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FUZZY STOCHASTIC PROCESS
UNDER PROBABILITY SPACES

CHOON IL PARK

1. Introduction

Fuzzy random variables are used to describe fuzzy stochastic phe-
nomena mathematically for one-period time.

For phenomena that are similar to this kind of dynamic fuzzy sto-
chastic phenomena, it is not enough to describe and observe their evolu-
tional procedures. For these requirements, many authors have studied
fuzzy stochastic processes [1, 2, 11, 12, 13, 15].

Fuzzy random variables and fuzzy random vectors generalize ran-
dom variables and random vectors, respectively: they also generalized
random sets [4, 6, 7, 9, 10].

Karlin [6] introduced the concept of fuzzy variables as a function
Q — F(R), where (@, A, P) is a probability space, and F(R) denotes
all piecewise continuous functions u : R — [0,1] for the real line R.

Puri and Ralescu [10] defined the notion of a fuzzy random variable
as a function F' : @ — F(R"), where F(R") denotes all functions
u : R® — [0,1] such that {z € R" : u(z) < a} is nonempty and
compact for each a € (0, 1].

In this paper, X : Q@ — Fy(R) denotes a measurable fuzzy set-valued
function, where Fy(R) = {A: R —[0,1]} and {r e R: A(z) < a}isa
bounded closed interval for each a € (0, 1].

2. Dynamic fuzzy sets and fuzzy random variables

Let U be a nonempty usual set, P(U) denote the set of all subsets
of U, and F(U) denote the set of all fuzzy subsets of U. For A € F(U)
we define two subsets of U as follows :

As={z€U: Alz)<a} forany o€ |0,1]
Az ={z €U : A(z) < a}® forany «€[0,1].

We have the following lemmas.
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LEMMA 2.1. For A € F(U), let {Bs : o € [0,1]} be a class of
subsets of U such that Az C B, C Ay for any o € {0,1]. Then

A= U aB,.
«€[0,1]

Let (R, B) be the Borel measurable space and Fy(R) denote the set
of fuzzy subsets A : R — [0, 1] with following properties :

(1) {s€R:A(R)=1}#¢

(2) Aa ={z € R: A(z) > a} is a bounded closed interval in R
for each a € (0,1}, i.e,, A € Fo(R) is a bounded closed fuzzy
number (BCFN).

LEMMA 2.2. Let

H:(0,1) = I(R) = {lz,y] : z,y € R,z <y},

a > H(a) = [Mo;, Na,]
satisfy the following condition :
oy < ag = [mann&l] o [mﬂ'z‘lnaz]‘

Then

(1) A= |J aH(@)= |} [May na,] € Fo(R);

a€(0,1j a€e(0,1)

(2) Ao = (] H(an) = (] [Mman; Ran),

where ap = (1 — zﬁl))a and a € (0,1].

DEFINITION 2.1. {A(t):t €T C R} is a dynamic fuzzy set (DFS)
in U with respect to T if A(t) € F(U) for every t € T. In particular,
{A(#) : t € T} is a normal dynamic fuzzy set (NDFS) if A(t) € Fo(R)
for every t € T.
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DEFINITION 2.2. Let A(t) be a NDF'S with respect to T' and

Ay :T - I(R)={[z,y]:z,y € R, =<y}
ts Aa(t) = (A®)a = [AZ(0), AT (D]

DEFINITION 2.3. Let (2, A, P) be a probability space and ¢ is a
set-valued mapping
(:Q = I(R)={[z,y] :x,y €R, = <y}
w i (W) = [T (W), ¢F(w)).

DEFINITION 2.4. Let (R, A, P) be a probability space. A fuzzy set-
valued mapping X : @ — Fy(R) is a fuzzy random variable (FRV) if
for every B € R and every a € (0,1].

X;(B)={w € Q: Xo(w)N B # ¢} € A.

