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ZARISKY TOPOLOGY IN GROUPOIDS, 
SEMIGROUPS AND LATTICES

Chul Ju Hwang

1. Introduction

Descriptions of commutative rings in terms of hull-kernel topology 
can be fou교d in [2, 3, 6]. Kist has studied semigroups by using hull
kernel topology[5]. In this paper, we proved our main result that the 
space D(a) is compact when a is contained in groupoids o호 semigroups. 
The properties of groupoids in terms of the hull-kernel topology are de
scribed in [8]. Up to Theorem 1, without proofs, we repeat those of 
[8]. We can find the fact that the space D(a) is compact when a is 
contained in commutative rings [2, 7]. And Also, we can find the fact 
that the space D(a) is compact when a is contained in regular commu
tative semigroups[5]. In Theorem 5, by the direct calculation, we will 
prove the fact that the space P(a) is compact when a is contained in 
commutative semigroups. Using the method of Stone's Boolean Rep
resentation Theorem in [7], which is used by Simmon [8], we prove the 
fact that the space D(a) is compact when a is contained in groupoids 
or semigroups. We consider the reason of the failure by the direct 
calculation that the space Z)(a) is compact when a is contained in non- 
commutative rings, non-commutative semigroups or non-commutative 
groupoids. There are the Krull's Separation Lemma [4, 8] in commuta
tive rings and the similar Lemma 1.2 of [5] in commutative semigroups. 
Hence there are Proposition 1.7 of [2] and Theorem 1.5 of [5]. But there 
is no similar theorem in the non-commutative cases. The Lemma 4 is 
the modification of the KrulFs Separation Lemma in commutative rings 
and the coresponding lemma in commutative semigroups.
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2. Main results

Throughout this paper, the symbol G will always denote a groupoid. 
And elements 0,1 mean such that g0 = 0 and gl = g, for all g in G 
under a binary composition. A non empty subset I of a groupoid G is 
called an ideal of G if GI C I and IG C I. For a set & we mean Ac 
as the complement of A. A is meant to be the subgroupoid generated 
by Ay and < -4 > is the ideal generated by A. The union and the 
intersection of ideals are ideals. And the intersection of subgroupoids 
is a subgroupoid. But IJ need not be an ideal when I and J are ideals.

EXAMPLE 1. Let R be the set of real nunibers with the operation 
* such that for any a^b E a * b = a^b. Then * is neither associative 
nor commutative.

EXAMPLE 2. Let R be the set of real numbers with the operation 
® such that for any a, 6 € K, a®b = ab + 1. Then ® is not associative 
but commutative.

The following result is an easy consequence of Zorn's Lemma 
and the fact that the union of totally ordered, subgroupoids is a sub
groupoid.

LEMMA 1. Let G denote a groupoid. If F is a subgroupoid of G 
which does not meet the ideal I, then F is contained in a subgroupoid 
which is maximal with respect to the property of not meeting I.

A proper ideal P is called prime ; if ab is in P then a or & is in F. 
A prime ideal P is said to be a minimal prime ideal if G has a zero 
and there i유 no prime ideal of G which is properly contained in P. Let 
M(G) denote the set of all minimal prime ideals in G and P(G) denote 
the set of all prime ideals in G.

EXAMPLE 3. Let X be the set of (0,1,2} with the operation + such 
that for any a,&inX,a + 0 = 0 + a = 0 = 2 + 2, otherwise a + & = 1. 
Then (1 + 2) + 2 = 1,1 + (2 + 2) = 0. Hence + is not associative but 
commutative. And {1} is a subgroupoid. Let P be a prime ideal. Since 
1 + 2 = 1,2 4- 2 = 0 and 0 6 P,F equals X. Hence X has no prime 
ideals.

Lemma 2. M(G) is not empty if P(G) is not empty.
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LEMMA 3. Let P be a prime ideal in a groupoid G. If P contains 
the I J, then P contains I or J.

