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FUZZY STOCHASTIC PROCESS
UNDER PROBABILITY SPACES

Choon II Park

1. Introduction
Fuzzy random variables are used to describe fuzzy stochastic phe­

nomena mathematically for one-period time
For phenomena that are similar to this kind of dynamic fuzzy sto­

chastic phenomena, it is not enough to describe and observe their evolu­
tional procedures. For these requirements, many authors have studied 
fuzzy stochastic processes [1, 2, 11, 12, 13, 15].

Fuzzy random variables and fuzzy random vectors generalize ran­
dom variables and random vectors, respectively: they also generalized 
random sets [4, 6, 7, 9, 10],

Karlin [6] introduced the concept of fuzzy variables as a function 
Q —* where (£2, A, P) is a probability space, and F(R) denotes
all piecewise continuous functions u : J? —> [0,1] for the real line R.

Puri and Ralescu [10] defined the notion of a fuzzy random variable 
as a function F : Q —> F(Rn). where F(Rn) denotes all functions 
u : Rn 一수 [0,1] such that {x E Rn : u(x) < a} is nonempty and 
compact for each a G (0,1].

In this paper, X : Q —> Fq(R) denotes a measurable fuzzy set-valued 
function, where Fq(R) = {A : 1? —> [0,1]} and {x E R- < a} is a 
bounded closed interval for each a G (0,1].

2. Dynamic fuzzy sets and fuzzy random variable요

Let be a nonempty usual set, P(U) denote the set of all subsets 
of Uy and F(U) denote the set of all fuzzy subsets of U. For A G F(U) 
we define two subsets of C7 els follows :

Aa = {x E U : A(x) < a} for any a € [0,1]
Aa — {x EU : A(x) < a}c for any a G [0,1].

We have the following lemmas.
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LEMMA 2.1. Jbr A 6 F(C7)? let {BQ : a G [0,1]} be a class of 
subsets ofU such that /坛 C Ba C AQ for any a € [0,1]. Then

A — (J aBa.
ae[0,l]

Let be the Borel measurable space and Fq(R) denote the set 
of fuzzy subsets >1: J? —> [0,1] with following properties :

(1) {x E R : A(x) = 1} N ©
(2) Aa = {x E R ： A(x) > a} is a bounded closed interval in R 

for each a € (0,1], Le., A € -Fb(-R) is a bounded closed fuzzy 
number (BCFN).

Lemma 2.2. Let

H : (0,1] t I(R) = {[x,y] : x.y € R.x < y}, 
a I H(a) = [mai,na2]

satisfy the following condition :

% V。D [ma2,na2]«

Then

⑴ / = U @丑(。)=(J € 政氏)；

a€(o,l] a€(04]
oo oo

⑵ 厶企=[main5
n=l n=l

where an =： (1 — and a G (0,1].

DEFINITION 2.1. (A(t) : t ET C R} is a dynamic fuzzy set (DFS) 
in U with respect to T if _4(t) G F(U) for every t G T. In particular, 
{A(t) : £ € 꼬} is a normal dynamic fuzzy set (NDFS) if A(t) € 
for every t E T.
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DEFINITION 2.2. Let 4（t） be a NDFS with respect to T and

4* : 7 T 7（丑）={[x, y]： x,y eR, x <y}

* I Aa（t）=（厶（t）* =

DEFINITION 23 Let （J2, A,P） be a probability space and C is a 
set-valued mapping

c : Q I（R） = {\x, y]:x,y ER, x <y}
3 I <（3）=須一（3）,<+（3）].

DEFINITION 2.4. Let （Q, A, P） be a probability space. A fuzzy set­
valued mapping X : Q 死（K） is a fuzzy random variable （FRV） if 
for every B E R and every a G （0,1].

X~（B） = {3 £ Q ： X°（3）A,

A fuzzy set-valued mapping X : Q 珂거（丘） = Fq（R） x • • • x Fq（R） is 
represented by X（cu） = • -

THEOREM 2.1. X（3）is a FBV if and only if Xa（u?） = [X建（3））X才

（3）] is a random interval for every a E （0,1] and

X（3） = U QXa（3）

06（0,1]
=|J 司 X[（3）,X*3）]

oo
（X（3））“ = X/3）= Q 才“（3）]

n=l

where for any a e （0,1], an = （1 -石出了）％

（2.1）
X[（3）=infXa（3）

=inf{x £ R : X（3）（w） > a}
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X 才(3)= SUpXa(3)

* == sup{x € R : X(3)(w) > a}

with X(3)(z) is the membership function of X(3).