A fuzzy set-valued mapping X : @ — FJ*(R) = Fo(R) x --- x Fp(R) is
represented by X(w) = (X(1,w), -+ , X(m,w)).

THEOREM 2.1. X(w) is a FRV if and only if Xo(w) = [ X (w), X
(w)] is a random interval for every a € (0, 1] and

Xw)= |J oXa(w)

a€(0,1]
= U alX5(w), XI(w)
a€(0,1]
(X(@))a = Xa(w) = [ (X5 (wn) X (w)]
where for any o € (0,1], an = (1 — 35y)a,

Xo(w) =inf X (w)

(2.1) =inf{z € R: X(w)(z) 2 a}
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X5 (w) = sup Xa(w)

(2'2) = sup{:t cR: X(w)(x) 2 a}

with X(w)(z) is the membership function of X(w).
Proof. It follows from (2.1}, (2.2) and X(w) € Fo(R) that for any
a € (0,1},
(23) Xalw)=[Xgw),XIW)], Xgw),X3(w)€ Xa(w).
Then for any z € R and any « € (0, 1],
fwelt; Xg(w)<e}
—weR; X;w) >a )
={we?; X, (w) € (z,+00)}°
={w € Q; [X7 (), XTI (w)] C (2, +00)}*
=~"{w €N ; Xa(w) N (1}, +°°) 5é B}c € A’
{weQ; XJWw)<z}={weQ; X(w)€ (—oo,z]}
={w € Q; [X7(w), X3 (w)] C (—o0,a]}
={we; Xow)N(~o0,z|#8 } € A.

H:(0,1] -~ I(R) = {[z,yl;z,y € R,z <y},
a - Hw) = [X7(w), X (w)).
When oy < ap, we have Xq {(w} D X4, (w). Thus

[Xa (@), X3, (W)} D (X5, (w), X3, (w)]

by (2.3). It follows from Lemma 2.2 that

X(w)= |J eH(a)

a€(0,1]

= | olXw), Xk w),

a€(0,1)
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oo

(X (@)a = Xalw) = [ [XZ, @), X ()],

n=1

where a, = {1 — ﬁ)a)a,a € (0,1]. Conversely, let

B, = {b € B;I(b) is an isolated set}.

Then

o0
B\ By = () <axbe>.

n=x1

where < ax, bx > could be any one of the following :
(ar,bx), ak, be], [ax, bx) and (ak, bx]. Then for any « € (0, 1],

{w e Q; X,(w) C B}
- {w € Q;[X5 (), X3 (W)} C B1 U (UsZy < ak, bx >)}

— (U{we Q;X;(w)=XI(w)=c€Bl})
cEB

U(G {we & X5 (w), XT ()] C< ag, be >})

n=1

= ({w € Q; Xo(w) € Br}N(Xy —X:)“I{O})

UUEED™ < ai, +00) (YXE) ™ (00, e >)).

Since By = B\ {J;2, < ak,bx > and {0} are Borel measurable and
X5, X}, X — X} are A-measurable, we obtain

{we Q;Xo(w)C B} ={we X (w)N B £ 4} € A
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3. Fuzzy random functions

A family of fuzzy random variables X (1) = {X(t,w);t € T} is a
fuzzy random function. Here the parameter set T could be any one of
the following ;

RaR+ = [0,00),[G,b] CR, 2 = {0’:}:1):&27'“}! Zt = {0! 112=°"}a
{0,1,2,-.-}. ¥ T = {1,2,--- ,m}, X(%) is a fuzzy random vector. If
T = Z or Z*, one sometimes speaks of a fuzzy random sequence. If
T = R or R?" or [a,b], X(t) is a fuzzy stochastic process. In all cases
we give a general definition as follows.

DEFINITION 3.1. A fuzzy random function X(t) = {X(¢,w);t € T'}
is a fuzzy set-valued function from the space T' x 2 to Fo(R), X(t,-)
is FRV on (£, 4, P) for every fixed t € T; and X(-,w) a NDFS with
respect to the parameter set T for every fixed w € , X(-,w) is a fuzzy
sample function or a fuzzy trajectory.