REMARK. I and J of Lemma 3 need not be ideals.

COROLLARY 1. Let F be a prime ideal in a groupoid G. If P 
contains the intersection of I and J, then. P contains I or J,

We call the subgroupoid S of G to be saturated ; if gh is in S then 
g and h are in S. And the saturation of a subgroupoid S which we 
denote 5", is the smallest saturated subgroupoid of G containing S. 
Since the intersection of saturated subgroupoids is saturated, clearly 
the saturation of a subgroupoid S exists. If 0 is in a^aturated sub
groupoid S, then S = G. Hence if a saturated subgroupoid S is proper, 
0 is not in S. Moreover, although I Q S is empty, I A S~ may not be 
empty by Example 3. But if I is prime, /「I S = 0 implies that IA S~ 
is empty from the following Lemma 4.

LEMMA 4. A proper subgroupoid S is saturated if and only if Sc is 
a prime ideal.

LEMMA 5. If S is a subgroupoid of G which does not meet the ideal 
I, then I is contained in an ideal J which is maximal with respect to 
the property of not meeting S; moreover, if S" does not meet J then 
J is prime.

For any subset L of P(G), k(L) is defined to be the set of all elements 
in G which are common to all of the ideals in L. And for any subset 
A of G, /i(A) is the set of all P in P(G) such that A Q P. If L is 
in P(G), then we define a closure operator on P(G) such that the 
closure of L is /z(A:(L)). The topology so defined on P(G) is called 
the hull kernel topology. If g is in G, then let, for any subset A of G, 
F(A)=D(A)=X(厶)={ P E P(G): A is not contained in P }. Similarly, 
M(g) is defined. For the following Lemina 6, it is easy to see that the 
collecti。꾜 {X(g) : g 6 G} is a basis for the open sets when. P(G) is 
equipped with the hull kernel topology. Moreover, it is obvious that 
the hull kernel topology satisfies the 7b separation axiom. It is clear 
that M{G) is a Ti space when equipped with the hull kernel topology. 
We de요ne sn = inductively. If I is an ideal in G, then the radical
of Z, denoted by r(I), is defined to be the set of all p in G such that 
the intersection of g and I is not empty.
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Lemma 6. 호). X(A) n X(B) = X(AB) 土 X(A n B) and M(A) n 
M(B) =M(AB) = M(AdB)・ In particular^ X(a)QX(b) = X(ab) and 
M(a)nM(6) = M(사)). b). X(A)UX(B) =X(AUB) andM(A)UM(B) 
=M(A U B). c). X(A) = X(v A >) and M(A) = M(< A >).

LEMMA 7. If I is an ideal in the commutative groupoid G, then 
r(I) is in D (P € P(G): P contains I}; moreover if the saturation of 
5 for any s in Ic does not meet I, then r(I) equals r\ {P E P(G): P 
contains I}.

LEMMA 8. For any elements j\g、h in a groupoid G)M((fg)h)= 
M(f(gK)) and P(fg)h) = P(f(gh)).

THEOREM 1. {M(g): g is in G} and {P(g)： g is in G} are semilat- 
tices under the intersection.

D(G),E(G) denote the semilattices of sets {M(g): g is in G} and 
{尸(g): g 1용 in G}, respectively .

THEOREM 2. P(G) and P(£J(G)) are homeomorphic.
Proof. For P G F(G), let J(P)={ U € E(G): U does not contain 