Proof. It follows from (2.1), (2.2) and X(s) € Fq(R) that for any 
a €

(2.3) Xa3) = [XI(3),X*3)], X[(3),X才(3)€ Xa(3)・

Then for any x E R and any a G (0,1],

{3 € Q ; X【(3)< a： }
={3 £ Q ;瓦「(3) >x}c

={3 G Q, ; X[(3)G (花,+oo)}c
={3 *2 ； [X-(u；),X+(u；)] C (c,+8)}c
={3 € Q ; Xq(3)D (x, +00) / 0}c E A,

{3 e Q ； x才(3) < x } = {u； e Q ； x才(3) g (―8双]}

= {3 € Q ； [X[(3),X*3)] C(一8, 찌}

={3 e Q ； Xa(3) n (—00, x] / 0 } 6 4.

Let
H : (0,1] t I(R) = {{x, y]; x.y < y),

a I g) = [XW(0,Xg.

When % < we have 丄(s) D Thus

卩Q(3),x師3)] D [X云(3),X*2(3)]

by (2.3). It follows from Lemma 2.2 that

X&) = |J aH(a)
ae(o,i]

=|J
ae(0,l]
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oo
（X（3）* = Xq（3）=[瓦上（3）,・乂宴（3）], 

n=l

where an = （1 — 箫项））。）。"，€ （0,1]. Conversely, let

Bi = {b E B; 1（6） is an isolated set}.

Then
oo

B \ Bi —V bk > -
n=l

where V 아, 眼 > could be any one of the following :
&fc）, [«fc9 bk]^ [akybk） and Then fb호 any a e （0,1],

（tu e Q;Xq（3）C B}
={3 € Q； [X日3）,X才（3）] CBxU（UX1 < eg >）}

=（U{3£Q;xi（3）= x£3）= cjBi}）
cEB

00
U（U {3 c Q;[X[（3）,x才（3）] c< 찌血 >}） 

n=l
= （{3 € Q ； Xa（3）c 31} n （XI — X*）T {아）

oo
U（U（（XI）T <%+8）「|（X才）T（ — 8,眼 >））. 

n=고 '

Since Bi — B \ U辭=1 < 이^bk > and {0} are Borel measurable and 
X「X才，X~ — X才 are A-measurable, we obtain

{3 G Q; Xq（3）U B} = {3 € Q; Xa（s） QB E A.
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3・ Fuzzy random functions

A family of fuzzy random variables X(£) = {X("u;);£ 6 T} is a 
fuzzy random function. Here the parameter set T could be any one of 
the following ;

R、= [0, oo), [a, C Z = {0, ±1, ±2,…}, Z+ = {0,1,2, • • • ), 
(0,l,2,---}. If T = {1,2,••- ,m},X(i) is a fuzzy random vector. If 
T = Z or Z+, one sometimes speaks of a fuzzy random sequence. If 
T = J? or R+ or [a, 6],X(t) is a fuzzy stochastic process. In all cas운s 
we give a general definition as follows.

DEFINITION 3.1. A fuzzy random function X(t) = {X(私E T} 
is a fuzzy set-valued fu표ction from the space T x Q to •)
is FRV on (£2,^4, F) for every fixed i € T; and a NDFS with 
respect to the parameter set T for every fixed 3 G Q)X(・“u) is a fuzzy 
sample function or a fuzzy trajectory.

DEFINITION 3.2. Let (Q, A, P) be a probability space, T C R and 
C a set-valued mapping ( :T x R I(J?) = {[xyy] : x^y E R,x < y}.

(t,3)I = [C(i,w),C+(t,w)].

Thenis an interval random functio교 if 
(~(tyca) and <+(枳3)are both random functions, i,e., when t is fixed,

is a random interval on (Q, A, P), and when 3 is fixed,

〈(•，3)= —("), <+(.,3)]

is an interval-valued function o교 T.

THEOREM 3.1. X(t) = {X("3);t C T} is a fuzzy random function 
if and only if for every a 6 [0,1],

XJt) = {Xc03): t e T}
= {[x-,x+(t,^]：teT}
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is an interval random function for each t € T and every 3 C Q , and

X(t,3)= [J CeXa(t,3)

«€(0,1]
=U MX=X 扣,3)]

^6(0,1]

00 
x(w)=nx*") 

n=l
00

=Q[x~n,x+nM]
n=l

where for every a £ (0,1].