DEFINITION 3.2. Let (2, A, P) be a probability space, T C R and
¢ a set-valued mapping ( : T X R — I(R) = {[z,y] : =,y € R,z < y}.

(t,w) - ((t,w) = [((tw), ¢HE,w)).

Then ((t,w) = [{7(t,w),(*(t,w)] is an interval random function if
¢~ (t,w) and {*(¢,w) are both random functions, i,e., when ¢ is fixed,

((t> ) = [C_(t’ ')a C+(t1 ')]

is a random interval on {2, A, P), and when w is fixed,

C(')w) = Kn(‘;“’),(’ﬂ(‘,“’)]
18 an interval-valued function on 7.
THEOREM 3.1. X(t) = {X(¢,w);t € T'} is a fuzzy random function
if and only if for every a € [0, 1],
Xo(t) = {Xo(t,w): t €T}
={[X5, Xs(tw)): t e T}
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is an Interval random function for each t € T and every w € Q1 , and

X{t,w) = U aX,(t,w)

a€(0,1]

= U elx;,x}(tw)
a€(0,1}

X(t,w) = (| Xan (t,0)

n=1
o0

= (IXa,, X2 (t,0)]

n=1

where for every o € (0,1].

X, (t,w) = inf X, (t,w)
=inf{z € R: X(t,w)(z) > a},

X (t,w) = sup Xa(t,w)
=sup{z € R: X({,w)(z) > a}

1 )Oz
n+17""

Proof. Omit (See Theorem 2.1)

PROPOSITION 3.1. X and Y are two equivalent fuzzy random func-
tions on (§}, A, P) and T if and only if X, and Y, are two equivalent
fuzzy random functions on (2, A,P) and T for every o € (0,1]. In
addition

X= ) eXo=v= |] oY
a€(0,1] a€(0,1]

DEFINITION 3.3. Given a fuzzy stochastic process X on a prob-
ability space (2, A4,P) and T C R, let D = {#;,t2,--- ,tn} be a fi-
nite sequence of distinct elements of T. Consider the transformation
Xp = Xey o, b0 = (X(#1,), X(t2,)y -+ y X(tn,*)) of Q into FF(R)
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and let Fx, = Fx, ,, . .. be the n-dimensional fall-shadow distribu-
tion function of Xp. i.e.,

FXD =Fxt1,¢2,- ,Cn(:tl"'. ’xn)
=Plw:zs € Xa(t,,w):i=1,2,--- ,n},
r= (311,332,"' 137”) € Rn)a € (071]‘

Let D be the collection of all the D. Then {Fx, : D € D} is the sys-
tem of finite dimensional fall-shadow distribution functions determined

by X.

PROPOSITION 3.2. For two equivalent fuzzy stochastic processes X
and Y on a probability space (2, A, P) and T C R we have Fx,, = Fy,
for every D € D.

4. Measurable fuzzy random functions

A fuzzy random function X on a probability space (2, 4, P) and T
is a measurable fuzzy set-valued function of w € §2 for every ¢t € 7.
However X may not be a measurable fuzzy-set valued function for
(t,w) € T x O with respect to the product of the probability mea-
sure and the Lebesgue measure. If it is fuzzy measurable and fuzzy
integrable with respect to the product measure then we can apply the
Fubini theorem.

Let Ly be the o-field of Lebesgue measurable sets contained in T C
R when T is Lebesgue measurable and Ar be the o-field of Borel
sets contained in T when T is Borel set. Let o(L7 x A) be the o-field
generated by the Cartesian product of L7 and A. We define o( A7 x A)
likewise. We write my, for the Lebesgue measure on Ly or Ar.