P} ={」P(g) : g E P}. If _P(g) is contained in /(P), for any h in (7, 
P(g)nPC) =P(^)isin/(P). Hence /(P) is an ideal. If P(g)C]P(h)= 
P(gh) is in J(P), then gh E P. Hence g E P or h E P. This means that 
F(g) E /(P) or P(h) E /(P). Thus /(P) is a prime ideal. Conversely 
if Q1 is a prime ideal of P(E(G))> we define Z(Q') = { g ： P(g) C Q'}, 
which is a prime ideal of G from the following argument. Let g € Z(Q'). 
Then for every h £ G)P(gh) = P(g) D P(h) E since Ql is an 
ideal. Thus, gh 6 1(Q')・ Hence Z(Q') is an ideal. Jf gh E J(Q'), then 
P{gh) = P(^)nP(/z) € Q1. Since Qf is prime, P(g) € Q1 or G Q.
Thus g € Z(Q') or € Z(Q'). Hence Z(Q') is a prime ideal. And we 
easily find l(f(P)) = P and /(/(Qz)) = QL Hence / is a bijection. If 
we show that /(P(^)) = 一P(F(g)) then jf~1(P(P(gF))) = F(g). Thus f 
is a homeomorphism of P(G) into F(B(G)). To show that 代P(g)) C 
P(P(g)))let P G P(g). Then g is not in P hence」P(g) is not in /(P). 
Thus f(P) is in F(P(g)). Hence we proved that f(P(g)) C P(P(^)). 
To show that f(P(g)) D」P(P(g)), let Q1 E P(尸(g)). Hence P(g) 
is not in Q\g is not in - Thus € P(g). Therefore
八厂 W)) = Q' € ・f(P(g))・
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COROLLARY 2. Af(G) and M{D(Gy)are homeomorphic.

Let S is a semigroup and £ is a collection of P(J) which means 
the set of prime ideals of S not containing Z, when I is an arbitrarily 
finitely generated ideal of S, We think L as a lattice under the union 
and the intersection [8]. 」P(S) and F(L) mean their prime ideals space 
with Zarisky topology. M(S) and M(L) mean their minimal prime 
ideals subspace of P(S) and P(Z).

Theorem 3.」P(S) is bijective to P(X).

Proof. We define a map / from P(S) to P(L) as follows. For any 
prime ideal P of S, we define f(P) as {U G L: U does not contain 
P}={P(J) G L:I C P and I is finitely generated ideal of S.} For any 
prime ideal Q of £, we define g(Q) as the set (a E S: P(a) is contained 
in Q}・ If a E g(Q), then P(a) E Q. For each b € Q P(6)= 
P(사)) g Q. Hence ab € g(Q" Thus g(Q) is an ideal of S. Suppose 
that ab is contained in g(Q), Then P(ab) is contained in Q. Since 
Q is prime, P(a) € Q or P(6) € Q. Hence a € g(Q) or 6 G g(Q). 
Thus we have that g(Q) is a prime ideal of L. Let P(/) E /(P), 
then I G P. Since f。호 ea나i P(J) e L,P(I) n P(J) = P(IJ) and 
IJ C = P(I) n P(J) e /(P). Suppose that P(Z) G f(P)
and P(J) E /(P), 난len I C P and J C P. Thus I U J C P. Hence 
/(I U J) G /(P) Thus /(P) is an ideal of the lattice L. Suppose 
that P(J) A F(J) G /(P). Then P(IJ) = P(I) n P(J) is contained 
in f(P). Hence IJ C P・ Sine© P is prime, I C P or J C P. Hence 
P(Z) E /(P) or P(J) E /(P). Therfore we have that /(P) is a prime 
ideal of L. Suppose that P(I) € f(g(Q)、) when Q is an arbitrary prime 
ideal of L. Then I U g(Q). For a € I C g(Q), P(a) € Q- And 
P(I) = P(«i) U ...UP(an) when < (ai, >= I. Hence P(/) E Q. 
Thus we proved that /(S(Q)) C Q. Suppose that P(I) E Q and 
V {ai, >= I. Since P(a2) = P(at) A P(I)JP(ai) E Q. Hence 
at G g(Q). Then P(m) C Thus F(l) = P(ai) U ... U P(an) G
•f(g(Q)). Hence we proved that f(g(Q)) G Q and f(g(Q)) = Q- Let 
a € g(f(P)\ then P(a) E f(P) and a E P. Hence ^(/(P)) C P・ Let 
a e P,then P(a) G /(P). Hence a € g(了(F)) and g(f(P)) = F. Of 
course f has g as inverse map. Hence / is a bijection.