X[("3)= inf Xa«,3)

=inf {a; G R : X(t,3)(c) > a),

X 才(Z,3)= SUpXa(t,3)

=sup{x G R : X(t,3)S) > a}

诳=(I 一法w

Proof. Omit (See Theorem 2.1)

PROPOSITION 3.1. X and Y are tw。equival이H random 口c~
tions on (Q, A, P) and T if and only if Xa and Ya are two equivalent 
fuzzy random functions on (S7, A,P) and T for every a E (0,1]. In 
addition

X= U aXa = Y=[丿 aYa.
aG(0,l] aG(0}l]

DEFINITION 3.3. Given a fuzzy sto사lastic process X on a prole­
ability space (Q,j4,P) and 꼬 U K, let D = {如払 … dn} be a fi­
nite sequence of distinct elements of T. Consider the transformation 
Xd = = (X(九，)X(坛)…，x(知•))of Q into 瑁(K) 
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and let FxD = 2*xtlit2(. tn be the n-dimensional fall-shadow distribu­
tion function of Xq・ i.e.,

Fxd =Fxe,. ,」"〃,••• *)

=P{a> : xt € Xa(tt,u)) : « = 1,2, ••- , n},
x = (xi,x2,••- ,Xn) G J?ra,a G (0,1].

Let D be the collection of all the D. Then {FxD ' D € D} is the sys­
tem of finite dimensional fall-shadow distribution functions determined 
by X.

PROPOSITION 3.2. Fbr two equivalent fuzzy stochastic processes X 
and Y on a probability space (Q, A, P) and T C R we have FxD = Fyd 
for every D E D.

4. Measurable fuzzy random functions

A fuzzy random function X on a probability space (Q, A, P) and T 
is a measurable fuzzy set-valued function of u; G for every t E T. 
However X may not be a measurable fuzzy'set valued function for 

€ T x Q with respect to the product of the probability mea­
sure and the Lebesgue measure. If it is fuzzy measurable and fuzzy 
integrable with respect to the product measure then we can apply the 
Fubini theorem.

Let Lt be the a-field of Lebesgue measurable sets contained in T C 
R when T is Lebesgue measurable and At be the a-field of Borel 
sets contained in T when T is Borel set. Let(t{Lt x A) be the a-field 
generated by the Cartesian product of Lt and A. We define a{Ar x A) 
likewise. We write for the Lebesgue measure on Lt or At-

Definition 4.1 A fuzzy random function X(tg?) is Lebesgue (Borel) 
measurable if for every B E R and every a € (0,1],

{(私3): QB ^(/)} e o{Lt X A),

{(£,3): Xq伉3)nB E a(Ar x A),

respectively.
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THEOREM 4.1. A fuzzy random function X(t)3)is Lebesgue (Bor­
el) measurable if and only if for every a E (0,1],

Xq("3)= [Xa

is a Lebesgue (or Borel) measurable interval random function and

X(t,3)= J 이X^(t,3),X 才 (t,3)]
«6(0,l]
8

x(")=n 이x^,3),x 方(杼以 

n=l

where an == (1 —(詩①、)a and a > 0.

Proof. The proof of the Theorem 4.1 is omitted (See Theorem 3.1)

Definition 4.2. Let
F :모 xQt I(R) = {[x, y] : x,y e R.x <y}
(")I F(Z,3)=

where F~ and F+ are two-variable real-valued functions. The two- 
variable interval function is integrable on T x Q if F~ and F+ 
are integrable on T x Q. The interval number

is the integral of E(£?3)on T x Q, and we denote

(I F-(i,cu)Ji</cu, I I F+(tjQ)dtdp
Q Jt Jq Jt .

DEFINITION 4.3. A fuzzy random function X(t“j) is integrable if 
every interval random function

Xa(t,u;) = [X-(i,u；),X+(t,cu)]

is integrable on T x Q for every a G (0,1].

/ j F+(t)3)dtd3

I I F{t^^dtdu)= 
Jn Jt



118 Choon II Park

THEOREM 4.2. Let be a Lebesgue or Borel measurable fuzzy
random function & 꼬 x Q. If one of the two iterated integrals '

/(|XS)|)%出)

and
표/」X0 -)lmr(^))

is Unite for every a € (0,1], Then
(1) For every a G (0,1],

摂（x（m）m（dt）

is a closed interval.
(2) For every a G (0? 1],

Proof. (1) It follows from Theorem 2.1 and Definition 4.2 that for 
every a £ (0,1].

jT Ea(X(t, = L E(XJt, -))mL(dt)

=如))，E(X*t,・))]mz(成)

= "丄펴占誑。)，L，E(X扣，•洲 Rdf)

展.：JTEa(X(t^ (dt) is a closed interval for every a £ (0,1].
(2) It follows from Definition 4.2 and Fubini^ theorem that for every
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E(X-(^-))mL(dt),[玖X#t,・))m乙(出) 

Jt=u
E(Xa(t,・))m 乙(出)

瓦乙（出）.