Definition 4.1 A fuzzy random function X(¢,w) is Lebesgue (Borel)
measurable if for every B € R and every a € (0, 1],

{(t,w) : Xa(t,w) 1 B # ¢} € o(Lr x A),

{(t,w) : Xo(t,w) N B # ¢} € o(Ar x A),
respectively.
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THEOREM 4.1. A fuzzy random function X(t,w) is Lebesgue (Bor-
el}) measurable if and only if for every o € (0,1],

Xo(t,w) = [X (t,w), XT(t,w))]
is a Lebesgue (or Borel) measurable interval random function and
X@tw)y= | olX(tw), XI(tw)]

«e(0,1)
oo

X(tvw) = n a{X(:,.(t$w)s-X;-n (tvw)}

n=1

where a, = (1 — (Ti—"ﬁ)a and a > 0.
Proof. The proof of the Theorem 4.1 is omitted (See Theorem 3.1)

DEFINITION 4.2. Let
F:TxQ— I(R)={[z,y] :z,y € R,z <y}
(t""’) = F(taw) = [F‘(t,w),F"‘(t,w)],

where F'~ and F* are two-variable real-valued functions. The two-
variable interval function F(t,w) is integrable on T x Q if ¥~ and F*
are integrable on 7' x Q. The interval number

[ /ﬂ fT F~(t,w)dtdw, fg /T F+(t,w)dtdw]

is the integral of F(t,w) on T x 2, and we denote

fn fT F(t,w)dtdw = [ ]Q /T F(t,w)dtdw, /Q L F+(t,w)dtdw]

DEFINITION 4.3. A fuzzy random function X(t,w) is integrable if
every interval random function

Xﬁf(t"“") = [Xc: (t’w)?X;- (ta w)]

is integrable on 7' x 2 for every « € (0, 1].
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'THEOREM 4.2. Let X(t,w) be a Lebesgue or Borel measurable fuzzy
random function on T x Q. If one of the two iterated integrals

JR:CaTEen
T

and

B L Xa(t, )lmr(dt))

is finite for every a € (0,1). Then
(1) For every o € (0, 1],

[ Batx(t, Yymaat
T

is a closed interval.
(2) For every a € (0,1],

/ Ea(X(t, ))mz(dt) = B( / Xo(t, Jmi(d)).
T T

Proof. (1) It follows from Theorem 2.1 and Definition 4.2 that for
every « € (0, 1)].

[ Balxt, Yymagat) = JREABEPE
T r
= [ 1Bz 6,0, BOCE (6, D] maget)
- | [ Bz, [ BOXE(t Ymudr)]
T T

ie., [ Ba(X(2,-))m(dt) is a closed interval for every a € (0, 1).
(2) 1t follows from Definition 4.2 and Fubini’s theorem that for every
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a € (0,1},

B[ Xalt, mu(at) = B [ X209, X8 0, lmutan)
= B([ | Xa(tymu(an), [ X2t Imuan)
- [E( /T X (t,)mp(dt)), E( /T X (t,-)mL(dt))]
- [ Bz enmaan, [ BOxt 4 pmaan)
T T
- /T [E(X (1)), E(XE(t,-)]my(dt)
- / E(Xa(t,))my(dt)
T
= [ Bl )ma (.

5. Continuous fuzzy stochastic process

DEFINITION 5.1. An interval stochastic process

(5.1) ((t,w) = [T (t,w), (T (2, w)]

on a probability space (2, 4, P) and T = [a,b] C R is continuous if
(*(-,w) are continuous on T for every w € Q. ((t,w) is-almost surely
continuous if there exists N € A with P(N) = 0 such that (¥(-,w) are
continuous on T for w € N¢, the complement of N. It is uniformly
continuous if {*(-,1) are uniformly continuous on 7.

DEFINITION 5.2. A fuzzy stochastic process X (#,w) on a probability
space (2, A, P) and T C R is continuous on T if and only if for every
a € (0,1}, the level sample functions (5.1) are continuous on 7' for
a.e. w € ). X(t,w) is uniformly continuous if and only if for every
a € (0,1). (5.1) is uniformly continuous on 7.