THEOREM 4. P(S) and P(Z) are homeomorphic.
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Proof. For Q € /(P(a)), there exists R € F(a) such that Q = /(P). 
Since a is not contained in P, P(a) is not contained in /(P) == Q. Hence 
Q is contained in P(P(a)). Thus we proved that J(P(a)) C P(P(a)). 
Let Q G P(P(a)). Then P(a) is not contained in Q. Hence a is not 
contained in g(Q). Thus g(Q) is contained in P(a). Hence Q — f(g(Q)) 
is contained in /(P(a)). Thus we proved that P(P(a)) C /(P(a)). 
Hence we proved that /(P(a)) = Then it says that / is a
homeomorphism.

COROLLARY 3. ([3]^ Theorem 4.4) M(S) and M(L) are homeomor
phic.

Proof. Since the map/ of Theorem 3 is inclusion preserving, the 
restriction of f to M(S) is a function into M(£).Since the map g of 
Theorem 3 is also inclusion preserving, the restriction of g to M(L) is 
a function into M(S)・ And they are continuous. Then it says that f 
is a homeomorphism.

REMARK. When J is an ideal of a commutative semigroup, it is 
well known that r(Z) equals to the intersection of prime ideals which 
contain J([5], Theorem 1.5). But the above fact is not proved for non 
commutative semigroups.

LEMMA 9. Let I and J be idedls of a commutative semigroup S. If 
P(I) contains P(J) then r(Z) contains 戒

Proof, If a prime ideal P contains I, then P contains J. So r(I) 
contains r(J).

THEOREM 5. P(a) is a compact space when a is an element of a 
commutative semigroup S.

Proof. Assume P(a) is the union of P(cti), when at is an element of 
A which is a subset of S. Then P(a) is contained in P(A). Hence ak 
is contained in < A > =U{< a >: a E A} . So ak is contained in a 
< {an} > when an in A . Hence P(a) is contained in P(< an >)= 
P((an}) = P(an)< So we have proved that P(a) is a compact space.

REMARK. We do not know that M(a) has this property. Since A 
(P E P(G!): P contains a } is not equal to n {P 6 M(G) : P contains 
a}, we does not have the proof that M(a) is a compact space.
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COROLLARY 5. When a is an element of grpupoid G, P(a) is com
pact.

Proof. Because of Theorem 5 and 2.

REMARK. Whe교 a is an element of groupoid G, we do not know 
that M(a) has this property because it is not proved that M(a) is a 
compact space when a is an element of a commutative semigroup S, 
although M(G) and M(D(G)) are homeomorphic (Corollary 2).

COROLLARY 6. When a is an element of groupoid G or noncomnxu- 
tative semigroup S)P(a) is compacts

Proof. Because of Theorem 5, 2 and the fact that S can be regarded 
as a groupoid.

REMARK. When a is an element of a noncommutative ring R)we 
can not find that P(a) is compact. (P(I):/ C P and I is finitely gen
erated} is not an ideal under the union.

THEOREM 6. The spectrum of a semigroup S has a compactifica
tion.

Proof. By Corollary 5, the spectrum of a semigroup with 1 is com
pact. But every semigroup without 1 can be made to be a semigroup 
with 1. Clearly spectrum is not changed during the process only but 
adding maximal ideal S which is contained only in P(l) among the set 
{P(a) : a E S or a = 1}. Since (P(l) — S)「1 F(S) is not empty, S 
is a limit point of P(S).

REMARK. We does not know that M(S) have this property.

COROLLARY 7. The spectrum of a groupoid has a compactiHcation.

Proof. It follows from Theorem 2.

REMARK. It is known that every 7o-space has a connected com
pactification ([5], Theorem 6.2).
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