5・ Continuous fuzzy stochastic process

DEFINITION 5.1. An interval stochastic process

(5.1) <(")=須-(t,3)]+(t,3)]

on a probability space (J2, A, P) and T = [a, 6] c -R is continuous if 
<±(,,3)are continuous on T for every u; G Q. <("") i& almost surely 
continuous if there exists N £ A with P(N) = 0 such that (士(・，3)are 
continuous on T for 3 € 7VC, the complement of N, It is uniformly 
continuous if《士(・ J) are uniformly continuous on T.

DEFINITION 5.2. A fuzzy sto산lastic process 3)on a probability
space (Q, A, F) and T Q R is continuous on T if and only if for every 
q € (0,1], the level sample functions (5.1) are continuous on T for 
a.e. 3 € Q. X(£,3)is uniformly continuous if and only if for every 
ol G (0,1]. (5.1) is uniformly continuous on T.

We get immediately the following proposition.
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PROPOSITION 5,1. Let X&3)be a fuzzy stochastic process on a 
probability space (Q, A, P) and T U R which is separable relative to a 
countable dense subset S C. R. If the fuzzy sample function X(・)3)is 
uniformly continuous on S, then X(、3)must be uniformly continuous 
on T.

THEOREM 5.1. Let be a separable fuzzy stochastic process. 
If there exist 心 > 0 such that for every a G (0,1],

E(|X#너- M •) - X莉, .)D < 이이E,

whenever 私 t + D E Z, |씨 V 方o, then XQ3) is uniformly continuous 
on T with probability 1.

Proof. For every a G (0,1], the level sample function

Xa(・,3)= [X】(・,3),X*(・,3)]

is uniformly continuous on T with probability 1. Therefore X(">) is 
uniformly continuous on T with probability 1.

PROPOSITION 5.2. Let X(t,3)be a separable fuzzy stochastic pro­
cess on a probability space (Q, & P) and a Lebesgue or Borel measur­
able set T C R • For each to E T and positive integer n let

ItQ.n = (<€/?： \2nt] = [2ni0]),
•乙8(*o,3)= lim inf tQ E G Q,n—+ooTnZt0
l厲(如 3) = lim sup io € T, Gn->ooTnZto

If for 3 £ Q, X(・,3)is continuous at to then

-乙8(*0,3)= -X(*0)3)=。8(机),3).

The proof of the proposition is omitted.

THEOREM 5.2. Let X(t,3)be a fuzzy stochastic process on a prob­
ability space (fl, A, P) and a Lebesgue or Borel measurable set T C R. 
If every fuzzy sample function of is continuous on T, then 
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X(t,3)is separable relative to every countable dense subset S G T 
and is Lebesgue or Borel measurable.

Proof. From the almost sure separability of X("(u) and Theorem 
4.2 there exist a countable dense subset S C T and N\ £ A with 
P(Ni) = 0 such that for every open interval G C R)

(5.2a) 志％X(七3)= *n%X(邑3)when 3 E N；

(5.2b) sup X(切 3)= sup X(s“u) when uj €
TC\G SCG

Since is almost surely continuous there exists N2 € A with
jP(M) = 0 such that y(-,u?) is continuous on T when
(5.3) Q e
From the equivalence of X(切 3) and y(i,w) we have in particular for 
every $ C S a set Ns E A with P(N$) = 0 such that
(5.4) y(<s,u;) = X(s〉3) when 3 G N；.

Let N = M U M U (UscsM). Then N E A and P(N) = 0. For every 
u? G (5.2), (5.3) and (5.4) hold. We proceed to show that, for every 
3 € N\ X(・,3) is continuous on T. Let 切 G T. From the continuity 
of y(-,u;) on 7, for every e > 0 and every a E (0,1] there exists 6〉0 
such that

|Y芒伉3) 一 玲(和,3)| V e when t e T, |i - t0\ < 6,

With G =(扁一io + ») we have, for every a 6 (0,1],
X和0,3) 2，思,X粕,3) 

J llCr
=inf X^(s,cu) 

SnG 7

=inf 跨(s,3) 
ScG a

2 蹬(扁,3)- e,

From, the arbitriness of e > 0, we have (如 3)N 跨(电 3)for 
every a £ (0,1]. Similarly we have < 】셩二(九〉3)for every
a G (0,1]. So iX〈(t,3),X才(成3)) = IK「(执(如3)] for every 
a € (0,1]. It follows from Proposition 3.1 that
From the arbitrariness of to € T we have X(枳 u;) = 3) for all f € T
when 3 € Nc. Thus X(?3)is almost surely continuous .
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