.$ Since $P(a_i) = P(a_i) \cap P(I), P(a_i) \in Q.$ Hence $a_i \in g(Q)$. Then $P(ai) \in f(g(Q))$. Thus $P(I) = P(a_1) \cup ... \cup P(a_n) \in$ f(g(Q)). Hence we proved that $f(g(Q)) \subset Q$ and f(g(Q)) = Q. Let $a \in g(f(P))$, then $P(a) \in f(P)$ and $a \in P$. Hence $g(f(P)) \subset P$. Let $a \in P$, then $P(a) \in f(P)$. Hence $a \in g(f(P))$ and g(f(P)) = P. Of course f has g as inverse map. Hence f is a bijection.

THEOREM 4. P(S) and P(L) are homeomorphic.

C. Hwang

Proof. For $Q \in f(P(a))$, there exists $P \in P(a)$ such that Q = f(P). Since a is not contained in P, P(a) is not contained in f(P) = Q. Hence Q is contained in P(P(a)). Thus we proved that $f(P(a)) \subset P(P(a))$. Let $Q \in P(P(a))$. Then P(a) is not contained in Q. Hence a is not contained in g(Q). Thus g(Q) is contained in P(a). Hence Q = f(g(Q))is contained in f(P(a)). Thus we proved that $P(P(a)) \subset f(P(a))$. Hence we proved that f(P(a)) = P(P(a)). Then it says that f is a homeomorphism.

COROLLARY 3. ([3], Theorem 4.4) M(S) and M(L) are homeomorphic.

Proof. Since the map f of Theorem 3 is inclusion preserving, the restriction of f to M(S) is a function into M(L). Since the map g of Theorem 3 is also inclusion preserving, the restriction of g to M(L) is a function into M(S). And they are continuous. Then it says that f is a homeomorphism.

REMARK. When I is an ideal of a commutative semigroup, it is well known that r(I) equals to the intersection of prime ideals which contain I([5], Theorem 1.5). But the above fact is not proved for non commutative semigroups.

LEMMA 9. Let I and J be ideals of a commutative semigroup S. If P(I) contains P(J) then r(I) contains r(J).

Proof. If a prime ideal P contains I, then P contains J. So r(I) contains r(J).

THEOREM 5. P(a) is a compact space when a is an element of a commutative semigroup S.

Proof. Assume P(a) is the union of $P(a_i)$, when a_i is an element of A which is a subset of S. Then P(a) is contained in P(A). Hence a^k is contained in $\langle A \rangle = \bigcup \{ \langle a \rangle : a \in A \}$. So a^k is contained in a $\langle \{a_n\} \rangle$ when a_n in A. Hence P(a) is contained in $P(\langle a_n \rangle) = P(\{a_n\}) = P(a_n)$. So we have proved that P(a) is a compact space.

REMARK. We do not know that M(a) has this property. Since $\cap \{P \in P(G) : P \text{ contains } a\}$ is not equal to $\cap \{P \in M(G) : P \text{ contains } a\}$, we does not have the proof that M(a) is a compact space.

128

COROLLARY 5. When a is an element of groupoid G, P(a) is compact.

Proof. Because of Theorem 5 and 2.

REMARK. When a is an element of groupoid G, we do not know that M(a) has this property because it is not proved that M(a) is a compact space when a is an element of a commutative semigroup S, although M(G) and M(D(G)) are homeomorphic (Corollary 2).

COROLLARY 6. When a is an element of groupoid G or noncommutative semigroup S, P(a) is compact.

Proof. Because of Theorem 5, 2 and the fact that S can be regarded as a groupoid.

REMARK. When a is an element of a noncommutative ring R, we can not find that P(a) is compact. $\{D(I): I \subset P \text{ and } I \text{ is finitely generated}\}$ is not an ideal under the union.

THEOREM 6. The spectrum of a semigroup S has a compactification.

Proof. By Corollary 5, the spectrum of a semigroup with 1 is compact. But every semigroup without 1 can be made to be a semigroup with 1. Clearly spectrum is not changed during the process only but adding maximal ideal S which is contained only in P(1) among the set $\{P(a): a \in S \text{ or } a = 1\}$. Since $(P(1) - S) \cap P(S)$ is not empty, S is a limit point of P(S).

REMARK. We does not know that M(S) have this property.

COROLLARY 7. The spectrum of a groupoid has a compactification.

Proof. It follows from Theorem 2.

REMARK. It is known that every T_0 -space has a connected compactification ([5], Theorem 6.2).

C. Hwang

References

- 1. D. D. Andderson, Ideal theory in commutative semigroups, Semigroup Forum 38 (1984), 127-158.
- 2. M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley, 1969.
- 3. C. Hwang, Hull kernel topology in a commutative groupoid, preprint.
- 4. I. Kaplansky, Commutative Rings, The University of Chicago, Press. Chicago and London, 1974.
- 5. J. Kist, Minimal prime ideals in commutative semigroup, Proc. Lodon Math. Soc. (3) 13 (1963), 31-50.
- 6. J. Lambek, Lectures on Rings and Modules, Chelsea, New York, 1976.
- 7. E. Mendelson, Boolean Algebra, McGraw-Hill Book Company, 1970.
- 8. H. Simmons, Reticulated rings, Journal of Algebra 66 (1980), 169-192.

Department of Mathematics Pusan Women's University Pusan 617-736, Korea