We get immediately the following proposition.
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PROPOSITION 5.1. Let X(¢,w) be a fuzzy stochastic process on a
probability space (2, A, P) and T C R which is separable relative toa
countable dense subset S C R. If the fuzzy sample function X(-,w) is
uniformly continuous on S, then X(-,w) must be uniformly continuous
onT.

THEOREM 5.1. Let X(t,w) be a separable fuzzy stochastic process.
If there exist €,3, k, ho > 0 such that for every a € (0,1],

E(XZ(t+h,) — X3 (,)[°) < a7,
whenever t,t + h € T, |h| < hy, then X(¢,w) is uniformly continuous

on T with probability 1.
Proof. For every « € (0, 1], the level sample function

Xolw) = [-X;('$w)7X:("w)]

is uniformly continuous on 7' with probability 1. Therefore X(:,w) is
uniformly continuous on T' with probability 1.

PROPOSITION 5.2. Let X(t,w) be a separable fuzzy stochastic pro-
cess on a probability space (2, A, P) and a Lebesgue or Borel measur-
able set T' C R . For each ty € T and positive integer n let

Iio,n = {t ER: [2“15] = [Qnt()]},
Loo(to,w) = hm inf X(t,w), to € T,w € Q,

n-—co TnIgo

Uso(to,w) = ’zl}_{xéo sup X(t,w), t6 € T,w € .

TnI‘o
If for w € Q, X(-,w) is continuous at ¢; then
Loo(t[;,w) = X(to,w) = Uoo(to,w).

The proof of the proposition is omitted.

THEOREM 5.2. Let X(t,w) be a fuzzy stochastic process on a prob-
ability space {2, A, P) and a Lebesgue or Borel measurable set T 'C R.
If every fuzzy sample function of X(t,w) is continuous on T, then
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X(t,w) is separable relative to every countable dense subset § C T
and is Lebesgue or Borel measurable.

Proof. From the almost sure separability of X(#,w) and Theorem
4.2 there exist a countable dense subset § C T and N; € A with
P(N;1) = 0 such that for every open interval G C R,

(5.2a) inf X(¢,w) = inf X(s,w) when we Ny
™G sSnG

(5.2b) up X (f,w) = sup X(s,w) when w € NY.
SnG

)
TAG
Since Y(t,w) is almost surely continuous there exists N; € A with
P(N3) = 0 such that Y(-,w) is continuous on 7' when

(5.3) w € Nj.

From the equivalence of X(#,w) and Y (¢,w) we have in particular for
every s € S a set Ny € A with P(N,) = 0 such that

(5.4) Y(s,w)=X(s,w)  when we€ Nj.

Let N = Ny UN; U (UsesN,). Then N € A and P(N) = 0. For every
w € N¢, (5.2), (5.3) and (5.4) hold. We proceed to show that, for every
w € N¢ X(-,w) is continuous on T'. Let ¢y € T'. From the continuity

of Y(-,w) on T, for every ¢ > 0 and every « € (0, 1] there exists § > 0
such that

IVE(t,w) = YE(to,w) < e  when t&T,|t -1 <8,
With G = (5 — 6,0 + 6) we have, for every a € (0,1},

+ > +

X5 (to,w) 2> f{l‘%i(-}Xa (t,w)

= inf X¥(s,0)

sSnG

7 N

= G Ya )

> YE(to,w) — ¢,

From the arbitriness of € > 0, we have XZ(¢g,w) > YF(to,w) for
every a € (0,1]. Similarly we have XZ(#,w) < YE(tg,w) for every
a € (0,1]. So [X7(t,w),XT(ts,w)] = [Yy (},w), Y5 (to,w)] for every
a € (0,1]. It follows from Proposition 3.1 that X(to,w) = Y{(%g,w).
From the arbitrariness of tg € T' we have X(t,w) = Y(t,w)forallt €T
when w € N°¢ Thus X(-,w) is almost surely continuous .
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